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ABSTRACT

Several cases of wave motion without damping were solved to obtain
* background information which would aid in solving cases of wave wmotion
with coulomb damping. The nonlinearities introduced by coulomb damping
could be linearized so that they could be solved by using Laplace Trans-
forms for the following cases: semi-infinite rod with a step stress
» impulse loading and a square wave stress impulse loading for 7 2 alc
and T = /2c; and a finite rod with a step stress impulse loading.
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DEFINITION OF SYMBOLS

Symbol Definition

A cross-sectional area

B; equation coefficients

c wave propagation velocity, JEJ?;
cy inducing wave propagation velocity
co induced wave propagation velocity
D; equation coefficient

E modulus of elasticity

e 2.71828 ...

F

friction force per unit length
Fge static friction force per unit length
f general function

general function

0%

H(...) Heaviside function

K spring constant of the rod

L Laplace transform operator

L£-t inverse Laplace transform operator

£ rod length

m mass

n integer

Pext external force

p Fourier transform domain independent variable




U(x,s)
U, (x,5)
Up(x,s)

U(p,t)

DEFINITION OF SYMBOLS (Continued)

Definition

Laplace transform domain independent variable

signum of G, +1 when G positive or -1 when i negative
impulse loading force

time variable

Laplace transform domain dependent variable
complimentary (homogeneous) solution

particular solution

Fourier transform domain dependent variable

displacement

velocity, %%
. du

strain, 8;

impulse loading velocity

rod axial coordinate

position coordinate of wave front, ct
wave maximum propagation distance
mass density

pulse duration

summation
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CHAPTER 1

Introduction

Although there have been numerous analyses published on wave
motion from many standpoints, no publications on wave motion with
coulomb damping have been uncovered. This treatise is an initial
attempt to analyze wave motions with coulomb damping, using Laplace
transforms as an aid in solving the partial differential equationms.
Wave motion without coulomb damping is presented first to establish
the fundamental characteristics of wave motion. Then, the solutions
which were successfully obtained of wave motion with coulomb damping
are presented,

In the chapier on wave motion without coulomb damping, semi-
infinite and finite rods are considered. For the semi-infinite rod,
three types of impulse loadings are analyzed: step stress, square
wave stress, and step velocity. The finite rod is analyzed for the
right end boundary conditions of free and fixed. TImpulse loadings of
step stress, square wave stress, square wave velocity and triangular
wave stress are considered for the free right end condition, and
square wave stress and triangular wave stress for the fixed right end
boundary condition.

In the chapter on wave motion with coulomb damping, only a few
cases are solved because of the difficulty in obtaining solutions;

however, both the semi-infinite rod and finite rod are considered.




For the semi-infinite rod, impulse loadings of step stress and square
wave stress for 7 = &/2c and T 2 o/c are analyzed, and for the finite
rod, a step stress 1is analyzed.

In Chapter V the effects of friction-induced wave motion are pre-
sented for the inducing wave propagation velocities of twice, equal to,
and one-half of the propagation velocity of the induced wave. In the
last chapter, the advantages and disadvantages of the Fourier trans-

form technique as applied to wave motion are presented.




CHAPTER II

Previous Work

Although almost every book dealing with dynamics, vibration, elas-
ticity, mechanics or physics devotes some space to wave motion without
damping, nothing seems to be available on wave motion with coulomb
g, Some 0f the works used as background information for the pre-
paration of this analysis were Jacobsen and Ayrel, Timoshenko?Z,
Burton®, and Tong“. The technique of solving the wave equation using
Laplace transforms was obtained from Wylie® and Norwacki®. The method
of variation of parameters for solving some of the nonhomogeneous dif-
ferential equations was obtained from Kells”, The Laplace transforma-
tions were taken from the tables and principles of Tse, Morse and

Hinkle® and from the tables of the CRC Standard Mathematical Tables®.

Some of the material reviewed as background information on
Fourier transforms was Sneddonl®, Hildebrand!l and Erdelyi, et all2,
Transformation tables of Fourier cosine transforms were obtained from
Sneddon'® and Erdelyi, et al.l2,

Since no materiai was available on wave motion with coulomb damp-
ing, this work was generated from the collective background information
of the bibliography. However, some work has been done on wave motion
with various types of internal damping. Narwocki® and Goldsmith!® are
excellent examples of those who have performed analyses of wave

motion with visco-elastic damping.




CHAPTER III

Wave Motion Without Damping

Wave motion is considered in this report only for a continuous
elastic system which is covered by partial differential equations.
The media are assumed to follow Hooke's law and are homogeneous and
isotropic. The treatise will be limited to one-dimensional wave
motion in prismatic bars where the length of the wave is large com-
pared to the cross-sectional width. The cross-sectional planes are

assumed to remain plane and for this chapter, damping is neglected.
A. Wave Equation Formulation

Consider the prismatic bar in figure 1. Let T be the force
acting on the cross section at some position x, and at x + dx the

force is T + %5 dx. Using Newton's law of motion, we obtain

Ly @)




where p is the mass density, A is cross-sectional area, and u is the
displacement. The force at the cross section is proportional to the

strain (Hooké's. law); i.e.,
T=AE%,

where E is Young's Modulus of Elasticity. For a prismatic bar that is

homogeneous and isotropic,

T _ g &2
o E o2

%u  p 9%u _
gz 0
2 2

where ¢ =~NE/p. The general solution to equation (2) can be expressed

as

u = f(ct ~ x) + g(ct + x),

and regardless of the functions f and g, the argument (ct * x) leads
to the differential equation upon differentiating and substituting.

Then, for u = £(0),

which demonstrates that c is the wave propagation velocity.



B, Semi-Infinite Rod

This rod begins at x = 0 and extends in the positive x direction
to infinity. It is an ideal rod used for mathematical purposes to
give wave motion that is undisturbed by a boundary.

1, Step Stress Impulse Toading

The Laplace transform technique is used to obtain a solution
to equation (2) because the solution for transient type impulse is
desired, and these solutions are easier to obtain using Laplace trans-
forms. To solve equation (2), two boundary conditions and two ini-
tial conditions must be known. For example, let the displacement,
u(x,t), and the velocity, ut(x,t), be zero at t = 0, Also, let a
step stress impulse loading be applied to the semi-infinite rod.

This means that the two boundary conditions are as follows: )
uX(O,t) = i% H(t) where T is the applied load, and H(t) is the
Heaviside Function (when the argument t > 0, H(t) = 1 and when t < O,
H(t) = 0) and (2) as x —» o, u(x,t) is bounded. Taking the Laplace

transformation of equation (2) with respect to t yields

U (x,s s2 s 1
SUELE) . 22 y(x,s) + B ux,0) 4 g7 v, 0) = O,

X

where s is the new variable. Since the initial conditions are zero,
then

D2V (x,8

52 =0
- - 'E'EU(X,S) = 0,




This equation is an ordinary second order differential equation that

has a solution of
s

- =x
c

S
-C-X
+B2e .

U(x,8) = Bje
Since as x —» =, u(x,t) is bounded, then B, = 0; therefore,
s
-=x
c

U(x,s) = Boe

s
- =x
c

W (x,8) _ s
a = 'Ba - e .
X c

Applying the other boundary condition, i.e.,

u (0,£) = 2= H(t) or : T
P8 AL Lo
yields
T _ s _ _Tc

Tc
U(x,s) = iEsZ © .

Taking the inverse transform gives a solution to the partial differ-

ential equation.

u(x,t) =42 (£ - 5 H(e - B,




Essential to the understanding of wave motion is the velocity and
strain distribution of the rod. These can be obtained by taking the

partial derivatives with respect to t and x; i.e.,

du _ Ie x
8? " AE H(E c)
ou _ _ L _X
S; - T AE H( c)'

The distribution of displacement, velocity and strain for various
times, ti, is shown in figure 2. A step stress input yields a step
velocity and strain but a ramp-type displacement. Also, the dis-
placement cannot be discontinuous like the velocity and strain,
because a discontinuity would indicate a break in the rod.

2. Square Wave Stress Tmpulse Loading

Let the initial conditions be zero. At t = 0, a stress 1is

applied at x = 0 until t r. Then the stress is zero at x = 0}

i.e.,

T
6 (0,8) = - 75 [B(E) - K - D] 3)
Equation (2), the differential equation to be solved, has the general
solution of

X -
U(x,s) = Bie + Boe .

oln
"




For a semi-infinite rod, B; = 0, and

s % X
Ux(x,s) = =B Te (4)

Taking the Laplace transform of equation (3) and substituting into

(4) for x = 0 yields

Tc =18
)

u(x,t) = AE [(t - E) H(t - %) -(t-1- %) H(t - T - %)}
T !— B v-!
§=A—ELH(t-=g)-H(t-T-§)J

= . I X,
'a—x—-ﬁ\:ﬂ(t-:)-ﬂ(t-”r-%):l.

The distribution of displacement, velocity and strain is shown in
figure 3. The square wave stress input yields a square wave velocity
and strain but a ramp wave front on the displacement tvthich is constant
after t = 71,

3., Step Velocity Impulse lLoading

For a semi-infinite rod with a step velocity at x = 0, the

end condition is

u (0,t) = VH(E). (5)
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With the initial conditions zero, the solution to equation (2) is

U(x,s) = Boe . | (6)

oln
]

Taking the Laplace transform of equation (5) with the initial condi-

tions equal to zero and substituting into equation (6), for x = 0,

we obtain
V —
32 T Be
s
v ~¢f
U(x,s) =<3 €
s
X X
u(x,t) = v(t - E) H(t - :?
u.(x,t) = VH(t - D)
| c
- .y X
ux(x’t) = c H(t C).

These distributions are shown in figure 4., It is interesting to
note the simularity of the distributions for a step stress and a
step velocity.

This section illustrates the characteristics of wave motion
in its simplest form to form a basis for the analysis of the more
complex wave motion which is to follow. An understanding of these
simpler forms simplifies the understanding of the more complex and
allows the individual to estimate the behavior of the more complex

wave motion.
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C. Finite Rod

Although the finite rod has a few of the characteristics of the
semi-infinite rod, the finite rod exhibits unusual behavior at the

boundaries caused by the added phenomenon of reflection.

1. Right End Boundary Condition Free

The term "free'" here means that the right end is unsupported,
and the stress at the end is zero unless a stress is specifically
applied.

a. Step Stress Impulse Loading to the Left End

A rod of length, 4, has a compressive step stress applied
when t = 0 and at x = 0; therefore, the boundary conditions are as
follows:

ux(O,t) = - ZE H(t) or Ux(o’s) = - =i (7)

ux(z,t) =0 or Ux(z,s) = 0, (8)

The general solution to equation (2) for zero initial condition is

ole
"
!
olu
»

U(x,s) = Bje + Boe ’

s s
Ux(x,s) = Blz e - Bz'; e .
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Substituting equation (7) with x = 0 and equation (8) with x

gives

= -2
0=c¢e Bl - € B2
Tc e ¢ Tc
B; = and By =
- -2::& s - ‘Z—CE' S
AEs?® <1-e > AEs? (1-e )
X 25 , X
Tc <8 (- &+ s
U(x,s) = 5 e + e .
2%
AEsZ2 <l-e ¢ >
Using the binomial expansiom yields
22, g 8y
L =1+e °© +e °© + e ¢ + i.e
24
1 ~e
Therefore,
2 4 6
o o Ee (Hebe oD 8D
U(x,s)=ﬁg§ e + e + e + e

(continued on next page)

£
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CEiEHs X (X (8ux,
+[e +e +e +e +.--]},

and taking the inverse Laplace transform yields

T (Gt NOUNCEI RO
et Dae )
(oot [

IR RSN
.H< ><-—+> (-— 0+“J}.0)

The velocity equation is

JHGDRICEIORICES)
AE c c c c c

ut(x,t)
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and the strain equation is

N UGN CERDA A
+H< -%-§>+...]+LH<t—2—f"+§>+H< -%+%>
+H<t-—+ >+H<-—+ >+}} (11)

Shown in figure 5 is a representation of the displacement, strain and
velocity distributions at time, t = 0. At t = 0, the contributions of
each term of the above equations have not yet reached the rod; however,
as time increases, the displacement, velocity and strain waves move in
the directions of the arrows, and some of the waves immediately enter
the domain of the rod. Figure 5 is used as a step to obtain figure 6.
However, similar figures to figure 5 will not be shown in the solution
to other types of examples to follow, but should be understood as a
step that was taken but not shown.,

To simplify the solutions which will follow, the equations will
be written in summation notation. Equations (9), (10) and (11) in

this notation would be as follows:

o {] [ Dot D) ) [o- e

n=0 n=1




15

oo {J[r (o m- )T -2 9],
o= {129 o9

It is advantageous to make some observations about fig-
ure 6 at this point, Notice that the displacement and velociiy con-
tinue to increase while the strain fluctuates. The velocity at first
increases from the left where the load is applied due to a compressive
wave, then the velocity doubles at the right end and increases from
the right due to an expansive wave, The strain reaches a constant
value throughout the rod when the displacement is of a ramp shape
over the length of the rod. The strain is zero over the length of the
rod when the displacement is constant over the length of the rod.

b. Square Wave Stress Impulse Loading to the Left End

The square wave input is more realistic in practice than
the step inpui, because at some time; 1, after the stress has been
applied, the stress input ceases; therefore, the rod with a square
wave input does not continue to increase its velocity as it did with

a step input., Considering the same rod as before with zero initial

conditions and

u, 0,8) = - A—TE [H(t) - H(t - T):l or U _(0,s) = é -1

u (4,£) =0 or U (ss) =0,



the solution to the equation of motion (2) is

with the corresponding velocity and strain distributions

n=0
FhCadatcmg]l
C C C (]
n=1
= .. 204 _ X\ _ .. _2ng X
e S PN R ICREEE A )]
n=0
-Z[H(t-—zﬁ&+§>-ﬁ t-T-z—n£+§>]}. (13)
(& C C C
n=1

The velocity and strain distributions are shown in figures 7(a) and

(b) for 1 = L The velocity wave travels down the rod and doubles

Z.

at the right end. As the wave returns, it reduces to its original

L
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value. When it reaches the left end, the same wave motion occurs as
did at the right end. The strain wave travels along the rod until it
reaches the end, and then both ends of the wave go toward the middle
of the wave until the wave vanishes at ct1/4 from the end of the rod.
After the wave vanishes, it reappears at the same position with the
opposite sign, and the wave expands until it has a width of 7. When
it is the width of 7, the strain wave has reached the end of the rod,
and the wave moves in the opposite direction from which it initially
moved. When the wave reaches the opposite end (x = 0), the same wave
motion occurs at that end as did at the other end (x = ).

Figure 8 illustrates the displacement distribution of the
square wave input of pulse duration, 7 = f%. When the wave reaches
the end of the rod (x = 4), the wave form changes. This is caused by
the interaction of the two ramp-shaped waves meeting at the end of the
rod. To give a further illustration of the displacement of the rods,
the displacement versus time is shown in figure 9 for three rod posi-
tions x = 0, 4/2 and 4. A rod when struck by a square wave of pulse
duration, 7 = é% does not move en masse, but only portions of the rod
move at one time, like a worm crawling. The ends of the rod move in
a similar manner with the end, x = 4, at a phase lag of t = g/c to the
end, x = 0, while the middle moves only 1/2 the distance at one time,
but the times occur twice as often., The reason the ends move twice as
much as the middle is because a compressive wave moves down the rod tc

the end, x = 4, then converts to an expansive wave of the same magni-

tude, thereby causing a displacement twice that due to the original
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wave. This wave motion is not typical of nature in that nature seldom
applies a stress of wavelength 7 = ?%. This will be illustrated next

with a square wave velocity impulse loading.

c. Square Wave Velocity Impulse Loading to the Left End
This example requires some forethought before the desired

solution can be obtained, If we wish to simulate the striking of a
golf ball, a baseball, or some other similar action, the duration of
the square wave is important. This pulse duration is generally the
time that it takes the pulse to go the length of the elastic body and
return; i.e.,, T = %% . Other pulse durations may be specifically
applied, but in general, they are not true simulations of nature. To
illustrate this point, a solution will be obtained with a general
pulse duration width of 7. The difficulty at this point is defining
the boundary condition at the end where the square wave velocity is

applied. When the velocity is applied, the end condition is defined

as
u (0,t) = VE(t) or  U(0,s) = ;V'z ,

where v is the applied velocity, and when the velocity is released,

the end condition is

ux(O,t) =0 or Ux(O,s) = 0.
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It is difficult to apply this end condition in this form; however, if
the end condition could be totally defined in terms of uyg, then it
could be easily applied. This can be done by obtaining the solut:.ion

of a rod which is free on the right end and has a step velocity impulse
loading on the left end; i.e., let the initial conditions be zero, and. -

the boundary conditions be

u (0,£) = VH(t) or U(O0,s) = sl’g
ux(z,t‘:) =0 or Ux(z,s) = 0,

The solution to the equation of motion, equation (2), is

u=v{2(_l)n< _M_E)H( -m_f)
[od C C (o4
=0

n:

-Z(-l)n<t-2nz+§>1{< -2n2+§>}
c c c c ‘
n=1

The corresponding velocity and strain equations are

. v{Z(-l)m H <t - 2—22 - %) - Z(-l)n H <t - 22—£+§>}
=0 n=1

I

n 2n4 n 2ng | X
e n (- B ) (- ek an
n=0 n=1

These are shown in figure 10. The velocity, v, travels down the rod

=
[]

[=
1]

and doubles at x = £. As the rod attains a velocity of 2v, the strain
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is being reduced to zero. When the wave is returned to the origin,
the strain changes sign and the velocity is reduced back to v. This
is because the boundary conditions require the velocity to be v at
x = 0. This is as though the input is attached to the rod. If the
input had not been attached to the rod, then the rod would have left
the input at a velocity twice the input velocity. The fact that the
strain changed signs indicated that the input was no longer pushing
but was pulling.

The objective of this exercise was to obtain an end con-
dition at x = 0 entirely in terms of uy. Therefore, using equation

(14) yields

u (0,8) = -

ol<

[Y(n Ht- > Z(” HG'Z%}

n=0

which is the boundary condition at x = 0. To limit this equation for
t £ 24/c, we eliminate the summation and the latter Heaviside func-
tion. Thus we obtain the left end boundary condition while the

velocity input is applied:

_ v
u (0,£) = - ¢ H(E).

To obtain the total left end boundary condition, this equation is
combined with ux(O,t) = 0 (after the velocity input is removed) to

obtain

UX(O,t) = - % [H(t) - H(t ~ T)} for T = %%,




By using this boundary condition with the right end boundary condi-

tion,

u (£,t) =0,

and setting the initial conditions equal to zero, the solution to the

equation of motion (2) is

= _2nf _x _2np _x ng  x
: V{ZKt c °>H< c c>'<t'T'T‘z>
n=0

-<t-1--2%é+%>}l<t-"r--2::1—£+§>}}, (15)

for 1 = 24/c. For 7 = 24/c which is generally characteristic of

nature, the equation reduces to

O O R N ]

and the corresponding velocity and strain equations are

MUCGHE G
oo -2 (e- -2y
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Figure 11 shows the velocity and strain distributions. The velocity,
v, and strain, -v/c, traverse the rod, simultaneously. When the wave
reaches x = 4, then it is reflected with the velocity equal to 2v,
while the strain is reduced to zero. When the wave reaches x = 0,
then the rod leaves the input at a velocity of 2v and all wave motion
stops. To explain this phenomenon in terms of a golf club striking a
golf ball, we would need to assume that the club was rigid and did
not slow down while striking the ball. When the club strikes the
ball, a wave goes across the ball bringing the velocity of the ball
to the velocity of the club and putting a strain in the ball. As the
wave is reflected, the strain is relieving itself by pushing against
the club, thereby causing the velocity of the ball to reach twice
that of the club. It is now apparent why T = 24/c is characteristic
of nature.

To get further information concerning the step velocity,

let T = 4/2c, then equation (15) becomes

- 2nf X% 2nf _ X 4ntl)f _ X
u—v{Z{(t- c _C>H< T ¢ c)-<t- 2¢ c>
n=0
N o0
.H<t_ 4n+12_§\}+z K _2_n£+§>H< _2112_+§>
2c c) c c c c

(e g u (-SR] )

o]
[}
-

2c c




with velocity and strain equations of

e (a2
n=0
z (e -2 g) o u (e - o, 2]

C (o

r\?o—|f— 4 ™, ’ ;
u:—%JLZJt—HQ_M--}E)_H<t_£4g_::1M_§

- [re- ) e o)
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These equations are the same as that of the square wave strain input,

equations (12) and (13), with the exception of the constants in front

of the equations. Therefore, figures 7(a) and (b) are illustrations

of the velocity and strain distributions, and only the scales need to

be changed. Figure 8 is also applicable to the displacement.

d. Triangular Wave Impulse l.oading to the Left End

Consider the triangular wave shape shown in figure 12,

The wave shape may be expressed by the equation

f(t)=T%{tn(t) - 2< -Z%>H<t-f_c)+<t__zﬂ_c_> HG'%{;}}-
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Therefore, the boundary conditions are

4T

2 fro 2 (- A)n (A (-2 (- %)

ux(z,t) = 0,

uX(O,t)

With the initial conditions set to zero, then the solution to the

equation of motion is

2
w = 2Tc }: 2 XY oy - 2ng _ X\ _ 2 (¢ - Bntl)f _ x
AEL c c c c 4e c

2

. 2
+Z[<t_ﬂ+§>1{<-&%+§>-2 t - 8n+1'6+§>
c c c c 4e c

1

0 2
n=

R e Ha

with a velocity and strain of

_ 41c? {z K __r_1__§>H< -2_n&-§>_2<t_£§£tl_2&-_
Ye AEz c c c c be c

ale - (8ntl)g X + (¢ - (4ntl)p _ X ale - (bntl)p _ x
Le c 2¢c c 2¢c c

2

(equation continued on next page)
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+Z [(t-m+§>H< -2—n—£-+§>-2 t 8“+12+5>
c c c 4e c
n=1
cu (e (8nt+l) ¢ + XY 4 (¢ (4n+l) 4 + g (e - (4ntl) g | x )
b4e 2c¢ 2c c
[ve)
= 4Ic - _2ng _x 2ng  x Bn+l)g x
“x ~ AEZ Z[ < c c>H< B c>+2t 4e T c
n=0
- <' _ L§£i£l& _ §> . <' _ (4ntl)yp 5) - <} _ (4ntl) g 5)}
c c 2c c 2¢ c
+Z (:(t_m+§>H<t_.2_rl_'z+.}£>_2<t_£§n_HM 5
c c c c be c
n=1
o, Guig , x\, [, Gt x\ . /. GoDg . x\] )
AN 4e YN 2c N c/ A 2¢c N c/J j"

The only difference between the velocity and strain equations is the

factor, ¢, and a sign change in the first group of terms. Figures 13

and 14 reveal the effects of this difference. The interesting thing
about these figures is the characteristics of the wave motion at the
boundaries. The velocity doubles at the same time the strain changes
sign., The displacement is shown in figure 15, and continues to
increase as expected. Notice the unusual wave front and its behavior

at the boundaries.
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2. Right End Boundary Condition Fixed

The fixed right end boundary condition implies that the end
is rigidly clamped. The left end is allowed to mo§e while the .fixed
end can have no motion. Thus, the impulse loads will be applied to
the left end only.

a. Square Wave Stress Impulse Loading to the Left End

Of interest in this example is the wave shape at the

[

fixed end, x ¢. 1In solving this example, the initial conditions

will be set to zero. The boundary conditions are

-1s
Ux(O,t) = - AlE [(H(t) - H(t - 7)] or Ux(O,s) = - AlE (é - es )

u(g,t) =0 or U(s,s) = 0.

Using these boundary conditions, the solution to the equation of

motion (2) is

= Ic REL _2ng _ X _2ng _x\ _ .. _2ng _Xx
n=0

(et D)) o (- (- R

n=1
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with the corresponding velocity and strain being

I
g =0
-i(-l)n[-ﬂ< -2I;—£+-§>+H<t-'r-22'e+§>]}
-1
"x T ﬁ%’{;g;(-‘)n {-H <} - 2§£ . %) sule - 22z - %)}
. oo [ B enle o 23]

The velocity and strain distributions are shown in figures 16 and 17
for 1 = j/2c. At the fixed end, the velocity changes direction, and
the strain doubles itself; and at the free end, the strain changes
direction, and the velocity doubles itself. The displacement is
shown in figure 18. Notice the double slope when the wave reaches
fixed end.
b. Triangular Wave Stress Impulse Loading to Left End
Consider the triangular wave shape shown in figure 19,

This wave shape may be expressed by the equation

£(t) = TQA/7)[(r - t) H(t) - (7 - t) H(t - ©)].
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Therefore, the boundary conditions are

u (0,t) = = z2= [(v - £) H(t) = (7 - ©) H(t - D]

1
o

u(g,t) =

With the initial conditions set to zero, then the solution to the

equation of motion (2) is

u AET{Z(D [( 2£'§>H<'2Lj'%>'%<t'%&'%>

L\/J s
—~ /\

'—l
~ 1
[
| (e X §=]
1 =
A 1

7N
rt [N Ed
. N
+

N
(e} =] N

1S
+ o
(el L |
N2 !

==
1
. |

]
L [}
&

+

S~
+ /‘\
o 1
Ta "
N
N e 1=}
o5 d
t

+

2
°H<t-2—n&+> <t-~c-——+§>H<t ;- 282, X
(&1 Cc C C

with the corresponding velocity and strain

2nf X 2ng X
U AET{ZU) ['<t'T'_c"E>H< 'T'E)

+<t-T-'2—rﬁ'§>H<t"T-2n—z'-§>
c c c c
[e o]
n g X AV
-Z(-l) [(t- T - +C>H< 3 +c>

n=1

(equation continued on next page)
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The velocity and strain distributions for 7 = 4/2c¢ are shown in fig-
ure 20. Notice at the fixed end the way that the velocity changes
directions, and the strain doubles itself. At the free end the
exact opposite occurs; i.e., the strain changes direction in the
same way the velocity did at the fixed end, and the velocity doubles
in the same manner as did the strain at the fixed end. The

displacement is shown in figure 21.
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CHAPTER IV

Wave Motion with Coulomb Damping

The wave motion with coulomb damping follows the same laws as

wave motion without damping, with the exception that the
does not continue indefinitely but is damped out. The d

analyzing wave motion with coulomb damping is maintainin

wave motion
ifficulty in

g the damping

force in the opposite direction to the velocity and at the same time

having a linear relationship. One reason for this is that in coulomb

damping, the damping force is not a function of velocity
constant; therefore, when the velocity changes direction
linear terms can exist in the damping term which will co

change direction.

but is a
, no non-

rrespondingly

A. TFormulation of Wave Equation with Coulomb Damping

Consider the prismatic bar of figure 22. Using Newton's Law,

we obtain

E: Pext = mu,

and substituting the forces from figure 22 yields

oT . _
T+ T+ e dx + sgn[a] Fdx=m SEZ ,
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where sgn[d] is positive if 4 is positive and negative if & is nega-
tive. Sgn[d] is a nonlinear term, and the objective will be to
define a suitable substitute for sgn[a] that is linear. This will
not be determined until a particular problem is decided, then depend-

ing on the direction of the velocity, the appropriate substitute will

be used. Since

- ap
T=AE S,
then
d9%u O%u _ .
AE oz dx - pA dx y=-A sgn[a] F dx
%u  p d%u _ F
=2 " E o2 s&nlul i -

2
P
then
2 1 32 .. F
R LI (16)

which is the wave equation including coulomb damping.

B. Step Stress Impulse Loading to a Semi-Infinite Rod

Like the previous chapter, Laplace transform techniques are

used to solve the wave equation, and two initial conditions plus two
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boundary conditions need to be satisfied. The wave equation (16)
must be altered to fit the particular example (see figure 23); i.e.,
the coulomb force per unit length, F, is applied only over the length
of the bar that has motion. Therefore,
3Pu 1 2%u F
=

S-SR D an

Taking Laplace transforms and setting the initial conditions to zero,

we obtain

X
QU (x,s sZ F " ¢cf
The solution to the homogeneous equation is
s s
’EX -"(':'X
Uc(x,s) = B,e + Boe .

To obtain the particular solution, substitute

S
- - X

Up(x,s) = Dxe ©

into the differential equation (18):




-S4
_ Fex c
UD(X’S) 2AEs=
S s
c* T c x Fcx -
U(x,s) = UC(X;S) + Up(X,S) = B.e + Boe " DARSZ e

The boundary conditions for this example are

u(0,t) = - ﬁ% H(t) or U(0,s) = -

As x — o u(x,t) is bounded or U(x,s) is bounded.

AEs

Using these

33

boundary conditions to solve for the constants B; and Bp, the solu-

tion becomes

s S
U y = Fc= e- c * + Tc e- c X Fcx
(x,8) = - ZpEse AEs?® 2AEs= ©

Taking the inverse transform yields

<

u(x,t) = 33 [T(t - %) - %? (t - %)2 - %? (t - fﬁ} H(t - %).

2
Let x, = ct and ¢ = T Then,

u = ZEE (x - xo)(xo + x - 20) H(t - %b,

with the corresponding velocity and strain being

= Ee_

o, = oa (@ - x5) B(E - D)

(19)

(20)
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ux=—-i§h:(oz-x) H(t - %), (21)

Figure 24 shows the distribution of displacement, strain and velocity.

When ct = Q, all motion ceases and remains static, and the maximum

distance the wave travels down the bar is not dependent on the

characteristics of the bar but on the magnitude of the input force,

T, and the magnitude of the friction force per unit length, F.
Consider the static case where the force T is to the right and

is balanced by Fg . & to the left, where Fy. is the static function

force. Since ¢ is defined as

where F is the dynamic friction force, then

]
|

Fst(ZT/F)
st

This demonstrates that the static friction force is half the dynamic
friction force; therefore, when the wave is traveling down the rod
and reaches (, the friction force per unit length reduces from F to
F/2, instantaneously.

Also of interest in this problem is verifying the conservation
of energy; i.e., the energy into the bar must be equal to the energy
absorbed by the bar plus the energy loss due to friction. The energy

relationship to be satisfied is the following:
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Energy in = Kinetic Energy + Potential Energy + Friction Losses

With the appropriate substitutions from equations (19), (20) and

(21), the following results:

TFx TFx
o - 20) =

N (x0 - 20).

This verifies the comservation of energy and partially verifies the
correctness of the solution to this example,

O0f further interest is the conservation of momentum; i.e.,

fPext dt =J m da

t a
f(T-Fct)dt=f pA ct du
[s] o]

with the proper substitution from equation (19) the following
results:

Fct® _ ¢ - Fct?

Tt - 5 = 5 -

This verifies the conservation of momentum and also partially veri-

fies the correctness of the solution to this example.
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C. Square Wave Stress Impulse Loading to a Semi-Infinite Rod

This example, unlike the same example of the previous section
without coulomb damping, may not be solved in the entirety with one
solution, but this example must be subdivided for square waves of
different pulse durations; i.e., 7 = &/c and t = ¢/ 2c which are the
only two square wave durations solvable by this technique. For one
of these cases, a further subdivision of time is required. This will
become apparent as these examples are analyzed. These subdivisions
are required because of the inability to define a friction term which
is all encompassing and, at the same time, is capable of being
linearized.

1. 1 20a/c

This example is the case where a step stress is applied, and
the wave travels along the rod until all motion ceases. Then at- that
time or some later time (depending on the value of 1), the step stress
at x = 0 will be released. This example will need to be further sub-
divided: (1) For the time when the wave travels along the rod and
comes to rest (t s 1) and (2) for the time after the step stress is
released (t > 7).

a, t=s=~1

This case has already been solved, and it is the step
stress impulse loading of paragraph B of this section.

b. t=r

This case begins where the previous case ended; there-

fore, the initial conditions of this case are the final conditiens of




37

the previous case. By substituting into equations (19) and (20)

t = o/c, the initial conditions are obtained; i.e.,

u(x,04+) = fo (x - @)% H(@ - x) and ut(x,0+) = 0,

Since it is known that the friction force in the static
condition is F/2, and that the stress will be released causing a
wave motion at that point with a velocity in the opposite direction
to its previous motion, then the wave equation may be written as

follows for this example:

2 2
%‘é-:lzg—tuz=-%1{(t-§)+?AF—E'H(t)H(O£-x). (22)

itially, the entire rod is under the influence of the static fric-
tion force, but as time progresses and wave motion takes place, the
friction force changes direction and doubles its value to meet the
requirements of the wave motion. The boundary conditions at x = 0
has changed from the previous case, because the stress is removed

at x = 0; therefore,

ux(O,t) =0 or Ux(O,s) =0,

As x - o u(x,t) is bounded or U(x,s) is bounded. Taking the

Laplace transform of equation (22), we obtain
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2
_4,_132% L - S5 U(x,s) + 2 ux,04) + ;l'z u(x,0+)

- X5
c
+

F
H(x - x).
2AEs (@ )
Substituting the initial conditioms, using variation of parameters to
obtain the particular solution and using the boundary conditions to
resolve the constants, we obtain the following solution:

F 3c2 X, 2 X X
u=77 "2 t - Z) + (3xc - 2ac) (t - Z)] H(t = :)

+ (x2 - 20x + oF) H(t) H(x - x)} , (23)

with the corresponding velocity and strain being

Fc

Ye T GAE

(3ct - 20) H(t - %) (24)

u = - ZEE-{(3X - 20) H(t - %) - (2x - 2¢) H(t) H(x - x)}-.(ZS)

Figure 25 shows the displacement, velocity and strain distributions.
The velocity is similar to the velocity of the first part of this
example except that all motion ceases at t = 20/ 3c rather than
t = afc.

An energy check will be applied to this example to

verify that energy is conserved. The Pelationship to satisfy is




Original Potential Energy = Kinetic Energy + Potential Energy

+ Friction Losses

%Ku§=%m'2+%Ku2+Fu
AE ¥ DA Yo AE J Vo
Tf[ux(x’o)]z dx=7 f uidx+7 ui dx+Ff - (u-uo) dx.
o o (o] o

Substituting from equations (23), (24) and (25) using the proper

forms, we obtain the following:

F2a® _ FZ%0°
24AE  24AE °

This verifies the conservation of energy and partially verifies the
correctness of the solution to this example. The solution may be

further verified by verifying the conservation of momentum; i.e.,

fPextdt=fmdu

With the appropriate substitution for equation (24), the following

is obtained:

3Fct® _ 3Fct?
-Tt + % = -Tt + A .

This verifies that the solution did obey the law of conservatiom of

momentum,




2. 1 =0l2¢c

Consider the case of the semi-infinite rod with a square
wave stress impulse loading where the pulse duration is 1 = af2c.
This case does not need to be subdivided into two time domains,
because the friction force term can be defined for all time and be
linear at the same time., It was observed when solving this case with
the friction force acting only on the forward velocity wave (i.e.,
only on the region between ct - 7 = X = ct) that a negative velocity
wave was generated immediately preceding the forward wave. There-
fore, it was necessary to define a friction term which would resist
the negative velocity rear wave as well as the positive velocity

forward wave. This is done in the differential equation below:

Bzu d2u _

R ]

The boundary conditions for a semi-infinite rod with a compressive

square wave stress impulse loading are
= - L - -2

As x - o u(x,t) is bounded. Using these boundary conditions and

zero initial conditions, we obtain the following solution:

FoZ x xi xZ x 2xo X
= e—— - = - - - __—+—
v > Tm’*ﬁ}“( e |-

5 )

Solo™
]

S g
+
jw

e
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Figure 26 shows the distribution of displacement, velocity and strain.
The front velocity wave and the rear velocity wave go to zero at the
same time, t = o/c, and no motion exists after that time. Also, at

t = @/c the strain has no discontinuity; indicating that no motion
will be generated due to strain after that time. The static friction

force per unit length that is required to maintain the strain is

N |

Fse =

which is the same as that for the first part of the previous example
with the exception that it is in two directions in this case with the
change in direction at x = o/2.

To verify the conservation of energy in this case, the energy
balance must be subdivided into two time zones because of the dif-
ficulty encountered in the required integration. Therefore, for

t = 1, the relationship to satisfy is

Xo Xo Xo
Tu(O,t:)=-%L/\uidx+-‘£\2g u}2{+Ff u dx.
o ) )
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With the proper substitutions, this results in

szo ) - Xo ) T2x° ) - xo
2AE a | = 2AE a |

For t = 7, the relationship to satisfy is

c(t=-1) ct c(t=-1)

ct

T u(0,t) Ezé[f uidx+fu§dx]+é2£\:f uidx+f uidx:l

o c(t-1) o
c(t-1) ct
+ F { u dx + J[ u dx}
o c(t-1)

c(t-1)

and with the correct substitutions, the following result is obtained:

3t3g _ 3T%:
BAE ~ 8AE ’

which is a constant, as expected, because in this time zone no

energy has been put into the rod. To verify the conservation of

momentum, the same division in time is required.

t

u
f(T-Fct) dt=f PAct du
o

o

FctZ _ _ Fet?
Tt - > Tt == -

For t = T,
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For t =z 71
T t t u
f(T-Fct)dt+f(-Fcr)dt+ch(t-T) dt=prCTdL'1
o) T T o
v
+prc(t-'r)dﬁ.
o
2 2
L por + B 2 I8 gy g Bt

With these verifications of conservation of energy and momentum,
greater confidence in the solution is established.

D. Step Stress Impulse Loading to the Left End
of a Finite Rod with the Right End Free

aela n -
+1

This example is a rod of length, £, tha

t h

has no supports at the
right end and a compressive step stress is applied to the left end.
As the wave traverses the frod, coulomb damping is present to retard

the motion. The boundary conditions for this rod are

= - -L S
ux(O,t) = -3 H(t) or UX(O,s) ARS

u(g,t) =0 or U(4,s) =0,

The equation of motion for this case is simply equation (17) which
is also the equation for the semi-infinite rod with a step stress

input, because in both cases the velocity never changes direction.




bl

With zero initial conditions and the above boundary conditions, the

solution to equation (17) is

_ L
Y T AE

n

.H<t--2-n&-
C

18

\:T(xo - 2ng - X) - % (xo - 2np - x)2 - FTX (x0 - 2n4 ~ x)}
0

o

+Z {T(xo - 2ng + x) - -Fz—z (x, = 2ng + X)}

n=

[

8

]

2n F F
.H<t-—c-'-e-+ >+ {Z(xo-2nf,-x)2-—2z(xo-2nz-x)
n=1

+Exz—(xo-2nz-x):|H< --2—2&-%>},

with the corresponding velocity and strain being

(¢}

Fx
- L .2 _2ng _ X _ KL
ut AE{Z\:T+nF,B 2}H< - c>+Z[T z:l
n=0
2 Fx
g X o _ (2ntD)FJ g _ X
(e D)) [5o- o] 23]
n=1
o0 o]
= L -7 + EX b X B
uX_AE{ZLHZ]H( s C>+Z[T 2}
n=0 n=1

[ee]
nf | X o _Ex _2ng X
n(e-ed)e) [ (-9
n=1

To discover the limitations of these equations, we must re-examine

the differential equation (17). The friction term for t > 4/c
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begins to apply beyond the length of the rod. While, in actuality,
this poses no problem, it, nonetheless induces error into the mathe-
matical analysis. To avoid this problem, the above equations will be
limited to t £ ¢/c, and, in limiting the equations, they may be

simplified to the following:

wm g {2 -0+ F e - buee - B (27)
c Fxo" x
u. =% [T - “E—J H(E - Q) (28)

X
H(t - Z)' (29)

Bzu 1 aEu = F fadd N YT/ N
oxZ T oB 5¢F T hE AU - X ).

Using the same boundary conditions as before but using end conditions

of previous equations as the initial conditions to this analysis,

i.e.,

u(x, +0) = ﬁE [T(z - x) + % (x2 - Bz)} and ut(x’ +0) = i% [T - E&] ,

we obtain the following solution:
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n=0
(t _(z_n?u §>+z [T(——-Zn-1+£>
=0
-22& _;3_-2n-1+§>:|n<t_.ﬁw+§>}, (30)
I c c

with the corresponding velocity and strain being

u -
n=0
_Fg _ (2ntl)s _ X
+Z [T 2:|H<t - c>} (31)
n=0
“x=7A1'ﬁ{'T+BZ+Z [T-%&]H t-ﬂ:ﬁ&+§>
n=0
+z [—T+E2-&:|H<t o L2nt)g | 5)} (32)
[+ Cc
n=0

This solution is further limited in that T must be of sufficient
magnitude that the velocity will never go to zero or negative at any
point; therefore, T = Ff. The distribution of the velocity for

T = Fg is obtained by substituting T = F4 into equations (28) and

(31). For t = fl/c,

= Ee | _ 0o
U, = ye [1 22:], (33)
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For t = 4/2,

) )
_Fe 1 %o (ot | x
ut-AE {2 > +Z [1/2]H<t- c +;
n=

0
+) [1/2] u (e - &g x\| (34)
[ [
=0

Equation (33) time, t,, starts (i.e., t; = 0) when the step stress is
applied. Egquation (34) time, t,, starts (i.e., t, = 0) when the wave
has traversed the length of the rod. Therefore, when t; = 4/c,
to = 0. Figure 27 is the velocity for T = Fg. After the wave has
traversed the rod once, the average velocity of the rod is constant
(i.e., Gt = %E%); therefore, the rod is traveling at a constant
velocity while the wave motion is taking place. As t approaches 2j/c,
the velocity of the rod at x =  approaches zero, but at t < 24/c, the
velocity is increased by the on-coming wave. Therefore, the velocity
comes very close to zero, but never quite reaches it; this illustrates
that T = F4 is the critical value.

Now, consider a more typical value of T (i.e., T > Fi), e.g.,
T = 2F4. Substituting into equations (27), (28), (29), (30), (31),

and (32), results in the following, for t = g/c,

2
u = ELz 2x - A}E 4 x2 - fg— H(t 5)
AE L L hpE 42
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and for t = g/c,

o 3x > x2 2 3x
u_FI, o+7 2x X °o_ ., —2 _3, 3 _ 3k
AE |2 L3 G2 T 4P 24 2 2
n=0
1 3x
. _§2n-<|:- ) g z>+z [2; g - %+2_><_] < §2n+12£+x>}

2[3/2]H< S&}_Z_-->}
o = 2+—+Z[3/21H<t-<2“+1” c>

SIEEREET)

Figure 28 shows the displacement distribution; figure 29, the veloc-
ity; and figure 30, the strain. The velocity and displacement are
ever-increasing, while the strain has set up a cyclic pattern after
the wave has initially traversed the leﬁgth of the rod, the height
of the discontinuity of the velocity and strain remains the same,

T - E&.

The velocity at the boundaries increases each time by the

discontinuity height upon reflection of the wave.
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CHAPTER V

Friction-Induced Wave Motion

In this case, two rods are set together in such a manner that
the wave motion in one rod induces wave motion in the other rod
through friction (see figure 31). It is assumed that all cross-
sectional planes remain plane, and the displacement is the same
everywhere in the plane. The inducing rod will have a wave propa-
gation velocity of c,, and the induced rod will have a wave propa-
gation velocity of c,. By using equation (17), the equation of

motion becomes (for the induced rod):

azu’ L azu = L {+ X N
5x= T 222 T R YT o

Since these are semi-infinite rods and the induced rod has no strain

at x = 0, then the boundary conditions for the induced rod are

u(0,t) = 0.

As x »> o u(x,t) is bounded. Using these boundary conditions and
setting the initial conditions to zero, the solution to the equa-

tion of motion is

LI 22 (£ - &) He - )~ (£ -5 H(e - )
4= 2AE(c] - ¢3) |c1 c2) Pia c, cy’ )’
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with the following velocity and strain being

F cz 2
ut=—E'(?'_T i(t';x;) H(t-i)-(t--f:—l)ﬂ(t--cx—l)}
~ Fc c2 x x . i}

To gain an understanding of this example, three cases will be

. . S22 . L o S2 - e f2 =
examined: subsonic, = +=; sonic, = 1 and supe sonic, = 2,

c, 2 cy c,

Figure 32 shows the distribution of displacement, velocity and strain
for these three cases. Observe the similarity in the wave shapes of
the subsonic and supersonic cases, and the difference in the sonic,
In the subsonic case, the wave has propagated twice the distance down
the rod as does the sonic and supersonic case because, in the sub-
sonic case, the limiting factor is the inducing rods velocity, c3;
and in the sonic and supersonic case, the limiting factor is the
induced wave velocity, co. The displacement is greater for the cases
in this order: subsonic, sonic and supersonic, because the friction
force is acting over a greater portion of the rod for a longer period
of time in that order. The strain is greater in the same order for

the same reason.
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CHAPTER VI

Fourier Transform Technique

In solving examples similar to the ones in this treatise, the
Fourier transform is taken of the axial coordinate variable, x,
rather than the time variable, t, as was the case in Laplace trans-
forms. Instead of having initial conditions as associated with the
Laplace transforms, the strain boundary condition at x = 0 and for
all time is required. The initial conditions are needed to resolve
the constants of integration in the same way that the boundary condi-
tions were used in Laplace transform technique. Therefore, in solv-
ing these problems, three quantities must be known: (1) ux(O,t),
(2) u(x,0), and (3) ue(x,0). It now hecomes apparent that the
Fourier transform is limited to solutions of examples with semi-
infinite rods, because there is no way to stipulate the boundary

condition at x > 0.
A. Semi-Infinite Rod with a Step Stress Impulse Loading
For a compressive step stress impulse loading, the boundary

condition at x = 0 is a constant; i.e.,

L

4 (0,8) = - 3%

H(t).

Using the wave equation (2) and taking the Fourier transform yields
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2)
02 Up,t) - u (0.8) - o THEE =0
2 2
SURED 4 c2p2 y(p,t) = 3o H(E)

which has a solution of
{ent s
U(p,t) = Bye Pt + Boe TPt 4 L u(t).
AEp
Since the initial conditions are zero; i.e.,

u(x, +0) = 0 and ut(x, +0) = 0,

T 1 - cos cpt
Up,t) = 3 i -

(35)

Because it is very difficult to obtain the solution by integration

of the inverse fourier transform integral and because insufficient

Fourier transform tables are available, the solution will be proved

by taking the Fourier transform of the known correct solution.

correct solution from chapter III is

= Ic - X - X
= (8- D H(E - D).

Substituting this equation into the transform integral yields

The
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[oe]
U(p,t) = A—I}‘g-f (ct - x) H(t - %) cos px dx
o

ct

ct
fx cos px dx} .

U(p,t) = %{fct cos px dx -
0 o
s

Upon completing the indicated operation and some simplification of .

terms, we obtain

T J1 - cos cpt
U(p,t) =E{—PZ_E_ ’

which is identical to equation (35).

B. Semi-Infinite Rod with a Square Wave Impulse Loading, T = o/2c

This example must be subdivided intoc two time domains:

= wZc and t 2 of 2¢c.

For t = a/2c, the boundary condition is

rt

T

ux(O,t) = - iE
Using these conditions and

and the initial conditions are zero.

equation (17) results in the following:

et

1 T F
Uu(p,t) = .A_E{p? (1 - cos cpt) + 3 <pg

cos cpt - %ﬂi)} .
(36)
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The correct solution is equation (26) when it is limited to t s af2c,

1 F c2t2 X.
u =z Tet - Tx H(t )

Taking the Fourier transform of this equation, gives the following.

results:
U(p,t) = ﬁE {g% (1 - cos cpt) + % {ﬁ% cos cpt + g% sin cpt] }-,
which is identical to the solution obtained in equation (36).
For t = o/2c, the boundary condition is
u(0,t) =0
and the initial conditions are the end conditions of the above case;

i.e.,

u(x,0) = A; %% - Tx - fg? % }-HC— - X)

v, (x,0) = K%{T - i—o‘} 1€ - x.

The differential equation is based on a friction force that already
exists from 0/2 to O and moves across the rod with the wave, and
a negative friction force to resist the negative rear velocity wave

which follows the forward wave, i.e.,
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®u 1 d3u _
:*™= T 2 dE2 T

&l

[H (ct +%- x) - 2H(ct - x)] .

Using the aforementioned boundary and initial conditions, taking
the Fourier transform, and doing much simplification of terms, we

obtain the following solution:

1
ulp,t) = iE {# [2 cos cpt - cos <cpt + %—):I - g;t [2 cos cpt

- cos <cpt + %Q>] + ﬁFs [2 sin cpt - sin <cpt + %):I } . 37D

Again, equation (26) is the correct solution when t is set equal to
t + a/2c, because this solution began when equation (26) was at

o/ 2c. Therefore, substituting t = t + -za—c into equation (26) yields

/s - A 2.2 PRy P
1 a _ _\ _ FeTt® Poet | Foo | Fx Qo
“'AE*L‘LTf\Ct*’z *) % 16+4_‘H<Ct+2 x>

242 2
- | T(ct - x) -E-C-ZL-+-122(—:IH(ct-x)}.

Taking the Fourier transform yields
_ 1 ) T - ap\| _ Fect
U(p,t) = AE 12p2 [2 cos cpt - cos (cpt + 2>:I 7p [2 cos cpt

- cos <cpt + 92£>:I + %5 [2 sin cpt - sin <cpt + %):I }

which is identical to equation (37).
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CHAPTER VII

Summary and Conclusions

The applicability of Laplace transforms to aid in solving wave
motion differential equations, excluding damping, was demonstrated
in that many types of boundary conditions were readily solved. For
this wave motion without damping, many interesting characteristics
were exhibited, especially at the boundaries of the rod. Of special
interest are figures 7, 11, 12, 17, 18 and 20. The complexity of
the wave shapes at the boundaries exhibits the details of the wave
motion characteristics, and from these details it becomes apparent
that difficulty will be encountered in defining a friction force
which will always retard the motion and at the same time be linear.

Tn this treatise the interesting characteristics of wave motion
with coulomb damping occur aléng the length of the rod and not at
the boundaries. Perhaps the boundaries would have proved to be more
interesting if more complex solutions had been obtained. 1In all of
these solutions, it was found that the velocity was a function of
time only and not the axial distance except for the sudden change at
the point of discontinuity. The strain was a function of the axial
distance only except for the shifting of the point of discontinuity
with time. The displacement was a function of time and axial

distance.
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For the semi-infinite rod with the step stress impulse loading
and coulomb damping, the maximum distance that the wave would pro-
pagate along the rod (@ = 2T/F) was not a function of the charac-
teristics of the rod, but was dependent only on the magnitude of the
input force and the friction force per unit length., The static
friction force per unit length that existed after all motion ceased
was one-half that of the dynamic. When the step stress was removed,
the maximum distance the wave propagated was 20/3. The static
friction force between 0 and 20/3 was one-fourth the dynamic fric-
tion force, and between 2a/3 and @, it was one-half. For the same
rod with a square wave impulse loading of pulse duration 7 = of2c,
all motion ceased at (¢, and the static friction force was one-half
the dynamic friction force,

For the finite rod with a step stress impulse loading and
coulomb damping, it was found that for T = £z, Lhe average velocity
of the rod was a constant (Fcj/2AE) after the wave has traversed the
rod once while wave motion continued. For T > Fg, the velocity con-
tinues to increase while the strain sets up a cyclic behavior,

Once the wave has traversed the rod, the discontinuity height of
the velocity and strain is a constant, |T - %§|, and the velocity
at the boundaries is increased by the amount of the discontinuity

height (T - %%) upon reflection of the wave,.
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