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PARTITION FUNCTIONS AND THERMODYNAMIC PROPERTIES
TO HIGH TEMPERATURES FOR H; AND Hé’
by R. W. Patch and Bonnie J. McBride

Lewis Research Center

SUMMARY

Tables of part1t1on functions were compiled for H3 and H; at temperatures from

298. 15° to 56 000° K. Tables of thermodynamic properties were compiled at temper-
atures from 298. 15° to 10 000° K. The latter tables give the following thermodynamic
functions for ideal gases: heat capacity at constant pressure C_/ R, sensible enthalpy
(HT -H )/RT entropy at 1 atmosphere s /R sensible free energy at 1 atmosphere

-(GO - HO)/ RT, enthalpy HT/ RT, and free energy at 1 atmosphere -G2 / RT. The heats
of formatmn at 298. 15° K are also given. Since no band spectra have been observed for
either ion, all calculations were based on ab initio potential energy calculations found in
or derived from the literature. All results for H; are reliable up to 15 000° K, but
results for Hg are tentative at all temperatures.

A digital computer program to calculate Wentzel -Kramers-Brillouin rotational
energies from the potential energy of a diatomic molecule or molecular ion is also

included. The program is in FORTRAN IV,

INTRODUCTION

In very-high-temperature propulsion devices such as gaseous nuclear rockets, the
dominant mechanism of heat transfer is radiant energy exchange between volumes of
plasma, and between plasma and the wall. To calculate such heat transfer, it is
necessary to know the opacity of the plasma. For a hydrogen plasma under many condi-
tions, minor species make major contributions to the opacity, either directly or by their
influence on the composition. Two such minor species are the hydrogen triatomic
molecular ion Hg and the hydrogen diatomic molecular ion H; The partition functions
of these two molecular ions are needed to calculate the composition of a hydrogen plasma
at high pressures and low degrees of ionization, and the thermodynamic properties are



needed to interpret data from some experimental investigations of the opacity of hydrogen,

The existence of H; and HE has been well established by investigations using mass
spectrometers, but no band spectrum of either ion has been observed. There have been
no published calculations of the partition function or thermodynamic properties of H;,
and only one such calculation for H"zL (ref. 1) has come to the authors' attention.

The purpose of the present work was to calculate the partition function for tempera-
tures between 298. 15° and 56 000° K and thermodynamic properties for temperatures
between 298. 15° and 10 000° K for Hj and Hj. This presented two principal difficulties:
(1) complete sets of spectroscopic constants were not available because no band spectra
have been observed, and (2) the usual approximations used in calculating partition func-
tions are not accurate at high temperatures.

The solution was to utilize existing ab initio calculations for the potential energy of
both molecular ions. For Hg the potential energy was used to obtain both low- and high-
temperature approximations to the partition function; the two approximations were then
faired together. For Hg the rotational term values were calculated from the potential
energy by the Wentzel -Kramers-Brillouin (WKB) approximation, and the vibrational
term values were obtained from more accurate existing calculations. The partition
function was then found by direct summation over the vibration-rotation states.

The present work was limited to ideal gases with no excited electronic states.

TRIATOMIC MOLECULAR ION H3

The calculations in this section are divided into two sections, the Analysis and the
Results and Discussion. The latter of these contains numerical results for the partition
function and thermodynamic properties and a discussion of the accuracy of the partition

function.

Analysis

Assumptions and restrictions. - The assumptions and restrictions utilized in the
analysis are listed here for convenience. They are the following:

(1) The Born-Oppenheimer approximation (ref. 2) is assumed to be applicable.

(2) The equilibrium configuration is an equilateral triangle.

(3) There are no excited electronic states (this is a good assumption, since the
lowest excited electronic state is about 75 000 centimeters’1 above the ground state and
appears to be a repulsive state (ref. 3).




(4) Differences in nuclear spin degeneracy are neglected in computing the thermo-
dynamic properties.

(5) An ideal gas is assumed.

Potential energy. - A number of ab initio calculations (refs. 3, 4, 5, 6, and 7) and
one semitheoretical calculation (ref. 8) have been made of the potential energy of Hg It
is now generally agreed that the equilibrium configuration is an equilateral triangle with
a proton at each vertex. The results of these calculations are given in table I. All but
the earliest (ref. 3) ab initio calculations give about the same equilibrium internuclear
distance r e but there is considerable disagreement about the equilibrium potential
energy Ve’ (All symbols are defined in appendix A.)

There are no experimental values for the dissociation energy or potential energy of
Hg or any of its isotopic modifications, but Stevenson and Schissler (ref. 9) measured
the rate of the reaction

-~ DT

DI +D g+

g+ Dy D
where DJZr is the deuterium diatomic molecular ion, D,y is the deuterium molecule, D;
is the deuterium triatomic molecular ion, and D is the dueterium atom. It was concluded
that the rate of this reaction was so high that the reaction was unlikely to have any
activation energy (private communication from David P. Stevenson, Shell Development
Company, Emeryville, California). An activation energy of zero gives a lower limit to
the dissociation energy of D; (into D +D + D¥ where D" is the deuterium atomic ion)
of 58 456 centimeters'l. In the Born-Oppenheimer approximation the potential energies
of H?; and Dg are the same. If a D; zero-point energy of 3684 centimeter ™~ calculated
from Conroy's (ref. 5) Hg potential energy is assumed, the equilibrium potential energy
of D; (and hence Hj.,") is thus -6. 214><104 centimeter'1 or less. This value is consistent
with all calculations for Hg except Hoyland's (ref. 6).

Conroy's equilibrium potential energy (ref. 5) is generally considered to be the most
reliable for three reasons: (1) Conroy used a 26-term wave function, (2) Christoffersen
(ref. 4) estimated that if he included more terms in his calculation, he would get an
equilibrium potential energy of -7. 68><104 centimeter'l, which is close to Conroy's value,
and (3) Conroy and Bruner (ref. 10) calculated the potential energy of the linear hydrogen
triatomic molecule H3 by a development of the method used for H?; and found the rim of
the potential energy basin of H3 to be 2. 1"l><103 centimeter'1 above the energy of H2 +H
where H2 is the hydrogen diatomic molecule and H is the hydrogen atom. This is in good
agreement with the experimental activation energy (ref. 11) for the exchange reaction

H+H2-’H2+H



Consequently, Conroy's H':;' potential energy was used in this report.

As explained in appendix B, it was necessary to make a least-squares {it to Conroy's
Hg potential for use in the low-temperature approximation. This resulted in slightly
different values of r e and V e which are also given in table I and which for consistency
were used in calculating the partition function and thermodynamic properties in the low-
temperature approximation.

Partition function. - The energy of the rotationless ground vibrational state was used
as the reference for the internal partition function qH%-, which was obtained by two dif-

ferent approximations. For low temperatures it was computed from the calculated
spectroscopic constants (eq. (B39)) by means of Woolley's approximation (ref. 12). For
high temperatures a classical partition function with vibrational quantum corrections
(eq. (C21)) was used (see appendix C).

Thermodynamic properties. - The thermodynamic functions Cp/ R, (Hy - HO)/ RT,
-(G% - HO)/ RT, and S%/ R for ideal gases were calculated on a digital computer. Equa-
tions for evaluating the thermodynamic functions from the logarithm of the partition
function and its derivatives are as follows (ref. 13, ch. V):

2
‘p.q2dng), ypdng), 5 1)
R e ar 2
H,, - H
T 0=Td(lnq)+§ )
RT ar 2
SO
ST _pd00d) g4+ 31mM+21n T - 1. 164953 (3)
R dT 2 2

T LT T 0 g+ 3mM 4 2In T - 3664953 (4)
RT R  RT 2 2

where M is the molecular weight or 3. 02336 grams per mole for Hg Physical constants
have been taken from reference 14.

Results and Discussion

Partition function. - The low-temperature partition-function approximation with
first-order corrections (ref. 12) and with both first- and second-order corrections are
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shown in figure 1. Above 7 000° K the second-order correction was appreciable compared
to the first-order correction, causing one to suspect that higher-order corrections
should be included. In addition, at high temperatures the least-squares fit (eqs. (B15)
and (B17)) used to calculate the spectroscopic constants is inadequate: it does not fit
Conroy's potential energy at the high energies corresponding to some of the energy levels
which contribute significantly to the partition function.

The high-temperature approximation to the partition function gt is also shown in

figure 1. For low temperatures, it gave about twice the values that the low-temperature
approximation did. The principal reason for this is the crude but necessary assumption
in the high-temperature approximation that the potential energy V is the sum of three
two-atom potential energies U (eq. (C5)) coupled with the assumption that U is one-
third of Conroy's (ref. 5) V for the equilateral triangle configuration. This results in
constant-V lines that tend to fall outside Conroy's constant-V lines (fig. 2) for isosceles
triangles, except, of course, along the line Q corresponding to equilateral triangles.
Similar discrepancies would undoubtedly occur for many scalene triangles if Conroy had
calculated V for scalene triangles. Hence, the high-temperature approximation to the
partition function gave values that were too large at low temperatures.

At temperatures of the order of 40 000° K the high-temperature approximation con-
tains at least two significant inaccuracies in addition to the one mentioned in the
preceding paragraph: (1) all metastable rotational states are omitted and (2) the
approximation yields the following identical heats of reaction:

+ + _ -1
H3-»H2+H AHO-52 200 cm

+ + _ -1
H3-.H2+H AH0—52 200 cm

(using potential energy for Hg from ref. 5) whereas the best available information
(refs. 5, 15, 16, and 17) used directly gives

H} ~ Hj + H AH = 55 800 em™1
Hj — Hy + H AH,, = 40 100 cm™1

(zero-point energies have been neglected in all four equations). Inaccuracy (1) tends to
make Qppt too low whereas inaccuracy (2) and the inaccuracy in the preceding paragraph
3

tend to make Qppt too high. Thus at temperatures of the order of 40 000° K the inac-
3

curacies in the high-temperature approximation tend to cancel,



Taking the inaccuracies mentioned in the preceding three paragraphs into consider-
ation, a smooth curve (fig. 1) was used to fair the low-temperature approximation into
the high-temperature approximation. This curve extended from 7 000° to 26 000° K and
had the formula

In g = 3.1705 + 1 03824x10°> T - 3. 2449x10"8 T2
+5.2121x107 13 T8 _ 4 o17x10718 1% (5)
The resulting qu is shown in figure 3 and is tabulated in table II.
Thermodynamic properties. - The thermodynamm functions Cp/ R, (Hp 0)/ RT,

T/R -(G0 -H )/RT HT/RT and -G2 /RT for H3 are tabulated in table III The
functions are given for temperatures ranging from 298. 15° to 10 000° K at 100° K
intervals from 300° K. The absolute values, HT/ RT and -G° / RT, are relative to an
assigned enthalpy base of H298. 15 = 0 for H2 and e.

The following heats of reaction AHO were used to obtain the heat of formation of Hg
from Hz(g) and electron gas e:

H; ~2H + HY AHO =72 707 cm'1 (appendix B)
H, ~ 2H AH, =36 113.6 em™1 (refs. 16 and 18)
H-H"+e AH, = 109 678.76 em™1 (ref. 19)

where H is the hydrogen atomic ion. At 298. 15° K the following values of (H298 15
-H )/RT were used: 3. 41561 for H (ref. 20), 2.5 for e, and 3.9745 for Hg (table III).
The heat of formation at 298, 15° K was calculated to be:

Sy, .~ HE = 1 093 640 J/mole

P IR AHggg. 15

261 386 cal/mole

Accuracy. - The estimated accuracy of qu (table I) is different at different tem-
peratures. Assuming Conroy's V is exact, qH?; should be accurate to within 20 percent
from 298.15° to 8000° K. From 8000° to 15 000° K, U should be accurate to within
a factor of 2. Above 15 000° K, qH-:; is an order of magnitude estimate. However, at

1000-atmospheres pressure and above about 8000° K there is less Hg than Hg or H  ina

6



hydrogen plasma. (Below about 8000° K there is more H; than HE and at still lower
temperatures there is more H; than H; or H'), At lower pressures, the temperature
where the concentrations of Hf and Ht* are equal will be less than 8000° K. Hence,

errors in qH+ at high temperatures are not of much practical importance. Considering

the almost complete lack of experimental data on H;, a more sophisticated calculation

of Ayt than is contained in this report is not warranted.
3

DIATOMIC MOLECULAR ION H3

The calculations in this section are divided into two parts, the Analysis and the
Results and Discussion. The latter of these contains numerical results for the rotational
term values, partition function, and thermodynamic properties, comparison with other
investigators, and a discussion of the accuracy of the results for HJ2r

Analysis

Assumptions and restrictions. - The assumptions and restrictions utilized in the
analysis are listed here for convenience; they are the following:

(1) There are no excited electronic states (this is a good assumption below 15 000° K
because the lowest electronically excited state is repulsive and the next excited state is
about 92 600 centimeters'1 above the ground state and only has a shallow potential well
(ref. 21)).

(2) Differences in nuclear spin degeneracy were neglected in computing the thermo-
dynamic properties.

(3) An ideal gas was assumed.

Potential energy and energy levels. - Experiments and various ab initio calculations
of the constants of HE have resulted in the values listed in table IV. The experimental
valuesof r e and ' have some uncertainty because no band spectra of H; have ever
been observed. Obviously, the small differences in the various values for the constants
in table IV would have negligible effect on the partition function and thermodynamic
properties, and it can be safely assumed that the potential energies used by Cohen, et al.
(ref. 22) and by Wind (ref. 15) are essentially correct.

The best potential energy that could be obtained from the literature was found by
adding Wind's electron energy (ref. 23) to the nuclear repulsion potential energy. Rota-
tional term values were obtained from this potential energy by the WKB connection
formula for Hund's coupling case (b) (eq. (D10)) with the help of equations (D11), (D12),
and (D16). The second term on the right hand side of equation (D12) was assumed to be




zero. The computer program used for this calculation is described in appendix D.
Vibration-rotation term values #{v,K) were obtained by adding vibration term values
from Wind (ref. 15) to the rotational term values obtained from the computer program.

Partition function. - The energy of the rotationless ground vibrational state was used
as the reference for the internal partition function qHE’ which was obtained from the

Oy} - Ze E E (2K + 1) e NCFW, K)/KT (6)
g
v K

where g e is the electronic statistical weight, o is the symmetry number, v is the
vibrational quantum number, K is the quantum number for total angular momentum
apart from spin, h is Planck's constant, ¢ is the velocity of light, k is Boltzmann's
constant, and T is temperature. Metastable rotational levels were included in the
summation in equation (6). The quantities g e and o are both equal to 2. In equation (6)
the difference in statistical weights of ortho and para states is neglected as was done for
H'?': This is a good approximation at 298. 15° K and above.

Thermodynamic properties - The thermodynamic functions C_/R, (Hy - HO)/ RT,
-(G - HO)/ RT, and s° / R for H2 were calculated on a digital computer using equa-
t1ons (1) to (4). The molecular weight was taken to be 2, 01539 grams per mole.

relation

Results and Discussion

Rotational term values. - The calculated rotational term values are given in table V.
Note that these rotational term values are not the same as obtained in the sample problem
(tables VI and VII) because many more potential energy points with internuclear distance
r as greatas 25><10'8 centimeter were provided as input to the program when table V
was calculated. Where no value is given in table V, the state is nonexistent. The rota-
tional term values in table V agree within 0. 85 centimeter'1 with rotational term values
calculated from Wind's energy levels (ref. 15) and within 0. 12 centimeter’1 with term
values from reference 24.

Partition function. - The partition function calculated from equation (6) is given in
table II and figure 3. It agrees within 38 percent with the less accurate values of Vardya
(labeled r_  (nj = 40) in table III of ref. 1), who made calculations for 3000° to
25 000° K.

Thermodynamic properties. - The thermodynam1c functions C / R, (H 0)/ RT,
s9 /R -(G0 - HO)/RT HT/RT and -G° /RT for H2 are tabulated 1n table VIII The




functions are given for temperatures ranging from 298, 15° to 10 000° K at 100°K
intervals from 300° K. The absolute values, HT/ RT and -G%/RT, are relative to an
assigned enthalpy base of H298. 15 = 0 for H2 and e.

The following heats of reaction AHO were used to obtain the heat of formation of Hg
from Hz(g) and electron gas e:

H, — 2H AH, =36 113.6 cm ™! (refs. 16 and 18)
H-H +e AH,, = 109 678.76 em™1 (ref. 19)
Hy ~H+H' AH, = 21 379.36 em-1 (ref. 15)

Using (H298 15 - HO)/RT values of 3. 41561 for Hy (ref. 20), 2.5 for e, and 3. 4623 for
HJ2r (table VII) results in the heat of formation at 298. 15° K becoming

+ —
Hy -~ H, +e AHggq 15 = 1494610 J/mole
= 357 220 cal/mole

Accuracy. - The estimated accuracy of qu (table II) is different at different tem-

peratures. The contribution of the ground electronic state is given to within 1 percent by
equation (6) for 298. 15° to 56 000° K. However, at temperatures above 15 000° K there
are contributions of 1/2 percent or more due to electronically excited states with
potential wells (ref. 21) which are not included in equation (6). At 56 000° K the value of

At in table IT is consequently about 70 percent too low, The large error at high temper-
2

atures is of little practical importance since at 1000-atmospheres pressure and 15 000° K
there is only about 4 percent as much Hg asH  ina hydrogen plasma and even less at
higher temperature or lower pressure.

CONCLUDING REMARKS

In this report the partition function and thermodynamic properties of HE and Hg were
calculated for ideal gases. Because no band spectra have been observed for H; or Hg,
potential energies had to be obtained from ab initio calculations found in the literature.

The partition function and thermodynamic properties of the ground electronic state
of H"2F are based on reliable potential energies and other calculations and are unlikely to
change appreciably if the calculations are carried to higher degrees of approximation or

if more experimental information becomes available. However, if excited electronic



states of HE were included, the partition function for HE would be appreciably higher at
temperatures in excess of 15 000° K.

The partition function and thermodynamic properties of H':; are based on the most
reliable potential energies available from ab initio calculations, but there is very little
published experimental information.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, December 18, 1967,
122-28-02-17-22.
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Be’Ce

B,(i=1,2,..,7)

Bv’ Cv

D.D,,D

J’ I’

P

APPENDIX A

SYMBOLS

nondegenerate totally symmetric symmetry species for point group
Dy (ref. 25)

h2/87r2 p.r2

rotational constants for equilibrium separation of atoms
constants in expression for H':'; potential energy in terms of S
rotational constants for vibrational state Vs Vg

heat capacity at constant pressure

velocity of light

rotational stretching constants

energy to dissociate rotationless ground vibrational state
energy

doubly degenerate symmetry species for point group D3h (ref. 25)
vibration-rotation energy eigenvalue

unevaluated constant term in Hg energy

ratio of incomplete gamma function to complete gamma function defined
in ref. 26

vibration-rotation term value for actual potential (an eigenvalue if
corresponding v has the value 0 or is a positive integer)

vibration-rotation term value for Morse potential

rotational term value

kinetic energy matrix (ref. 25)

inverse of kinetic energy matrix (ref. 25)

Gibbs free energy at temperature T

electronic degeneracy

sum of sensible enthalpy at temperature T and chemical energy at
0°K

sensible enthalpy
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ki110Kq990K

K1122:¥9222

L
L‘_-l

Iy
M
m

P(r)
51 ’ 52 b 33

Q

Q(i=4,5,- - -,9)
Qs Q21,Q22

q

Qc

12

122°71111°

heat of reaction at temperature T

chemical energy at 0°K

Hamiltonian of H'§ with reference energy of infinitely separated

H+H+H' in ground states
Planck's constant
equilibrium moment of inertia about principal axis i
integral due to two-bond states of Hg in expression for Z'
integral due to three-bond states of H‘; in expression for Z'
total angular momentum quantum number

generalized rotation quantum number

quantum number for total angular momentum apart from electron

spin

Boltzmann constant
force constants

electronic orbital angular momentum vector

matrix for orthogonal transformation from mass-weighted
Cartesian coordinates to normal coordinates (ref. 25)

vibrational angular momentum integral number

molecular weight

mass of proton plus two-thirds of mass of electron

radial wave function of diatomic molecule or molecular ion
momentum of atoms 1, 2, and 3, respectively

normal coordinate column vector for Hg

normal coordinates for rotation and translation of H';
normal coordinates for Hg vibration

internal partition function

classical internal partition function of H; including only bound

states and with reference energy of rotationless ground vibra-

tional state of H':';



At

"

At

R
R,R'

G R

T T12:T13°T23

r

To4
Ty, Ty Ty

n W

jon? e

$1:53: 53
812891829
T
U,U,,U,, U,
Uy, U}, U

classical internal partition function of H'g including only bound
states and with reference energy of infinitely separated
H+H+H' in ground states

classical partition function of Hg including translation of the mol-
ecular ion and only bound states and with reference energy of
infinitely separated H + H + H* in ground states

classical partition function of H':'; including translation of the atoms,
bound and unbound states, and with reference energy of
infinitely separated H + H + H' in ground states

universal gas constant
internuclear distances (fig. 2 only)

ratios of quantum-mechanical harmonic-oscillator partition func-
tion to classical harmonic-oscillator partition function

internuclear distances

equilibrium internuclear distance

internuclear distance of far turning point

internuclear distance of near turning point

internuclear distances of inflection points in U' (fig. 6)
internuclear distance of minimum of U" (fig. 6)
internuclear distance of maximum of U' (fig. 6)

position vectors of atoms 1, 2, and 3, respectively, relative to
fixed axes

total electron spin quantum number
entropy at temperature T

& column vector

& row vector

changes in internuclear distances of Hg

symmetry coordinates of Hj
absolute temperature
diatomic potential such as obtained from RKR approximation

diatomic electronic potential (including nuclear repulsion)

13



Ui
Ujg:Up3sUgg
Y

\'

V'

X
Loly
Axy, AX,, AXg

X11°%12:%21° %92

y
A.le AY2’ AY3

Z'

Zl'

z

z'

Azl, Azz, Az3
Aqgy Ay U9,
70’71,7’2

T'(s)
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effective diatomic potential
diatomic Morse potential

two-atom potential energies of Hg with reference energy of
infinitely separated H + H + H' in ground states

dimensionless energy of fundamental vibration ¢ of H;

three-atom potential energy of H’g with reference energy of
infinitely separated H + H + H' in ground states

three-atom potential energy of H':; (zero for equilibrium inter-
nuclear distances)

three-atom equilibrium potential energy of H"?; with reference
energy of infinitely separated H+ H + H' in ground states

vibrational quantum number if integer; vibration number if
noninteger

maximum value of v

volume of container
diatomic electronic potential energy for Hund's coupling case (a)

Cartesian coordinate
vibrational angular momentum constant

displacements of protons 1, 2, and 3, respectively, in x-direction

anharmonicity constants
Cartesian coordinate

displacements of protons 1, 2, and 3 respectively, in y-
direction

Hg configuration integral including only bound states

H':'; configuration integral including bound and unbound states
Cartesian coordinate

Cartesian coordinate with origin at proton 1

displacements of protons 1, 2, and 3, respectively, in z-direction

vibration-rotation interaction constants for H':;

representation



(55

n,(=1,2,...,9)

61,92

Wy Wy
w', w'l, w'z, wi
Subscripts:

Hy
Hy
i

k
T

Superscripcs:

Coriolis splitting constant for H"é

7 column vector

mass-weighted Cartesian displacement coordinates of H;
polar angles of Hg (fig. 5)

quantum number for component of total angular momentum along
z axis for H;

quantum number for component of orbital angular momentum
along internuclear axis

squares of angular velocities of normal vibrations of H':;
reduced mass of two atoms in diatomic molecule or molecular ion

quantum number for component of electron spin angular momentum
along internuclear axis for diatomic molecule or molecular ion

symmetry number
aximuthal angles of H'g (tig. 5)
vibrational wave function of diatomic molecule or molecular ion

quantum number for component of total electronic angular momentum
along internuclear axis for diatomic molecule or molecular ion

zero-order vibrational frequencies of HE

fundamental vibrational frequencies

hydrogen diatomic molecular ion
hydrogen triatomic molecular ion
proton j of H;

vibrational kinetic

temperature given as table argument

time derivative
standard state (1-atm pressure)
effective value for unbound atoms

effective value for bound atoms

15



APPENDIX B

SPECTROSCOPIC CONSTANTS AND DISSOCIATION ENERGY OF H;

Since the spectrum of Hg has never been observed, it is necessary to obtain the
spectroscopic constants and dissociation energy from theoretical calculations. This is
done in this appendix, using the H; potential computed by Conroy (ref. 5).

The procedure consists of three parts: (1) The vibration of the molecular ion is
analyzed assuming that the potential energy V contains only terms that are quadratic in
the symmetry coordinates or normal coordinates. This is known as the harmonic oscil-
lator approximation and gives zero-order frequencies of vibration, which are the
frequencies which the molecule would exhibit if the anharmonic terms in V were
all zero. (2) The symmetry of the molecular ion is used to find the form of the
anharmonic terms in V, and a least-squares fit to the potential computed
by Conroy is made. (3) The anharmonic terms in V are treated as perturbations
to the harmonic oscillators. With the exception of the least-squares fit, this pro-
cedure has been well established for molecules (refs. 25 and 27) and requires no
modification for molecular ions, so only important steps and results are given in
this appendix.

Harmonic Oscillator Approximation

There is general agreement (refs. 4, 5, 6, 7, 8, and 28) that the equilibrium con-
figuration of Hg is an equilateral triangle with a proton at each vertex. Hence, H'g
belongs to point group D3h' It follows by the methods of Wilson, Decius, and Cross
(ref. 25) that the structure of the symmetry coordinate representation is

Ir'(s) = A} + E (B1)

where s stands for the three symmetry coordinates (ref. 25). The normal coordinates
have the same structure of their representation as the symmetry coordinates do. There
is one zero-order frequency associated with the normal coordinate of symmetry species

'1 and another zero-order frequency associated with the pair of normal coordinates of
symmetry species E'. In the following paragraphs, the zero-order frequencies of
vibration will be found by setting up and solving the secular equation (ref. 25) in terms
of the symmetry coordinates.

The lengths of the three sides of the triangle with protons at the vertexes are called
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internuclear distances. The changes in these internuclear distances from the equilibrium
value r, are designated £, $,, and &3, coresponding to sides 1, 2, and 3 of the
triangle, respectively. With the aid of equation (B1), the symmetry coordinates s are

related to the changes in internuclear distances by the matrix equation

84 1/3Y2 17312 17312 [ g,

81| = 2/6Y/2 _1/61/2 _1/61/2 s, (B2)
8y 0 1212 1212 | &,

where 84 is of species A'1 and S91 and Sgg are of species E'. (The subscripts of
s were chosen to conform to Nielsen's notation in ref. 27.)

The potential energy V and vibrational kinetic energy Ek are also needed in
setting up the secular equation. The symmetry of H*:,; requires that, in the harmonic
oscillator approximation, the potential energy (referred to the equilibrium value) be of
the form

_ 2 2 2
PATA —B1(51+32+53>+ B2(<S’1£2+ 5133+ £233> B3)
where B; and B, are constants. Combining equations (B2) and (B3) gives

- 2 2 2 2 1.2 1.2

The kinetic energy is given by the matrix equation

11

| G

2E G~

VN

K- (B5)

where 9-1 is the inverse of the G matrix (ref. 25) and the dots indicate derivatives
with respect to time. Using the method in reference 25 results in

2/m 1/2m 1/2m
G=11/2m 2/m 1/2m (B6)
1/2m 1/2m 2/m

where m is the mass of a proton plus two-thirds the mass of an electron. From equa-
tions (B2), (B5) and (B6), the following is obtained:
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152 2.2 2.2
2E, = +280,+2 (B7)
k <3 3 2173 22>

From equation (B4) and (B7), the secular equation is

B; +B, - mx/3 0 0
0 B, - (B,/2) - 2m)/3 0 =0 (B8)
I 0 0 B, - (B2/2) - 2m)/3

where the zero-order frequencies are given by xl/ 2'/ 27w. The solutions of equation (B8
m

are

3B, +B,) )

A =172

m
’ (B9)

3B - B2/2)

)\2 =~ -
2m D

the second solution occurring twice.

The next problem is to obtain the E'l matrix (ref. 25), which is needed in the
perturbation solution for the spectroscopic constants contained in a following section.
Assume the molecular ion is in the x-y plane, with the axes passing through the center
of mass as shown in the following sketch:

» <

>

fe+53

LN

e * 51

N

VARERN

ﬁ
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where the protons are represented by circles and ry is the equilibrium internuclear
distance. Let Ax]., Ay]., and Az]. be the components of the displacement of the jth
proton from equilibrium. Mass-weighted Cartesian displacement coordinates are defined
by

1/2 1/2 1/2
nlsm/ AXy, 1]2_=.m/ Ayq, 173Em/ Az,

1/2 1/2 ~ .. 1/2
7;4Em/ Ax,, 175Em/ Ay 5, n6=m/ Az, (B10)

1/2 1/2

1 =
My =M Axs, ngsm/sz?’, g =M Az3

so that a matrix which appears later in the analysis will be orthogonal. For small dis-
placements

1/2 1/2 N
S =2 (-l g ==
1 1/2< 2 1 92 759 "4 9%
m
1/2 1/2 L
1 3 1 3 1
S, = - Ny = = Ng + My +=7 (B11)
2 m1/2< 2 1 927 5 T 578
1
g =———(ng - M)
/2 j

A set of coordinates such as S1» Sg1» Sgg in which the potential energy (eq. (B4))
and the vibrational kinetic energy (eq. (B7)) involve no cross terms (such as 51521) are
always coordinates which differ from normal coordinates Ql’ Q21, and sz only by a
constant for each coordinate or do not differ at all. The constants can be found from the
matrix equation

Q-1 (B12)

by noting that E'l must be an orthogonal matrix. From equations (B2) and (B11) and
the proportionality between Sy and Ql’ S91 and Q2 1 and S99 and Q22, equation

(B12) becomes
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0 0
/2 0
3¥2/5 o

31/2/6
31/2/3
0

-1/2 0
0o 0
3¥/2/3 ¢

31/2/¢

.

(B13)

where Q 4 to Q9 are normal coordinates for rotation and translation. The elements of
E'l in equation (B13) that are pertinent to rotation and translation have been indicated by
dashes since they are not relevant to finding spectroscopic constants. Thus the L~

matrix has been determined to the extent necessary in the following calculations.

Evaluation of Potential Energy

To obtain additional spectroscopic constants by the perturbation method of Nielsen
(ref. 27), the cubic and quartic terms in the potential energy are needed in addition to
the quadratic terms, All these terms are obtained by deducing the correct form of the

potential energy and then selecting the constants to fit Conroy's calculated potential
This is explained in more detail in the following paragraphs.

(ref. 5).

The correct form for the potential energy is obtained by noting that the potential
energy must be invariant for all symmetry operations permitted by point group DBh
even when Hg is vibrating. By application of group theory (refs. 13 and 25) this yields

1. o2 2 2 3 2 2 4
V=Ve+ 5["1‘91 * "2<Q21 + sz)] K@+ k1:>,2Q1<Qzl + sz) *k11119

2
2 .
+ k1122Q1 <Q§1 + Q§2> + k2222 <Q§1 + Q§2> + higher order terms

(B14)

where V_ is the potential energy at equilibrium, and ky,q, K199, Ki111 K1199, 20d
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Kg999 are force constants. Expressing equation (B14) in terms of changes in bond
lengths and omitting higher order terms gives

B B
V=V, +?1<.—§% + Sg +£’§>+—2£ (glgz + 5133 + 3253) + (B3 + B4)(S? +£g +£g)

+(6Bg - 3B,) 88,8, + 333(g§gz + 85,82 ,528,. 852,825 4 g3g§)
4 4 L4 3 3 3
+ (Bg+Bg + B.7)(g1 + S5 +£3) + (4B + By - 2B7)(g1g2 + 838, + 838
3 3 3 2.2 02,2 o202
+ 5253 + 3331 + <S"332) + (6B5 + 3B7)(gr.§2 + $1$3 + 52‘53)
+ (12B, - 336)(525253 +828 8, + ,sg.slgz) (B15)

where B3 to B7 are given by

K )
B, =m¥2 111
27
4k
B, =m%2 1122
27
k
By =m? ~1111 . (B16)
81
4K
By =m? 1122
81
16k
B. = m2 - 2222
7
81 ]

Conroy's computed H; potential is shown in figure 2. He obtained an equilibrium
internuclear distance r e of 1.68 Bohrs (2. 890(i><10' cm) and a potential energy Ve at
equilibrium of -0.357 Hartree (-7.835%X10" cm™ ~). Conroy very kindly furnished large
graphs similar to figure 2 of this report and to figure 8 of reference 5. Potential
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energies and internuclear distances were read from these two graphs by means of an
optical comparitor. Points along lines J, Q, and S (fig. 2) with potentials of -0. 29
Hartree (-6. 36><104 cm'l) or less were used in fitting V (eq. (B15)) to Conroy's poten-
tial by minimizing the sum of the squares of the deviations. It was impossible to get a
realistic fit by holding r e and V e at the values recommended by Conroy and varying
B, to B,,. Instead, the nine quantities o A% & and B1 to B7 were all varied simul -

taileously. The resulting least-squares fit gave
R

r, = 1.66597 Bohrs (0.88158x10° cm)
V, = -0.354771 Hartree (-7.7863x10? cm™1)
B, = 0.2709 Hartree/Bohr2 (2. 123x1021 cm'l/cmz)
B, = -0. 11736 Hartree/Bohr? (-9.198x102% cm~1/cm?)
B, = -0. 008914 Hartree/Bohr> (-1.3203x10%8 cm~1/cm3) r (B17)
B, = -0. 06664 Hartree/Bohr? (-9.870x10%8 cm~1/cm?)
By = 0.0016468 Hartree/Bohr? (4.609x10%% cm~Y/cm*?)
By = 0.012395 Hartree/Bohr* (3. 469x10%% cm™Y/cm?)
B, = -0.016949 Hartree/Bohr? (-4.744x10%® em™1/cm®)

>

Attempts to include points with larger potential energies in the fit were unsuccessful
for some unknown reason. The reason was probably either lack of higher order terms
in equation (B15) or inaccuracies in figure 2 of this report and figure 8 of reference 5.

As might be expected, equation (B15) with constants from equation (B17) fit Conroy's
potential (fig. 2) near the bottom of the potential well, as shown in figure 4, but not at
higher potential energies. However, this was considered satisfactory because the fit is
only used to calculate partition functions at temperatures low enough that most of the Hg

ions occupy states near the bottom of the potential energy well.

Perturbation Calculation and Final Results

Nielsen (ref. 27) has carried out a second-order perturbation calculation to get the
vibration-rotation energies of any polyatomic molecule except those with tetrahedral
symmetry or internal rotation. In this section Nielsen's equations are applied to H':',; to
obtain its vibration-rotation energies and spectroscopic constants. Before doing this,
it was necessary to correct a number of typographical errors in reference 27 in addition
to the errors in reference 27 subsequently corrected by Nielsen (ref. 29). The necessary
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force constants and equilibrium internuclear distance for Hg were obtained from the
least-squares {fit in the preceding section.

It is customary in spectroscopic work to use term values rather than energy levels.
A term value is defined as E/hc where E is the energy level, h is Planck's constant,
and c is the speed of light. Based on Nielsen's equations and on the results of the sec-
tion Harmonic Oscillator Approximation, the term values of H; are

2
o) 1 1 1
S Wy Vg ) wo(Vg + 1)+ X4 (Vi + =) 4+ Xy + Xgq) [V +=)(Vy + 1)
he he 1<1 2) 2V'2 11<1 2) 12 217/\"1 9 2
+Xgo(vg + 12 + % zlzlg +3@ + DB, - k2B, - C.) - 72 + 1)°D;

2 4
-JJ + )k DJK - K DK F2C ol gk (B18)
where the quantum numbers v, Vo, g, K, and J take on the values

v;=0,1,23, ... )
ve=0,1,2,3, ...
lg=Vg, Vg-2,Vy-4 ..., 1 or0$ (B19)
k=0,1, 2, 3, . ..

J=x, k+1, k+2, ...

§

and the other quantities are constants. The E 0/ he term in equation (B18) was not eval-
uated by Nielsen and is probably very small. Consequently, it is neglected. The last
term in equation (B18) accounts for the Coriolis splitting of the degenerate vibrational
levels. Since the effect of Coriolis splitfing on the partition function should be very
small (ref. 30), the last term is neglected.

Expressions for the spectroscopic constants in equation (B18) with the exception of
&9 must all be found. From the section Harmonic Oscillator Approximation,

27c

(B21)
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By using equation (B13) and Nielsen's relations (ref. 27 ), the remaining spectroscopic

constants are

2
15k
x.,=— 0 [3 _ i (B22)
11 1111
4 2 3 2 2 2
327wy ¢ 81°c"w
1 1
h 3k111¥122 k3o
Xig + X9y = ——— | 2K - - — (B23)
12 7721 4 3 |7 1122 222 22/, 2 2
327 wqWeC 27 wy T ¢ <4w2 - w1>
k2
<. -_ b g ... 122 |1 1 (B24)
22 4 23| 2222 59| 9 2 2
327 wgC T C 1 2<4w2 - w1>
h k%zz 4772020)3
"lgly 2232222t 55, (e) (B25)
e
327 wgC 8¢ <4w w1> IZZ
1
szBe'a0'<v1+E>al'(V2+1) o (B26)
1
3/2 2
D. = el N (B28)
J e <w2 w2>
1 2
3/ 2 4
Dy, = -Bo = +—= (B29)
2 2
¥1 Y
3 1 2
DK: o[—+—= (B30)
2w2 wz
1 2

where, according to Nielsen (ref. 29), o and Yo are small and may be neglected and
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B =_ 1 (B31)

e
812I§§{)c
1/2
3B h @7 "k
@j=-—° 1+[ZZ]_111 (B32)
81r2cg(§{)w1 2112c2w%
1/2
(e)
__ B e, ,LI?Z] K122 B33)
16n2c1§§)w2 nzczw%
B
o= _h _T"e (B34)
8"21:(2.(;)0 2

1/2
(e)
3Bgh 1+[Izz] K11

e) 22 2

_ (B35)
8112c1£z wq 21°¢c wy

-}/1=_

B_hk
yym - 122 (B36)

L \1/2
161r403 [I;ez)] w“iwz

For calculating the partition function, the rotational-stretching constant p is
required in Woolley's approximation (ref. 12) rather than the constants Dy, D T and
DK. These four quantities are related by the following equation (ref. 31):

k [3@; +Dg, + D) X 2D . 2D + Dy

== | _ c (B37)
he 2 2 2C B
4C e B o e e
Equations (B28) to (B30), (B34), and (B37) result in
kB
-_¢ __152 _43 (B38)
he
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The spectroscopic constants were evaluated from equations (B9), (B16), (B17), (B20)
to (B25), (B31) to (B36), and (B38) and are

-
w, = 3476 cm™! C,_=21.52 cm”!
wg = 3601 cm‘1 oy = 1.1848 cm’1
X41 = -70. 40 cm'1 @y = 0. 1303 cm'1
- -1
X g+ Xy =-180.43em™! 5 =0.5924 cm > (B39)
Xy = -76.11 cm™ vg = 0.8372 cm ™1
M, 23.83 cm™! p = 2.780x107° °k~1
2
B -1
B, = 43.05 cm )

Values for w 1 and wWo obtained by other investigators from calculated potential
energies are given in table I. The agreement is not good, but the values (eq. (B39))
used in this report are probably the most reliable, It is probable that not one of the
constants in equation (B39) is accurate to the number of significant digits given, because
the H; potential energy (ref. 5) was not evaluated for a sufficient number of isosceles or
equilateral triangle configurations nor for any scalene triangle configurations.

Since the ground electronic state of Hg isa 1A1 state, it has an electronic degen-
eracy g, of 1.

The energy D o required to dissociate H; in its rotationless ground vibrational
state into two ground state H atoms and a proton (all infinitely separated) is obtained by
subtracting the zero-point energy from the absolute value of Ve and is 72 707 centi-
meters'l.

From equations (B18) and (B39) the nondegenerate fundamental frequency wy is
3155 centimeters'1 and the doubly degenerate fundamental frequency wh is 3306 centi-
meters'l. This completes the calculation of the spectroscopic constants and dissoci-

ation energy of H3.
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APPENDIX C

HIGH-TEMPERATURE APPROXIMATION FOR THE PARTITION FUNCTION OF H;'

At temperatures of the order of 10 000° K and higher, the usual approximations
(ref. 12) for the partition functions of polyatomic molecules and molecular ions do not,
in general, give accurate results, nor does equation (B18) have sufficient terms to
accurately predict all the energy levels of H3 that contribute S1gn1f1cant1y to the internal
partition function. Instead, in this appendix the partition function of H3 is calculated
classically, and corrections for the quantization of vibration are then applied. Due to
necessary assumptions, the treatment is quite approximate.

Analysis

The determination of the internal partition function of H':; starts with equation (11-131)
of Davidson (ref. 32). Davidson makes no distinction between bound states of a molecule
and states in which the atoms have too much energy relative to one another to be bound.
Hence, the partition function for all these three-atom states collectively is

oo 1 o J/KT 43= 43~ ;3= 3= 3
c—_gf///ff d"py dp2dp3dr dr2dr3

(C1)

where ack is the classical partition function including translation of the atoms, the r
vectors all have an origin fixed in space, W is the volume of the container, and the
number subscripts 1, 2, and 3 refer to the three atoms, respectively. The Hamiltonian
JC is given by

UV (F, Ty ) €2

If equation (C2) is substituted into equation (C1), the momentum integrals can be
evaluated with the result

9/2

Q'L = 2mmkT Z (C3)

ct 9
h
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where Z'' is the configuration integral given by

zvv:f/ f e V/KT o35 437, 43F, (C4
W Jw I 14Ty d'ry )

Let ) be the distance between atoms 1 and 2, r 13 the distance between atoms
1 and 3, and Tog the distance between atoms 2 and 3 (fig. 5). The crude assumption
is made that V is the sum of three two-atom potential energies, irrespective of where
the two electrons are; that is,

V= Uypp(ryg) + Uyg(ryg) + Upslrag) (©5)

Hill (ref. 26) has shown that exp(-U12/kT) may be expressed as

_U,,/KT  -U%,/kT -U% /KT
o D1/ET _ UL/ET -Upy

(C6)
and similarly for U13 and U23. Here Ui*j is the effective potential energy between
unbound atoms i and j and is given by

Uy5(ry5) Uj5(rs5) > 0
UX(r..) = (C7)

ijVij
Uyi(r;;) - kT In [1 - F(ri].)] Uy(ry;) < 0

where the function F(ri.) has been defined by Hill (ref. 26). The quantity Uiij is the
effective potential energy between bound atoms i and j and is given by

o U..(r. ) > 0
i _ 151
Ujjryp) - (c8)
Uij (rij) - kT In F(rij) Uij (rij) =0

Combining equations (C4) to (C6) results in
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(U +U%,+U%,)/kT - Ut +Ux.)/KT
Zrr - / f [e (Ufp+Uf+U3g)/kT  -Ufp+Uig+Usg)/
w/wYw

i Iyt

-(U12+U§3+U§3)/k'r -(U31"-2+U={3+U§3)/k1‘ -(U31"-2+U§3+U§3)/k1']
+ e + e + e

3 3 3

d rld ro d rg (C9)
The first four terms in equation (C9) correspond to states in which at least one atom is
not bound to any other atom and hence should be discarded. Integrals involving the next
three terms are equal because of symmetry. Therefore, the appropriate configuration

integral Z' for H'é' is the sum of the last four terms in equation (C9) or

_— / / / [36‘(‘]?2*‘]3{3”%3)/ KT e'(U{2+U]f3+U%3)/ kT} 435, 635, o,
WUWYwW

3

(C10)

To evaluate equation (C10), it is necessary to express d Fl d3f-'2 d3i"3 in terms of
ry9, Ty, and Tyg- The coordinate system for this transformation is shown in figure 5.
Proton 2 is the origin for polar coordinates Ty, 04, @ of proton 1. An extension of
ryo Servesas the z' axis for polar coordinates r;s, 6o, @y of proton 3 with proton 1
as the origin. Obviously,

3 3

3=~ - - 3~ 2 . 2 .
|a°r; d°ry d°T,4] = |a°r, ], dryy sin 6 d6; dg rigdr gsind,déyde,|  (C11)
The integrand in equation (C10) is independent of ;2’ ®1 b5 and ¥y, SO these six
integrations can be carried out immediately. Integration over ry gives the volume W.

Equation (C11) becomes

LA

3+ .2 . 9 )
A ‘4‘—4] ld rzrlzdr12 sin 91d91d¢’1r13dr1381n62d92dgp21
2 Y1 "1

2
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T A 1

Combining equations (C10), (C11), and (C12) gives

Z' = 81°W(3I, + 1) (C13)
where
*° ~U%,y/kT ® ~Ufy/KT T19+T13 UL /kT
I = g€ rig€ ry3e droggdrygdr;,
0 0 ESPRSEY
(C14)
and
© i ) i Ty o+l i
-U#,/kT -U#,/kT 127713 -Ui,/kT
I, = rqia€ 12 Tiq€ 13 Taat 23 dr,q dr., dr
2= 12 13 23 23 dri3 dryg
0 0 | 19-145]
(C15)

The corresponding classical partition function including translation is

9/2
v - [27mKT 7zt (C16)
ct

h2

(Compare with eq. (C3)).

Equation (C16) was derived classically, so it requires two corrections: (1) it must
be multiplied by the electronic degeneracy g e and (2) it must be divided by the
symmetry number o¢. To obtain the internal partition function s the resulting expres-
sion must be divided by the translational partition function of the Hg ion; that is,

2

871°g 3

q = —° <2“ka> (31, +1,) (C17)
232, \ 2

The usual internal partition function q c has the energy of the rotationless ground
vibrational state as reference energy. Since q'c has infinitely separated H + H + H' as

the reference energy,
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-heD /KT
Q. = 9,8 (C18)

where D0 is multiplied by hc because D0 is given in centimeters'1 in appendix B.

At low temperatures, equation (C18) is not accurate because the vibrations are
quantized. As Davidson (ref. 32) has pointed out, this can be corrected for the Zth
normal vibration by multiplying the classical partition function by the ratio (RZ of the
quantum-mechanical harmonic-oscillator partition function to the classical harmonic-
oscillator partition function.

-ul/2
ue
(RZ = (C19)
..ul
1-e
where
hcwé
u; = (C20)
kT

At high temperature, (RZ approaches 1.
The final internal partition function At is then given by
3

_ 2
qu - qc(PL 1(32

(C21)

2

8 3 -hcD_/kT

. Be (“ka> (I +I)e  °  &,®
3/2 2

3" %¢ h

where (Rz is squared because w} belongs to a doubly degenerate vibration.

Description of Digital Computer Program

Equation (C21) was evaluated by means of a FORTRAN IV program for the Lewis
IBM 7094 digital computer.

The two-atom potential energy U(rij) was obtained by taking one-third of Conroy's
V(rij) for the equilateral triangular configuration (after adding 1. 00 Hartree
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(2. 1947'.5><105 cm'l) to Conroy's values, of course). These V's are given on the line
labeled Q in figure 2 and were read with an optical comparitor on large graphs similar
to figure 2 of this report and to figure 8 of reference 5. These large graphs were very
kindly furnished by Conroy. Thus U(rij) was obtained for internuclear distances from
0.4768x1078 to 1.9473x1078 centimeter.

For larger and smaller internuclear distances, it was necessary to extrapolate
U(rij)‘ For internuclear distances less than 0. 4"1%8><10"8 centimeter, a8Morse potential
(ref. 33) passing through the points U(0.4768x10™ ") and U(0.4937x10" ") and with the
same potential well depth as U(rij) obtainéad from Conroy's data was used. For inter-
nuclear distances greater than 1.9473x10 "~ centimeter, another Morse potential passing
through the points U(1. 8748><10'8) and U(l. 9473><10'8) and with the same potential
well depth as U(rij) obtained from Conroy's data was used.

The triple integrals I1 and I2 were evaluated by numerical methods in the program.
The values of Qg calculated by the program were mathematically accurate to within

0. 03 percent. 3
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APPENDIX D

COMPUTER PROGRAM FOR WKB ROTATIONAL ENERGIES OF DIATOMIC
MOLECULES AND MOLECULAR IONS

No complete table of vibration-rotation energies or term values of any diatomic
molecule or molecular ion is available directly from an analysis of observed molecular
bands. Such a complete table is necessary to calculate an accurate internal partition
function for a diatomic molecule or molecular ion at high temperatures. Vibration-
rotation energies may be calculated from theory if the potential energy U(r) of the
molecule is known. For H; the potential energy and vibrational energies are known
from quantum theory (refs. 15 and 23). For many diatomic molecules, the most reliable
potential energy curve that is obtainable is one calculated by the Rydberg-Klein-Rees
(RKR) method (refs. 34, 35, and 36) which involves application of the WKB approximation
(refs. 37 and 38) to observed molecular bands, the calculation of vibrational energies
being an intermediate step.

Since the vibration-rotation energy may be regarded as the sum of vibrational and
rotational energies, a complete table of rotational energies (or term values) is generally
the only missing data for calculating accurate internal partition functions. The program
in this appendix calculates either a complete table of vibration-rotation term values or a
complete table of rotational term values if a potential energy table is given as input.

In the past, vibration-rotation energies of diatomic molecules have been calculated
by at least three methods. Davidson (ref. 39) and Cooley (ref. 40) found a few energy
eigenvalues of the appropriate second-order differential equation by supplying initial
estimates of the vibration-rotation energy eigenvalues and iterating. Woolley, Scott,
and Brickwedde (ref. 20) used the WKB connection formula to find noninteger values of
the vibrational quantum number for given vibration-rotation term values and total angular
momentum.

For Hg three very sophisticated methods (refs. 15, 22, and 24) have been used to
compute a few vibration-rotation energy eigenvalues to higher accuracy than for any
diatomic molecule.

For calculating partition functions, extremely accurate vibration-rotation energies
are not required. Since in most cases the available potential energies are based on the
RKR and WKB approximations, it is consistent to use the WKB connection formula to
compute vibration-rotation energies. In this appendix the WKB connection formula is
used to calculate vibration-rotation energy eigenvalues for any diatomic molecular ion or
diatomic molecule to which the assumptions and restrictions listed in the next section
apply. The described program has the unique advantages that it is unnecessary to know
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beforehand if a state exists and that no initial estimates of vibration-rotation energies
(or term values) are needed as input.

Assumptions and Restrictions

The assumptions and restrictions utilized inthe program are listed herein for
convenience; they are as follows:

(1) Only 12} electronic states and electronic states obeying Hund's coupling cases (a)
and (b) (ref. 33) are considered. (The ground state of H; isa 22 state and obeys
Hund's case (b)).

(2) The extensions of the Born-Oppenheimer approximation (refs. 41 and 42) are
assumed to be applicable.

(3) The potential energy U(r) possesses only one well, as shown in figure 6, but it
may have a hump (not shown).

(4) The electronic state has no more than 100 vibrational energy eigenvalues (or
term values) for its ground rotational state.

Analysis

In this section Hund's coupling cases (a) and (b) are treated. When the total electron
spin S and the component of orbital angular momentum along the internuclear axis A are
zero, both coupling cases reduce to the case for 12 states. The effective potentials
for use with the WKE connection formula are given.

Hund's coupling case (a). - In Hund's coupling case (a) the electronic motion
including spin is coupled very strongly to the internuclear axis. From the relations
given by Van Vleck (ref. 41) and Kronig (ref. 42) it can be shown that the differential
equation for the radial wave function P(r) is approximately

B2 (2 2)-wi@)-BlI@ + 1) - 24% - 230 + 88 + 1)
or or

2 — —_
SA(L L) L>J +Ep P(r)=0  (D1)
h2

where ( ) indicates a time average over the electronic coordinates.
The vibrational wave function iy is defined by
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=1 P(r) ©2)

Combining equations (D1) and (D2) gives

2 2 2
Yy 81T Ep - Wi(r) - _h IEI(JJ, 1) - 222 - 250 + S(S + 1)
ar2 h2 81°%ur
41r2(£ . E)
+ == Ly =0 D3)
h2
The WKB connection formula (ref. 38) for equation (D3) is
Tmax
22uhc) 2 Fw,J) - U () - _ bk |EI(J +1) - 202 _ 250
r 8112 urzc
min
+S(S+1)+4_’T<L—'L> dr=<v+l>h v=0,1,2 ... (D4
h2 2
where £ is the vibration-rotation term value
Ep
f(vy J) = — (DS)
he
and
w; (r)
Uy (r) =2 (D6)
he

and v is the vibrational quantum number. Equation (D4) can also be written

Ir
2(2he)Y/ 2 / max [#(v,9) - Ué'(r,J)]l/z dr = <v +%>h v=0,1,2, ...
Tmin

(D7)
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where Ué’ is an effective potential given by

Ué"(r, J) = Ua(r) + hJ(J + 1) (DS)
81r2u.r2c
and
h 2 ar(T - L)
U, (r) = UL (1) + ———— |-2A% - 22Q + S + 1) + L2~ =7 D9)
8172ur2c h2

The potential Ua(r) is the quantity obtained by applying the RKR approximation to a
molecular state obeying Hund's case (a).

Hund's coupling case (b). - In Hund's coupling case (b) only the electronic orbital
motion is coupled very sirongly to the internuclear axis. From the relations given by
Kronig (ref. 42) and Mathews and Walker (ref. 38) it can be shown by a derivation
similar to that for Hund's case (a) that the WKB connection formula is approximately

2(2uhc)Y/2 [rm“ [0, %) - Uy, K)] /2 gy =<v+%>h v=01,2, ...

min

(D10)
where

Uy (r, K) = U, (r) + REE+ 1) (D11)

8772ur2c

h 2 41r2(f . E)
Ub(r) = Ul')(r) b {27+ L= (D12)
8w urzc h2

The potential Ub(r) is the quantity obtained by applying the RKR approximation to a

molecular state obeying Hund's case (b).
12 electronic states. - The WKB connection formula for

from equations (D7) to (D9) or (D10) to (D12) and is as follows:

12 states may be obtained
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ummﬂ“‘/“mm[ﬂmn-%mgﬂﬂzm=6+
I

min

where

and

The potential U o(r) is the quantity obtained by applying the RKR approximation to a

12 state.

hJ(J
UL(r,d) =U_(r) + hJ(J + 1)

Ug(r) = U&(r) +

1)

81r2ur2c

(L - L)

2 urzch

2

1

)h v=0 1,2, ...

(D13)

(D14)

(D15)

Generalized variables and rotation quantum number. - Inspection of equations (D7),

(D8), (D10), (D11), (D13), and (D14) shows that the WKB connection formulas and the
expressions for the effective potentials all have the same form, so that one computer

program can be used for Hund's case (a) or (b) or for

correspondences (reading across) are kept in mind:

Hund's
coupling
case (a)

1
Ua

Ua

J

Hund's
coupling
case (b)

Uy
Yy

K

Iy

electronic
states

1Al
UC’

UO’

J

Generalized FORTRAN
variable or variable
quantum number
un UPP
U U
j AJ

12 states provided the following

In the remainder of this appendix, the generalized variables U'’ and U and the gener-
alized rotation quantum number j are used instead of the corresponding quantities for

particular coupling cases,

Typical U and U'' are shown in figure 6.

In figure 6 and in the program, the
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reference for energy is arbitrarily shifted to be U(re). If U' does not possess a well,
there are no bound states. Even if U'" does possess a small well, there will not be any
bound state unless the left-hand side of equation (D7), (D10), or (D13) (as appropriate)
equals or exceeds h/2 when = U (ry,) (see fig. 6).

The rotational term values f are found from

f(V,j)+f(V,j) 'f(v; 0) (Dle)

Program Procedure

The program used to calculate & or f was programmed in FORTRAN IV, IBM
Version 13, for an IBM 7094 digital computer with the Lewis monitor system. Basically,
the program interpolates a small table of U(r) given as input and obtains a large,
equispaced table of U(r). For each value of j provided as input, the program computes
a large, equispaced table of U''(r), determines if U''(r) possesses a well, and, if U"
does, finds all #(v,j) by iteration of the generalized version of equations (D7), (D10),
and (D13). These procedures are explained in detail in this section,

Interpolation of U(r). - A set of points U(r) provided as input are represented by
circles in figure 6. (In an actual problem many more points would normally be provided
as input). The same interpolation formula is not used for all values of r. Instead, r is
divided into regions 1, 2, 3, and 4 as shown in figure 6. In regions 1 and 4, the four-
point interpolation formula of Lagrange is used. In region 2, a third-degree polynominal
in r with zero slope at r, is chosen to pass through U(re) and the two points to the
left of r, and is then used for interpolation. In region 3, a third-degree polynominal
in r with zero slope at ry is chosen to pass through U(re) and the two points to the
right of ry and is then used for interpolation.

Interpolation of the points U(r) provided as input produces a large table of U(r)
equispaced in r. The number of entries NMESH in this table is an input quantity. The
first entry is the input point with smallest r, and the last entry is the input point with

largest r.
Procedure for each j value. - For each value of j provided as input, all solutions

# (if there are any) are obtained and & or { is printed out before going on to the next

value of j.
Calculation and examination of U''(r): The first step in this solution is to compute

a value of U''(r) for each U(r) in the equispaced table by means of the generalized
version of equations (D8), (D11), and (D14). All curves U''(r) (fig. 6) possess two
inflection points r,; and rg,. By iterating on the second derivative of U''(r), the
inflection point o1 (fig. 6) is found. Examination of the first derivative of U"(rOI)
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then reveals whether or not U''(r) has a well. X the first derivative is positive, there
is a well; otherwise there is not.

If there is a well, iterations on the first derivative of U''(r) provide o3 and o4
(fig. 6). Setting & equal to U"(r04) (see fig. 6) in the generalized version of
equations (D7), (D10), and (D13) gives the maximum value of v, which is generally a
noninteger and is designated Vinax I v max is negative, there are no eigenvalues %,
I Vinax is 0, there is only one ¥ (i.e., F = U"(ro4)). i Vmax is positive, there are
truncate (vm ax) + 1 eigenvalues &, where truncate () means to drop any fraction in
the argument,

Table construction and search, and iteration: For Vnax that is positive, a table
search and one or two successive iteration procedures are used tofind each eigenvalue
F because the use of one iteration procedure alone is frequently inefficient or diverges
in some case. Construction of the table, searching of the table, and iterating are
explained in the following paragraphs.

For use in the table searches, a table of v(#) is constructed from the generalized
version of equations (D7), (D10), and (D13) for equispaced ¥ possessing values from
U"(r03) to U"(r04). The quantities rm.m(j) and rmax(:f) are also included in the
table for use in the subsequent iterations. Although this table is adequate for table
searches, v deviates substantially from being a linear function of #, so v and ¥ are
not appropriate variables for iteration. To overcome this, a Morse potential Ut(r)

(ref. 33) is fit to each U''(r) so that the dissociation asymptote of the Morse potential
has the value U"(r04). The vibrational term values ft(v) of the Morse potential are
used to obtain # (#). This is, in general, almost a linear relation, so ft and # are
appropriate variables for iteration, ft being given. The table for use in table searches
therefore includes the five variables v, #, r_. , I axe 2nd ft It should be empha-
sized that the use of ft is merely a mathematical device to make iterations converge
more rapidly and in no way affects the accuracy of the resulting eigenvalues %,

To find each eigenvalue # corresponding to an integer v, the table is searched to
find the interval in the table wherein v falls. The value of ft corresponding to the
desired integer v is calculated and linear interpolation is used M times (M is an input
FORTRAN quantity) to get successively better values of &#. After M linear interpola-
tions, iteration is performed by using linear interpolation or linear extrapolation based
on the last two points calculated. If the new value of # so obtained falls outside the
limits established in the table search, the new value of ¥ is discarded, and five more
linear interpolations are performed before attempting iteration by linear interpolation
or linear extrapolation based on the last two points. Either iteration procedure is halted
when the absolute value of the estimated error in & is less than the input FORTRAN
quantity TOL (the allowable error).

Output options: After all eigenvalues #(v,j) have been found for a given value of j,
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the input FORTRAN quantities GV are subtracted from them. If all GV are zero, the
output FORTRAN quantities FV will be the vibration-rotation term values #{v,j). K
the GV are assigned the values #(v,0) determined from a previous run of the program,
then according to equation (D16) the output quantities FV will be the rotational term
values £(v,j).

After writing (and, if specified, punching) the results for a given value of j, the
processes are repeated for the next value of j.

Organization of program and description of subprograms: A block diagram of the
program and its subprograms is given in figure 7. SIMPS1 is shown as a subprogram
although at Lewis it is a built-in library function. Listings of the program and subpro-
grams are given at the end of this appendix.

The calls of the subprograms and the operations performed by them are as follows:

The function LBINT has the call BINT(X, Y, Z, N) and performs four-point inter-
polation by the method of Lagrange. X and Y are the independent and dependent
variables, respectively, in a table of N entries. Z is the argument (value of X
desired). BINT is the interpolated value of Y.

The function LDER has the call DER(R) and is the first derivative of UPP with
respect to internuclear distance R.

The subroutine LDIFU has the call DIFU(RLOW, RHIGH, ROOT, $ STATEMENT NO.)
and finds the zero of UPP-FAA (FAA is a vibration-rotation term value in COMMON)
which has R between RLOW and RHIGH. The value of R corresponding to the zero is
ROOT.

The function LEN has the call EN(R). EN is the value of the squareroot inside the
integral in the generalized version of equations (D7), (D10), and (D13).

The subroutine LROOT has the call FIND(UUU1, UUU2,G,DELR, ROOT, $ STATE-
MENT NO. ) and finds the zero of some specified function G(R) for R between UUU1
and UUU2 by interval halving and linear interpolation. DELR is the spacing of the R
table and is needed because G(R) is always derived from a table and is not continuous.
The value of R corresponding to the zero is ROOT,

The function LSECD has the call SECD(R) and is the second derivative of UPP with
respect to R.

The function LUP has the call UP(R). UP is the value of UPP at R obtained by
linear interpolation of the equispaced UPP table. ,

The subroutine LVVV has the call VVV(F, RMINH, RMINL, RMAXH, RMAXL, V, RMIN,

RMAX, $ STATEMENT NO. ) and finds the vibrational quantum number V and corre-
sponding near turning point RMIN and far turning point RMAX if the vibration-rotation
term value F is given. It uses the generalized version of equations (D7), (D10), and
(D13). RMINL and RMINH are the values of R between which the search for RMIN is
made. RMAXI.and RMAXH are the values of R between whichthe searchfor RMAXis made.
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The function SIMPS1 has the call SIMPS1(RMIN, RMAX EN, L) and finds the integral
of the function EN(R) between the limits R = RMIN and R = RMAX by a modified
Simpson's rule. If an accuracy of 1 part in 106 cannot be achieved, 1 is addedto L to
flag the result. SIMPS1 is the value of the integral. This function was developed by
T. E. Fessler and W. F. Ford of Lewis Research Center.

Accuracy

When TOL is set at its usual value of 0.25 centimeter ™1

puted F(v,j) or f(v,j) is believed to be limited by the extended Born-Oppenheimer

, the accuracy of the com-

approximation, the WKB approximation, or insufficient points U(r) provided as input
rather than being limited by inaccuracies in the program itself. For example, rotational
term values for Hg (table V) computed by the program agreed within 0.9 centimeter'1
with rotational term values calculatedfrom Wind's resuits (ref. 15). For the X12+ state
of H2 the rotational term values agreed to within 7 centimeters™~ with rotational term
values calculated from wave numbers of lines measured by Herzberg and Howe (ref. 43).
In general, slightly better accuracy is obtained if the program is used to compute
f(v,j) rather than #F(v,j). X it is then desired to find #(v,j) by adding f(v,j) and
F(v, 0), values of #(v,0) should be obtained from the same source as the potential U(r).

Input

Table VI shows the input variables required as they are to be punched on the data
cards. The simplified sample problem given is HE with only 30 potential energy points
specified in addition to RE. The input FORTRAN variables are as follows:

NL Number of members in UL and RL arrays; maximum of 100.

UL Potential energy U for internuclear distances less than RE, measured
from bottom of potential well (first value must be greater than dissoci-
ation energy), cm™ ",

RL Internuclear distance r in monotonically increasing order; the RL array has
a one-to-one correspondence with the UL array, A (1A = 1078 cm).

NR Number of members in UR and RR arrays; maximum of 440.

UR Potential energy U for internuclear distances greater than RE, measured
from bottom of potential well, em™ L.
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RR

NJ
AJ
NSTOP

NV
GV

RE

TOL

NZ

NMESH

42

Internuclear distance r in monotonically increasing order; the RR array
has a one-to-one correspondence with the UR array (a suggested value
for the last RR is 25), A (1A = 1078 cm).

Number of members of AJ and NSTOP arrays; maximum of 45.
Generalized rotational quantum number j.

Number of mesh point where searches for zeros of first and second deriva-
tives of effective potential with respect to internuclear distance are to
stop; must be less than or equal to NMESH. The NSTOP array has a one-
to-one correspondence with the AJ array. The purpose of this array of
constants is to prevent searches at very large internuclear distances
where the effective potential may be nearly constant, and consequently
the four-point interpolation may cause erroneous values of the first and
second derivatives of effective potential with respect to internuclear dis-
tance. If there is no reason to suspect such errors or if there is no
basis for estimating NSTOP, it should be set equal to NMESH. A value of
NSTOP corresponding to AJ = 0 must always be set equal to NMESH if the
potential possesses no hump.

Number of members of GV array; maximum of 100.

Vibrational term values measured from bottom of potential well, in mono-
tonically increasing order. I the number of vibrational term values is
unknown or if it is desired to have FV of output be vibration-rotation term
values, put in 100 zeros and set NV = 100. I« it is desired to have FV of
output be rotational term values, put in values of GV equal to FV from a
previous AJ = 0 run which had all GV values equal to zero, cm'l.

Equilibrium internuclear distance, r, A@A-= 1078 cm).

Reduced mass of the two atoms of the diatomic molecule or molecular ion,
including masses of electrons, u, g.

Allowable absolute value of estimated error in FV of output (a suggested
value is 0.25 cm™ 1), em™L.

Number of mesh points to be included in each increment in coarse search
for negative second derivative of effective potential with respect to inter-
nuclear distance (a suggested value is the nearest integer to NMESH/50).
If no negative second derivative is found in the coarse search, a fine

search is always made.

Number of potential energy and effective potential mesh points; maximum
5000 (a suggested value is 5000).
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T, L

g
N
5‘
5
3
y
i
8

N Maximum number of iterations to find FV of output (a suggested value is 10).

NRITE A value of 1 will cause NMESH values of internuclear distance RRR, poten-
tial energy U, and effective potential UPP to be printed out. Zero will
cause this output to be omitted.

NPUNCH A value of 1 will cause output to be punched on cards in addition to being
printed. Zero will cause the output shown in table VII to be printed only.

M Number of interpolations in iteration on FV before switching to interpolation
or extrapolation based on the last two values (a suggested value is 5).

NAME Diatomic molecule and electronic state; this will appear on the printed out-
put and on any cards punched out.

Output

The output for the sample problem is given in table VII. Each section of the cutput
has been numbered to correspond to the following descriptions:

(1) The first output of the program is a listing of the input data.

(2) Output for AJ = 1, 30, and 41, respectively. There were 18, 7, and 1 rotational
term values (eigenvalues) FV, respectively. The variables and their units are given in
the next paragraph.

(3) Output for AJ = 43. The effective potential had a well but no eigenvalue FV.

(4) Output for AJ = 44. The effective potential did not have a well, so there were no
eigenvalues FV. The slope of the effective potential at the inflection point rn, (fig. 6)
was negative.

(5) Appearance of output that should be obtained if the slope of the effective potential
at the inflection point r'o1 (fig. 6) was zero (this has never occurred).

In the output with descriptions (2) to (5), the 14 unlabeled numbers that extend in a row to
the far right are the flags M and L(1) to L(13), respectively. The flags L(1) to L(13) are
described in the following paragraph.

The variables unique to output are as follows:

\'A"% Vibrational quantum number, v.
FV Eigenvalue, cm'l. If all GV's are zero, FV is the vibrational-rotation term
value #. If the GV's are the vibrational term values, FV is the rotational

term value f.

ERROR Estimated error in FV, cm'l.
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The quantities VV, FV, and ERROR occur in triads along a row, each triad corre-
sponding to an eigenvalue.

V(1) Value of v ...

F(1) Effective potential U"(r0 4) measured from bottom of potential well
(see fig. 6), cm'l.

V(100) Value of v for bottom of effective potential well (always has value
-0.5).

F(100) Effective potential U"(r03) measured from bottom of potential well
(see fig. 6), cm™ .

AJ Generalized rotation quantum number j.

R4 Internuclear distance T4 (see fig. 6), AQ@A-= 10"8 cm),

RRR(NSTOP) Internuclear distance r at which searches for zeros of first and second

derivatives of effective potential with respect to internuclear distance
stop, A@A-= 10'8 cm). For a valid solution R4 < RRR(NSTOP)
unless (1) NSTOP = NMESH, (2) AJ is so small that there is little
difference between U and UPP, and (3) UL has no hump.

L(1) = 1 if search for negative second derivative of effective potential with
respect to internuclear distance is unsuccessful. Normally, = 0.

L(2) = 1 if search for inflection point gy (fig. 6) is unsuccessful.
Normally, = 0.

L(3) = 1if slope of effective potential at inflection point r,, (fig. 6) is
negative. Normally, = 0.

L(4) = 1 if search for rog (fig. 6) is unsuccessful. Normally, = 0.

L(5) = 1 if slope of effective potential at RRR(NSTOP) is positive or 0. This

is satisfactory if (1) NSTOP = NMESH, (2) AJ is so small that there
is little difference between U and UPP, and (3) UL has no hump.
Normally, = 0.

L(6) = 1if search for rg, (fig. 6) is unsuccessful. Normally, = 0.

L) = 1if search for r .. for f(vmax,j) (see fig. 6) is unsuccessful.
Normally, = 0.

L(8) = 1 if there are more than 100 eigenvalues FV for a given AJ, thereby
exceeding the capacity of the program. Normally, = 0.

L(9) = 1if search for r .. for f¢.7(vma_x,j) is unsuccessful. Normally,

= 0.
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i
! L(10) = 1 if search for T nax is unsuccessful. Normally, = 0.

g L(11) Positive if subprogram SIMPS1 is unable to integrate the generalized
: version of equation (D13) for f(vmax, j) to an accuracy of 1 part in

10 or better. Normally, = 0.

L(12) Positive if subprogram SIMPS1 is unable to integrate the generalized
version of equation (D13) for F=# f(vmax, j)} to an accuracy of 1
part in 105 or better. Normally, = 0.

L(13) = 1 if iteration to find FV does not converge in N iterations. Normally,
= 0.

When NPUNCH = 1, values of VV, AJ, FV, and NAME will be punched on cards, in that

order.

s

SR s,

Running Characteristics

The time for the computer to execute solutions for 348 rotational term values with a
tolerance of 0. 25 centimeter'1 was 7 minutes. A case has not been found that required
more than six iterations to converge to this accuracy.

If the program runs improperly for no apparent reason, set NRITE = 1 and check the
UPP array for spurious bumps, which may result from inaccurate or too small UR or

N

UL arrays.
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Listing of Program

$IBFTC MAIN

C PROGRAM FOR WKB ROTATIONAL ENERGIES OF DIATOMIC MOLECULES AND
C MOLECULAR IONS

Cc

EXTERNAL SECD,DER.EN
DIMENS ION RRR{5000),L(13),UL(100) ,RL{100) ,UR{440

1),RR(440) ,A4(45),6V(100),F(100) ,V{100) ,FVL{100),VYV(100)+NSTOP(45)

42

29RMIN{ 100),RMAX{100),FFT(100) ,FFFT{100) »ERROR{100)
COMMON /BLOCK 1/UPP 4RRR yRATIO/BLOCK2/RM/BLOCK3/ DELRy NMESH/ BLOCK4/
1FAA/BLGCKS /L

DOUBLE PRECISION U(5000) »UPP(5000) 4BINT

EQUIVALENCE (Ully,uPP(1))
READ(5s10CINL,dUL{I ) oI=1,4NL)
WRITE{641CLINL(ULLI),I=1oNL)

READ{ 5,102)(RL{IA)sIA=1,NL)
WRITE(6+1032(RLIIA),IA=1,4NL)
READ(5,100INR,{URL{IB),IB=1,NR)
WRITE(64105)NR{UR(IB)»IB=14NR)
READ(5,102)(RR{IC),IC=1,NR)}
WRITE(€5107)(RRUIC),IC=1,5NR)

READ{ 54 100N J5 (AJ{ID},1D=1,NJ)
WRITE(62104INJ{AJLID)LID=14sNJ)
READIS5,106)(NSTOP(IAA) yTAA=1,NJ)}
WRITE(65108)INSTOP(IAA) 4IAA=1,NJ)
READ(S5,100INV+{GVUIE) »IE=1,NV)
WRITE(E9109INV{GVIIE) IE=1,NV)
READ{5911C)REyRM,TOL yNZ s NME SH y NoNRI TE  NPUNCH » My NAME
WRITE{65111)RERM,TOL yNZyNMESH s Ny NRT TE yNPUNCH » M, NAME

C END OF INPUT
C CONSTRUCT INTERNUCLEAR DISTANCE RRR ARRAY

1

DELR={RRINR)-RL{1))/FLOAT(NMESH~1)
RATIO=1./DELR

RRR{1)=RL (1}

DO 1 1G=2,NMESH

RRRUIG }=RRR{IG-1)#DELR

C PRINT OUT RRR ARRAY

46

43

303
300

301

IFINRITE) 44444+43
WRITE(64121)

KB= 1

IF(KB-NMESH+8) 300,300,301
KC= KB+7

60 TO 302

KC= NMESH

302 WRITE(6€5124)KB s (RRRI{I)+I=KB,KC)

IF(KC-NMESH) 304,444,444

304 KB= KB+8
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GO TO 203
44 Ufl)=UL(1l)
INTERPOLATE POTENTIAL UL IN REGION 1
NLAS1=INT(1l.+{RL{NL)-RRR{1))/DELR)
DO 2 IH=2,NLAS1
2 ULIH)=BINTI(RL,ULyRRR{IH),NL)
INTERPOLATE UL IN REGION 2
NLAS2=INT{1.+(RE~-RRR(1))/DELR)
NFIR2=NLAS1+1
DENOM={RL {NL-1)-RE)¥¥2*¥{RL{NL)—RE) **¥3—(RLUNL)—RE ) **2*{RL(NL~1)—RE)
1*%3
A=(UL{NL- 1 )*(RLINL)-RE)**3—UL(NL)*(RL{NL—1)—RE}**3)/DENOM
B=(UL(NL)*{RLINL~1)-RE)*#2—UL{NL-1) *(RL{NL)—RE)**2)/DENCM
DO 3 II=NFIR2,NLAS2
3 WIDNI=(RRRITI)-RE)**2% (A+B*(RRRUII)-RE))
INTERPOLATE POTENTIAL UR IN REGION 3
NFIR3=NLAS2+1
NLAS3=INT{1l.#{(RR{1)-RRR (1)) /DELR)
DENOM=(RR{ 1)-RE )**2¥ (RR{2)—-RE) **3—-(RR(2)—-RE) **¥2*(RR(1 ) -RE) **3
A={UR(1)*{RRUZ2)-RE }**3—-UR(2) *(RR{LI—-RE) ¥*3 ) /DENOM
B=(URI Z)*(RR({1)-RE)**2-UR(1)*(RR(2)-RE) **2) /DENCM
DO 4 IJ=NFIR3,NLAS3
4 U(1J)={(RRRIIJ)I-RE)**¥2% (A+B* (RRR{I J)—-RE))
INTERPOLATE UR IN REGION 4
NFIR4=NLAS3+1
DO 5 IK=NFIR4,NMESH
5 ULIK)=BINT{RR,URyRRRLIK) ,NR)
DEBUG NLAS1sNFIR2,NLAS2,NFIR3,NLAS3 ,NFIR4
PRINT OUT POTENTIAL U ARRAY
IFINRITE) 46446945
45 WRITE( 6,122}
KB= 1
305 IF(KB-NMESH+8) 206,306,307
306 KC= KB+7
GO TO 308
307 KC= NMESH
308 WRITEL€4125)KB,(UITI),1=KB,KC)
IF(KC—-NMESH) 309,46,46
309 KB8= KB+8
GO TO 305
46 REWIND 3
WRITE{3)(U(I),I=14NMESH)
BACKSPACE 3
ENTER GENERAL IZED-ROTATION—QUANTUM—-NUMBER AdJ LOOP
DO 6 JI=1.NJ
NSTP=NSTOP(JI)
DO 7 IL=1,13
7 LOIL)=0
CONSTRUCT EFFECTIVE POTENTIAL UPP ARRAY
ANUM=2 ,79SE=23%AJ(JIV*(AJ{J]1 )+ 1.) /RN
READ{3MU(I),I=1,NMESH)
BACKSPACE 3
D0 8 IM=1,NMESH
8 UPP(UIM)=U(IM)+ANUM/RRR{IM)**2
DEBUG AJ({JI),ANUM
PRINT OUT UPP ARRAY
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IF{NRITE) 48548,47
47 WRITE(65123)
KB= 1
310 IF{KB-NMESH+8) 311,311,312
311 KC= KB+7
GO TO 213
312 KC= NMESH
313 WRITELE,125)KB,(UPP(L),I=KB,sKC)
IF{KC—NMESH) 314,48,48
314 KB= KB+8
GO TO 3210
C FIND INTERNUCLEAR DISTANCE RN WHERE SECOND DERIVATIVE OF UPP WITH
C RESPECT TO INTERNUCLEAR DISTANCE IS NEGATIVE
48 TEMS=1.E+38
DO 9 IN=NFIR34,NSTP,NZ
TEM=SECD(RRR{IN)]}
IFU{TEM )49,50,50
4S5 RN=RRR({IN)
G0 10 13
50 IF(TEM-TEMS)S51,9,9
51 TEMS=TEM
KTEM=IN
9 CONTINUE
KT1=K TEM=-NZ+1
KT2=KTEM+NZ-1
DO 10 I0=KT1,KT2
TEM=SECD{RRR(I0))
IFITEM)52,10,10
10 CONTINUE
Lii)=1
GO TO 11
52 RN=RRR (10}
C FIND INFLECTION POINT R1
13 CALL FINDI(REJRN;SECD+DELR,R1,$12)
DEBUG R1,RN
C FIND SLOPE OF UPP AT INFLECTION POINT R1
SLOPE=DER{R1)
DEBUG SLOPE
Vi(100)=—.5
C TEST IF UPP HAS A WELL BY EXAMINING SIGN OF SLOPE
IF(SLOPE) 14, 15,61
61 IF{AJ(JI))E2,62,516
62 R3=RE
GO TO €3
12 L{2)=1
GO T0 11
14 L{3)=1
R4=0.
GO T0 11
15 vil)=—.5
R4=0.
FL100)=UP{R1)}
F(1)=F{100)
GO TO 41
C FIND INTERNUCLEAR DISTANCE R3 CORRESPONDING TO BOTTOM OF UPP WELL
16 CALL FIND{RE,R1,DERDELRsR3,$17}
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63 F{100)=UP{(R3) )
C FIND INTERNUCLEAR DISTANCE R4 CORRESPONDING TO TOP OF HUMP OF UuPP
SLOP=DER{RRR {NSTP))
DEBUG R3,F(100),SLOP
IF(SLOP)1S,18,18
17 L{4)=1
GO TO 11
18 L{5)=1
R4=RRR (NSTP)
GO TO &3
19 CALL FIND{R1,RRR{NSTP) ;DER,DELRyR4,3$20)
53 F(1)=UP(R 4}
DEBUG R4,F(1)
FAA=F{ 1)
C FIND NEAR TURNING POINT RMIN{1l) FOR TERM VALUE EQUAL TO UPP AT R4
CALL DIFU(RRR{1),R3,RMIN(1),%$21)
RMAX{ 1)=R 4
C FIND VIBRATION NUMBER V FOR TERM VALUE EQUAL TO UPP AT R4
VI1)=SQRT (3. 620E+21*%RM}*SIMPSL{RMIN{1) sRMAX(1) ,EN,L(11))-.5
DEBUG VI1),RMIN(1)
IF(V(1)-99.,959)40,40,22
20 L(6)=1
GO TO0 11
21 L(T7)=1
GO 10 11
22 L(8)=1
G0 10 11
C TEST IF THERE ARE ANY EIGENVALUES (NONE IF V(1) IS NEGATIVE)
40 IF(V(1))341,23,23
41 WRITE(€,116)VI1),F(1),V{100),F{100)
GO T0 11
C CONSTRUCT TABLE OF TERM VALUES F, VIBRATION NUMBERS V, NEAR TURNING
C POINTS RMIN, AND FAR TURNING POINTS RMAX
23 NN=INT{V(1})
IF(NN—-10) 25, 26,26
25 NN=10
26 DELF=(F{1)-FL{100))/FLOATI(NN)
1Q=NN+1
DO 27 IP=2,1Q
27 F(IP)=F(1IP-1)-DELF
DEBUG(F(IR),IR=1,1Q)
VIiIQ)==.5
RMIN{ IQ)=R3
RMAX( IQ)=R3
DO 28 NM=2,NN
CALL VVV{F{NM) R3,RMIN{NM-1) RMAX{NM=-1) sR3 ,VINM) RMIN{NM),
IRMAXI{NM), $11)
DEBUG FINM),VI(NM),RMININM) ,RMAX{NM)
28 CONTINUE
C FIT MORSE POTENTIAL
DISE=F{1)—-F(100)
FAA=F( 100)+4DISE* .5
CALL DIFU(R3,R43R5,%21)
OMEG=1301E~-11*SQRT(DI SE /RM) 7{R5—-R3)
OMEGX={OMEG*(V{1)+.5)-DISE) /(VI1)+.5) %%
DEBUG CISEFAARS5,0MEG,OMEGX
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C ADD MORSE TERM VALUE FFT TO TABLE
DO 700 NQ=1,IQ
700 FFTINQ)=(VINQ)+.5)¥ (OMEG~OMEGX*{V(NQ)+.5))
DEBUG (FFT(I),I=1,1Q)
C CONSTRUCT TABLE OF DESIRED VALUES OF VIBRATION QUANTUM NUMBER VV AND
C MORSE TERM VALUE FFFT
32 Vvill=C.
FFFT(1)=0MEG*.5-0OMEGX*.25
IQ=INT(V(1))+¢l
IF(IQ-1)70,70,85
85 DO 35 NS=2,1Q
VVINS)=VVI(NS—-1)+1.
35 FFFTINS)=(VVINS)+.5) % (OMEG-UMEG X*¥(VV(NS)+.5))
DEBUGIVV{ I),1=1,1Q)
DEBUG( FFFT{I),I=1,1Q)
C ENTER LOOP THAT SOLVES FOR ALL EIGENVALUES FV FOR GIVEN UPP
70 DO 97 1Z=1,1Q
NRR=0
C SEARCH Fy V., FFT TABLE
K=2
71 IFIVIKI-VVLIZ))T3,72,72
T2 K=K+1
60 T0 71
73 FFT1=FFT(K)
FFT2=FFT{(K-1)
Fl=F(K)
F2=F(K-1)
FFTNEW=FFT1
FNEW=F1
C ENTER ITERATION LOOP FOR EIGENVALUES FV
701 FOL D=FNEW
FNEW=F 1+{ F2-F1)*(FFFTUIZ)-FFT1) /(FFT2-FFT1)
77 NRR=NRR+1
IFINRR-N)}79, 79,178
78 L(13)=1
GO To <7
79 CALL VVVIFNEW,RMIN(K) ,RMIN{(K—-1) sRMAX{K=1) ,RMAX{K),V3,RMMIN,
1RMMAX, $11)
FFTOLOD=FFTNEW
FFTNEW={V3+.5)*{(OMEG-OMEGX¥{(V3+.5))
SLOPP={FOLD-FNEW) /{FFTOLD-FF TNE W)}
ERROR( IZ)={FFTNEW-FFFT{I1Z))*5L0PP
DEBUG FNEW,FFFTUIZ)sFFTNEWeSLOPP,ERRORIIZ) yFFT1FFT25F1,F2,M
IF(ABS{ERROR(IZ))-TOL)T02,702,74
702 FV(IZ)=FNEW-GV{1Z)
60 TO 97
74 IF{NRR-M)80,17C3,703
80 IF(ERROR(1Z))81,81,82
81 FFT1=FFTNENW
F1=FNEN
GO TO %Gl
82 FFT2=FFINEHNW
F2=FNENX
GO TO 701
703 FOL D=FNEW
FNEW=FOLD+SLOPP*{FFFT(IZ)—-FFTNENW)
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IF(FNEW-F({K)) 704,705,705
705 IF(FNEW-F{K-1))77,77,704
704 M=M+5
FNEW=FOLD
GO TO 80
97 CONTINUE
C PRINT OUT AND PUNCH ANSWERS
WRITE(69117H(VVII)FVII)ERROR(I)I=1,41I4)
IFINPUNCH)201,441,201
201 DO 200 NA=1,1IQ
200 PUNCH 120sVVINA),AJ(JI)sFVINA) s NAME
GO TO 41
11 WRITE(65118)AJEJI) R4 RRRINSTP) oMyl L{1),41=1,13])
6 CONTINUE
GO TO 42
100 FORMAT(I10,7F10.0/(8F10.0))
101 FORMAT(1H1,3H NLy1I3,3H ULy1P9EL13.6/1(1Xs9EL13.6))
102 FORMAT(8F10.0)
103 FORMAT({1HO,3H RL,1P9E13.6/(1Xs9E13.6))
N 104 FORMAT(1HOs3H NJyI3s3H AJ,1PI9EL13.6/(1X+9E1346))
: 105 FORMAT(1HOs3H NRyI393H UR,1PSEL13.6/(1X49E13.6))
106 FORMAT(1615)
107 FORMAT(1HO,3H RR,1P9E13.671(1X49E13.6))
108 FORMAT(1HO,6H NSTOP,2415/1X,2115)
109 FORMAT{1HGC,3H NV,1I3,3H GV41PSE13.6/(1X,9E13.6))
110 FORMAT(3E13.6,615,A6)
111 FORMAT(1HOs3H RE,1PE13.6+3H RMyE13.694H TOL,E13.643H NZ,I5,6H NMES
lHe I592H N9 I546H NRITEsI5,7H NPUNCHI5,2H M,15+2X,A6//)
116 FORMAT(1HOs5H V{1)4sF3ua595H F{1l) +F10.2+9Xs7H V(100) 4F9.5,7H F(1001},
1F10.2)
117 FORMATI(1HO43(3H VVF4.0¢3H FVyF10.2 ,6H ERRORyF9.2+5X)/(1X,3(3H VV,
1F4.0,3H FVyF10.256H ERRORyF9.245X)})
118 FURMAT(1HOs3H AJsF10.5,3H R4y1PE14.T911H RRRINSTUOP) yE14.7,1415//)
120 FORMAT({F4.0,2X3F10e532XyF10.2,2XA6)
r 121 FORMAT{1HO,4H RRR)
122 FORMAT(1HG,2H U}
123 FORMAT(1HO,4H UPP)
124 FORMAT(1H ,14,1P8E14.7)
125 FORMAT{(1H »14,1P8D1i4.7i
END
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$IBFTC LBINT

C SUBPROGRAM FOR 4 POINT INTERPOLATION
C
DOUBL E PRECISION FUNC TION BINT(XeY9sZ,N)
DIMENSION X{440),Y{440)
OOUBL E PRECISION Q1,02+Q39:Q4,Q12,Q34,P21,P32,P424P31sP41,P43
Ml=1
M2=N
5 IFIM2-M1-1)7,7,6
6 MTEM=M1+INT(.5*%(FLOAT(M2-M1)+.0001))
IF{Z-X(MTEM))841,49
8 M2=MTEM
GO 1O 5
M1=MTEM
GO TO 5
BINT=Y{(MTEM)
RETURN
IF(M1-1)2,2,3
I1=2
GO T0 4
IF(M2-N)11,10,10
I=N-2
GO T0O 4
I=M1
Ql=Z-X{Ii-1)
Q2=1-X(1)
Q3=Z-X{(1+1)
Q4=Z-X{1+2)
Ql12=Q1#%Q2
Q34=Q3%Q4
P21=X{ I1)}-Xx{I-1)
P32=X{1I+1)-X{1}
P42=X{ 1+2)-X(1)
P31l=X({I+1)-X{1-1)
Pal=X(1+¢2)-X{1—-1)
P43=X{I+2)-X{(I+1)
BINT=Q34%{Q1*Y (1) /(P32%P42)—Q2*Y{I~1) /{P31%P41) )/ P21+Q12#(Q3¥Y (1+2
1)/7(P413¥P42)-Q4*Y(1+1)/({P31%P32)) /P43
RETURN
END

Ow N~ Ll %]
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$IBFTC LDER

C SUEBPROGRAM FDOR FIRST DERIVATIVE OF UPP

C

FUNCTION DER(R)

COMMON /BLOCK1/UPP 4RRR,RATIO/BLOCK3 /DELR,NMESH
DIMENS ION RRR{5000)

DOUBL E PRECISION UPP (5000}
FLOM=1.+{R-RRR{1) }*RATIO

I=INT({ FLOM)

IFCI-NMESH)1,2,2
DER=(UPP{NMESH)-UPP{(NMESH-1})/DELR
RETURN

DER=(UPP( I+1)-UPP{1})/DELR

RETURN

END

$IBFTC LDIFU

C SUBPROGRAM TO FIND ROGT OF UPP-FAA

C

23

16
11
24

SUBROUTINE DIFU(RLOW,RHIGH sRO0T %)
COMMON /BLOCK4/FAA/BLOCK1/UPP sRRRyRATIO/BLOCK3 /DELRy NMESH
DIMENS ION RRR{5000),NU(2},F(2)
DOUBLE PRECISION UPP(5000)
NUCL1)Y=INT(1.+(RLOW-RRR(1))}*RATIO)
NUC2)=INT (1. +{RHIGH-RRR( 1) ) *RATIO)+1
IF(NU{ 2)-NMESH) 21,21,20

NU( 2) =NME SH

DO 100 1=1,2

Nv=NUl I}

FUL)=UPP{NV)-FAA

IF(F(1))4422,5

IFLFL2))13,14423

RETURN 1

N1=NU(2)

ROOT=RRR{N1)

RETURN

N1=NU(1)}

GO 10 15

IF(F(2))18,14,13

NTEM1=NU(1)

TEM2=F(1)

NU{1)=NU(2)

F{1)=F(2)

NU(2)=NTEM1

F(2)=TEM2
NV=INTU(FLOAT(NU(1)+NU(2))+.0001)/2.)
FUNC=UPP {NV)-FAA

IF(FUNC)10,y16,411

NU( 1)=NV

FU1)=FUNC

GO TO z4

ROODT=RRR{NV}

RETURN

NU{ 2) =NV

FL2)=FUNC
IF{TABS(NU(1)-NU(2))-1)25,25,23
N1=NU{ 1)

N2=NU{ 2]

ROOT=(RRR {NL)*F(2)-RRR(N2)*F (L)) /(F(2)-F(1))
RETURN

END
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$IBFTC LEN

C SUBPROGRAM FOR SIMPS1 INTEGRAND

c

FUNCT ION EN(R)
COMMON /BLOCK 4/F
RR=R

A=F~UP (RR }
IF(A)1,.1,2
EN=0.

RETURN
EN=SQRT{(A)
RETURN

END

$IBFTC LROOT

C SUBPROGRAM TO FIND ROOT OF G(R)

C

54

100

13
15

14

18

11

12
16

17

SUBROUTINE FIND(UUULsUUU2+G +DELR,RO0T ¥}
DIMENSION UL 2),F(2)
Ul 1)=yuul

Ul 2)=uuu2
JMAX=1+INT(ALOG{(UC2)-U{1))/DELRD/.6931)
I=0

I=1+1

v=U(1)

FUNC=G(V)
IF(2-1)942,2
F(L)=FUNC
IF(2-1)3y3,)
I=1+1
IF(FL1))4415,5
IF(F(2)013,14,7
RETURN 1
ROOT=U{(1)

RETURN

ROOT=U(2)

RETURN
IF(F{2))18,14,13
TEM1=U(1)
TEM2=F(1)
utli=uc2)
F(1)=F(2}
U(2)=TEM1
FL2)=TEM2

J=0

J=J+1

v=(U( 1)+U(2))/2.
GO TO 100
IF(FUNC)10,16.11
utli=v

F(1)=FWNC

G0 10 12

ut2)=v

F(2)=FINC
IF(UMAX-J)17,17,8
ROOT=V

RETURN
ROOT=(U(L1*F(2)-UL2)*F (L)) /(F(2)-F (1))
RETURN

END



SIBFTC LSECD

C SUBPROGRAM FOR SECOND DERIVATIVE OF upP

C
FUNCTION SECD(R)
COMMON /BLOCK1/UPPsRRR,RATID/BLOCK3 /DELR,NMESH
DIMENS ION RRR{5000)
DOUBL E PRECISION UPP({5000)
FLOM=1.#+(R-RRR (1) )*RATIO
I=INT( FLOM)
IF(I-1)1,1,2
1 SECO={UPP(3)-2.¥UPP{(2)+UPP (1)) /DELR¥**2
RETURN
IF( I-NMESH)4+3,3
SECD=(UPP {(NMESH)~2.*%UPP(NME SH~1)+UPPINMESH—2) ) /DELR*%*2

RETURN
SECD=(UPP{I+1)-2.%¥UPP(I)+UPP(I—~1)) /DELR**2

RETURN
END

»d O WN

$IBFTC LUP

C SUBPROGRAM TO LINEARLY INTERPOLATE uPP
C
FUNCTION UP(R)
COMMON /BLOCK1/UPP 4RRR,RATIO
DIMENS ION RRR (5000)
DOUBLE PRECISION UPP(5000)
FLOM=1.+(R-RRR {1} )*RATIO
I=INT(FLON)
UP=UPP (1) 4{UPPLI+1)-UPP(I})*(FLOM-FLOAT(I))
RETURN
END

$IBFTC LVVV

C SUBPROGRAM TO FIND VIBRATION NUMBER (OR QUANTUM NUMBER) FOR GIVEN TERM
C VALUE F

C

SUBROUTINE VVV(FsRMINHRMINL RMAXH yRMAXL ¢ VyRMINyRMAX,*)
COMMON /7BLOCK 4/FAA /BLOCK2/RM/BLOCKS /L
DIMENSION L(13)
EXTERNAL EN
FAA=F
CALL DIFU{RMINL;RMINH+RMIN,$29)
CALL DIFU(RMAXL,RMAXH,RMAX+$30)
V=SQRT (3. 620E+21*RM)*SIMPSL (RMINyRMAX,ENyLL12))~.5
RETURN

25 L(9)=1
RETURN 1

30 L{10}=1
RETURN 1
END
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TABLE I. - COMPARISON OF CONSTANTS FOR THE EQUILATERAL TRIANGLE

CONFIGURATION OF Hg OBTAINED IN VARIOUS CALCULATIONS

Investigators Equilibrium | Equilibrium | Zero-order Refer-
internuclear potential vibrational ence
distance, energy, constant,
e v /he, em”
cm em”™ 1
“1 | “2
Hirschfelder 9.41x107% | _6.439x10* | 1550| 1200 | 3
Ellison, Huff, and Patel 9.31 -7.832 3454 | 2326 8, 44
Christoffersen 8.771 -7.3006 3354 2790 4
Conroy 8. 89 -7.835 @) @) 5
Hoyland 8.89 -5.983 @) (a) 6
Pearson, Poshusta, and Browne 8.78 -6.990 3610 ) 4440 7
This report” 8.816 -7.186 3476 {3601 | ----

aNot given.

bUsing least-squares fit to Conroy's potential energy (ref. 5).

60

—l
A ) 11 A NSO I A A | AN (O O] NN U IO U (| RN OANN IRARIEME( W []




e

TR

Temperature,
T’
oK

298.15
300
400
500
600

700
800
900
1000
1100

1200
1300
1400
1500
1600

1700
1800
1900
2000
2200

2400
2600
2800
3000
3200

3400
3600
3800
4000
4300

4600
4900
5200
5600
6000

TABLE T, - PARTITION FUNCTIONS OF H

Partition Partition
function of function of
HE, Hy,
qu %

4.8065 7.5178
4.8506 7.5627
7. 4266 1. 0001x10%
1.0350x10t | 1.2472
1.3623 1.4998
1.7220x101 | 1.7606x10
2.1167 2. 0319
2.5503 2.3159
3. 0275 2.6143
3.5544 2.9285
4.1372x101 | 3.2597x101
4.7830 3.6088
5. 4991 3.9768
6.2936 4.3643
7.1746 4.7121
8.1500x101 | 5.2010x10!
9.2319 5. 6516
1.0427x10% | 6.1245
1.1748 6.6205
1. 4809 7. 6846
1.8511x10% | 8.8495x10!
2. 2965 1.0121x10?
2.8294 1.1507
3, 4637 1.3014
4.2149 1. 4648
5. 1005x102 1.6417x10%
6. 1401 1.8327
7.3565 2. 0385
8.7712 2.2595
1.1331x10% | 2.6207
1.4509x10% | 3.0184x10%
1.8428 3. 4530
2.3235 3.9247
3.1320 4.6104
4.1768 5. 3590

Temperature,
T’
oK

6 500
7 000
7 500
8 000
8 500

9 000
9 500
10 000
11 000
12 000

13 000
14 000
15 000
16 000
17 000

18 000
19 000
20 000
22 000
24 000

26 000
28 000
30 000
32 000
34 000

36 000
38 000
40 000
43 000
46 000

49 000
52 000
56 000

+
3

AND 115
Partition Partition
function of function of
HE, H3,
3 o
5.9064x10° | 6.3778x10%
8.2440 7.4813
1.1374x10% | 8.6603
1. 5520 9.9048
2. 0951 1. 1205x10°
2.7088x10% | 1.2552x10°
3.7011 1.3937
4.8460 1.5351
8. 0735 1.8238
1.2069x10° | 2.1165
2.0120x10° | 2.4092x10°
3, 0243 2.6991
4, 4063 2.9839
6.2364 3.2623
8.5881 3.5332
1.1525x108 | 3.7950%10°
1.5091 4. 0501
1.9310 4.2955
2. 9635 4.7604
4.2018 5. 1916
5. 5432x10° 5. 5908x10°
6. 8387 5. 9605
8.2173 6.3031
9.6610 6.6208
1.1154x10° | 6.9160
1.2682x10° | 17.1906x10%
1.4233 7. 4465
1. 5797 7.6855
1.8147 8. 0154
2. 0485 8.3149
2.2790x107 | 8.5879x10°
2. 5052 8.8376
2.7985 9. 1390
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TABLE IIl. - THERMODYNAMIC PROPERTIES OF H}

(o] [s] (Y]

pol G |mem| # dem | om |

K R RT R RT RT RT
298.15 14,0176 3.9745 17.7831 13.8086 441.1777 ~4623.3946
300 4.0177 3.9748 17.8080 13.8332 $38.4819 -420.6739
400 4.0264 3.9865 18.9648 14.9783 329,.8668 -310.9020
500 4.0517 3.9965 19.8655 15.8689 264.7008 -2644.8353
600 4,1113 4.0101 20.6088 16.5987 221.2637 -200.6548
700 4.2132 4.0314 21.2497 17.2184 190, 2487 -168.9990
800 4.3535 4.0625 21.8211 17.7586 167.0027 -145.1816
900 4.5216 4.1040 22.3433 18.2394 148.9397 ~-126.5963
1000 4.,7057 44,1548 22.8292 18.6743 134.5070 -111.6778
1100 4.8959 4.2136 23.2866 19.0730 122.7155% ~-99.,4289
1200 5.0849 4,2783 23.7207 19.4424 112.9051 ~89,1844
1300 5.2680 4.34T4 24.1350 19.7875 104.6183 ~80.4833
1400 5.4424 4.4195 24.5318 20.1123 97.5281 ~72.9963
1500 £.6067 4 .4932 24.9130 20.4198 91.3946 ~66.4817
1600 5. 7606 4.56177 25,2798 20.7121 86.0378 ~60.7580
1700 5.9042 4.6421 25.63 34 20.9913 81.3198 ~55.68664
1800 6.0380 4.T71€0 25.9747 21.2587 77.1338 ~-51.15%91
1900 £.1626 44,7889 26.3045 21.5156 73.395%3 -47.0907
2000 6.2789 4.8605 26.6236 21.7631 70.0366 ~-43.4130
2100 €.3BT5 44,9307 26.9326 22.0020 67.0031 ~40.0705
2200 6.4894 4.9992 27.2322 22.2329 64,2502 ~-37.0180
2300 6.58%2 5.0661 27.5228 22.4566 61.7410 ~-34.,2182
2400 6.6755 5.1313 27.8050 22.6736 59. 4447 -~31.6398
2500 6.T611 5.1948 28.0762 22.8844 57.3357 ~29.2565
2600 6.8423 5.2566 28.3460 23.0893 55.3921 -27.0461
27100 6.9198 5.3168 28.6057 23.2889 53.5954 -24.9897
2800 6.9939 53754 28.8587 23.4833 51.9297 ~23.0710
2900 7.0650 5.4324 2%9.1054 23.6729 50.3814 -21.2761
3000 T7.1236 5.4880 29.3460 23.8580 48,9387 -19.5927
3100 7.1999 5.5422 29.5810 24,0389 47.5912 -18.0102
3200 T2642 5.5950 29.8106 24.2157 46.3300 ~16.5194
3300 71.3267 5.6465 30.0351 24,3886 45,1472 -15.1120
3400 T.3877 5.6968 30.2548 24.5579 44,0357 -13.7809
3500 T.4474 S5« 7460 30.46%8 24.7238 42.9895 -12.5197
3600 7.5060 5. 7941 30.6804 24.8863 42.0030 -~11.3226
3700 T7.5636 5.8411 30,8868 25.0457 41.0714 ~10.1846
3800 7.6203 5.88172 31.0893 25.2021 40.1904 -9.1011
3900 T.6764 5.9324 31.2880 25.3556 39,3560 ~B8.0680
4000 T.721¢ 5.9767 31.4830 25.5064 38.5647 -7.0817
4100 7.7868 6.0201 31.6746 25.6545 37.8133 -6.1387
4200 T.8415 6.0628 31.8629 25.8001 37.0991 -5.2361
4300 7.8988 6.1048 32.0481 25.9432 36.4193 ~-4.,3712
4400 7.9499 6.1462 32.2302 26.0840 35,7716 -3.5414
4500 8.0039 6.1868 32.4095 26.2226 35.1540 -2.T445
4600 8.0579 6.2269 32.5860 26.3590 34,5644 -1.9784
4700 8.1118 6.2665% 32.7599 26 .4934 34,0010 -1.2411
4800 8.1658 6.3055 32.9312 26.6257 33.4622 -0.5310
4900 8.2200 6.3440 33,1001 26.7561 32.9465 0.1537
5000 8.2742 6.3821 33.2667 26.8847 32.4525 0.8143




TABLE I. - Concluded. THERMODYNAMIC PROPERTIES OF Hg

(o] o o
& S |Pr-fo| St | %r-Ho g St
R RT R RT RT RT
i 5100 8.3287 6.4157 33.4311 27.0114 31.9789 1.4522
i 5200 8.3835 6.4569 33,5934 27.1365 31.5246 2.0687
i‘ 5300 8.4385 6.4938 33.7536 27.2598 31.0885 2.6651
N 5400 8.4938 6.5303 33.9119 27.3815 30.6696 3.2422
f& 5500 8.5495 6.5665 34.0682 27.5017 30.2669 3.,8013
5600 8.6056 6.6024 34.2228 27.6203 29.8796 4.3432
5700 8.6621 6.6381 34.3756 27.7375 29.5069 4.8687
5800 8.7191 6.6735 34.5267 27.8533 29.1480 5.3788
5900 8.7765 6.7086 34.6763 27.9676 28.8022 5.8741
6000 8.8344 6.7436 34.8243 28.0807 28.4689 6.3553
6100 8.8929 6.7783 34.9708 28.1924 28.1475 6.8232
6200 8.9518 6.8129 35.1158 28.3029 27.8374 7.2784
6300 9.0114 6.8473 35,2595 28.4122 27.5381 T.7214
6400 9.0715% 6.8816 35.4019 28.5203 27.2491 8.1528
6500 9.1323 6.9158 35.5431 28.6273 26.9699 8.5731
6600 9.1936 6.9458 35.6829 28.7331 26.7001 8.9828
6700 9.2556 6.9838 35.8217 28.8379 26.4393 9.3824
6800 9.3183 7.0176 35.9592 28.9416 26.1871 9.7722
6900 9.3816 T7.0514 36.0957 29.0443 25.9430 10.1527
7000 9. 4456 7.0852 36.2312 29.1460 25.7069 10.5243
7100 9.4601 7.1185 36.3653 29.2467 25.4780 10.8873
7200 9.4733 7.1511 36.4977 29.3465 25. 2556 11.2421
7300 9.4849 7.1830 36.6284 29.4454 25.0395 11.5889
7400 9.4948 T.2142 36.75715 29.5433 24,8294 11.9282
7500 9.5030 Te 2647 36.8851 29.6404 24.6250 12.2601
7600 9.5096 T« 2744 37.0110 29.7365 24.4260 12.5849
T700 9.5146 7.3035 37.1353 29.8318 24.2323 12.9030
7800 9.5180 7.3319 37.2581 29.9262 24.0437 13.2144
7900 9.5198 T.3596 37.3794 30.0198 23.8598 13.5195
8000 9.5201 7.3866 37.4991 30.1126 23.6806 13.8185
Rl100 9.5189 T1.4129 37.6174 30.2045 23.5057 14.1116
8200 9.5162 7.4386 37.7342 30.29%6 23.3352 14.3990
8300 9.5120 T« 4636 37.8495 30.3859 23.1686 14.6808
8400 9.5064 T.4879 37.9634 30.4754 23,0060 14.9573
8500 9.4993 T.5116 38.0758 30.5642 22.8472 15.2287
8600 9.4908 75347 38.1869 30.6522 22.6919 1%.4950
8700 9.4809 7.5571 38.2966 30.7394 22.5401 15.7564
8800 9.4697 7.5789 38.4048 30.8259 22.3917 16,0132
8900 9. 45171 T7.6001 38.5118 30.9117 22.2464 16.2654
9000 Q. 4432 1.6207 38.6174 30.9967 22.1042 16.5131
9100 9.4280 7. 6406 38.7216 31.0810 21.9650 16.7566
9200 9.4114 T.6599 38.8246 31.1646 21.8286 16.9959
9300 9.3937 T.6787 38.9262 31.2476 21.6950 17.2312
9400 9.3746 T.6968 39.0266 31.3298 21.5641 17.4625
9500 9.3544 T T144 39.1257 31.4113 21.4357 17.6900
9600 9.3329 T.7313 39,2235 31.4922 21.3097 17.9138
9700 9.3102 T.7477 39.3201 31.5724 21.1861 18.1340
9800 9.2864 T« 7636 39.4155 31.6519 21.0648 18.3507
g 9900 9.2614 7.7788 39,5097 31.7308 20.9457 18.5640
i 10000 9.2352 T-.7935 39.6026 31.8091 20.8287 18.7739
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TABLE 1V, - COMPARISON OF CONSTANTS FOR THE GROUND ELECTRONIC STATE OF Hg

OBTAINED FROM THEORY AND EXPERIMENT

Investigators 7 Method Eqiﬁ.iibrium
internuclear
distance,
Tos
cm
Cohen, Hiskes, and Riddell Theory a)
Wind Theory 1. 057x1078
Hunter and Pritchard Theory 1. 061
Richardson Experimentb 1. 057
Beutler and Jinger,
Herzberg and Monfils, Experimentd @)
and Namioka
Kerwin, Marmet, and Clarke Experiment® @)
Frost, McDowell, and Vroom Experimentf ) @) ]

aNot given,
b

CNo experimental value.

Extrapolations from H2 bands.

dOb'mined from dissociation and ionization energies of HZ'

€Obtained from monoenergetic electron collision experiment,

fObtained by photoelectron spectroscopy.

Dissociation

energy,

21343.71
21379, 36
21379.22

(c)

21363.

@)
@)

Fundamental
vibrational
frequency,

w',

cm

2190.96
2191.34
2191,23
2173.

@)

2194,
2178,

Refer-

ence

22
15,23
24
45

46
16
18

47
48
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TABLE V. - COMPLETE TABLE OF ROTATIONAL TERM VALUES OF GROUND ELECTRONIC STATE OF H;

’— Total an- Vibrational quantum number, v
gular mo-
mentum \ 1 2 3 4 5 6 7 8 9
quantum -
number, Rotational term value, i, em™1
K
1} ~0. -0. -0. 0. 0. -0. 0. -0. -0. 0.
1 58426 55.19 52.21 49,36 46.56 43.84 41410 38.45 35.79 33413
2 174.18 165411 156.26 147.73 139.51 131.01 123.09 115.01 107.02 98.95
3 347.14 328.91 311.25 294.20 277.61 260.98 244499 228,96 213.05 197.02
4 57562 545429 515.97 487.63 45%.96 432,55 405.88 379.31 352.88 326427
) s 858,04 812.59 768.80 726.53 685.04 644,28 604,38 5644 81 525436 485.68
. 6 1151.99 1128.80 1067.83 1008.,93 951.15 894.49 838491 783.74 128. 74 673.40
o 7 1575.00 1491.61 1410.87 1332.52 1256423 1181425 1107.52 1034.34 961 .32 8687.91
3 8 2C05.08 1898.47 1795.45 1695.72 1598.02 1502442 1408417 1314.65 1221424 1127.15
" 9 2478.71 2346,58 2218, 91 2095.01 1974419 1855.50 1738.48 1622.31 1506419 1389.34
2 10 2592 .87 2833.21 2678.,57 2528.60 2382.13 2238.21 2056429 1955.26 1814.18 1671.78
i 11 3545,07 3355.23 3171.58 2993.38 2819.15 2647.94 2478.90 2310.81 2142.67 1972.92
4 12 4131.31 3909.69 3695, 04 3486.52 3282.60 3082.04 2683.97 2686.87 2489.32 2289481
1% 13 4149.06 4493.25 4245.87 4005.26 3769.73 3537.95 3308.99 3080456 2851.82 2619.99
i 14 5394, 80 5103.40 4821.22 4546.76 4277.70 4012.95 3750.92 3489.67 3227.28 2961.42
¥ 15 6065.55 5736482 5418.24 5108.23 4804405 4504453 4268.01 3911.79 3613.84 3311.13
) 16 6758.13 6390.63 6034, 20 5686.73 5346.04 5010.09 4676484 4343, 74 4008.29 3666.66
| 17 7469.61 7061.87 66664 09 6280.13 5901.04 5527.05 5155.59 4783.69 4408436 4025439
18 8197.14 7747.86 7311.21 6885.21 6466465 6052.98 5641.53 5229.08 4811.49 4384458
19 8637.96 8445, 72 7967431 7500.04 7040.26 6585.40 6132.26 5676496 5215.31 4741.35
20 9689.47 9153.28 8631.77 8121.77 7619.57 7121.95 6625.32 6125.26 5616462 5092462
21 10448,80 9867.93 9302.22 8748.36 8202.41 7660.38 7118.57 6571.27 6012495 5434.81
22 11214411 10587.39 9976.39 9377 .44 8786.05 8198.13 7608.88 7012.35 6400.93 5764436
23 11582.93 11309.45 10652.09 10006.83 9368.73 8733.10 8094.45 7445,72 6777.61 6075.87
24 12753.12 12031.99 11327.24 10634.44 9948.28 9263.00 8572450 7868.30 7138429 6362.34
25 13522.70 12753.00 11999. 80 11258 .42 10522.08 9785.28 9040.28 8276.75 7478430 6610.26
26 14289.72 13470.59 12667. 86 11876.02 11088.34 10297.63 9494,78 8666.33 7789.16
21 15052.35 14182.92 13329.47 12485.95 11644471 10797.32 9932.47 9032.08 BO54.29
28 15809.09 14888.16 13982. 77 13085.89 12188477 11281.33 10348.72 9364.56
29 16557,66 15584459 14625. 88 13673.70 12717.98 11746.15 10737.97 9640.79
30 17297.25 162704 72 15256. 87 14247.14 13229.34 12187.14 11089.39
31 18C25.43 16944.20 15873.75 14803.69 13719.23 12597.55
32 18741.38 176C3.89 1647441 15340.41 14182.90 12964.77
33 19443.30 18247.175 170564 51 15853.73 14612.85
34 20129.59 18873.78 17616498 16338.61 14993.43
35 2C798.63 19479.77 18152.43 167686.77
36 21448.63 20062.99 18657.86 17178.21
37 22077.51 20620, 03 19124.20
38 22682.94 21145.94
39 23261.79 21631.45
40 23809.66
41 24319.10
Total an- Vibrational quantum number, v
gular mo- | - — _ . i
mentum 10 11 12 13 14 15 18 17 18 19
quantum |- - - - —_— 1 - -
number, Rotational term value, f, ecm”™
K
0 0. -0. 0. -0. [ 0. 0. 0. -0. 0.
1 30.44 27.70 24.84 21.93 18.84 15.54 11.92 7.90 3.42 0.63
2 91.06 82.68 74.32 65.48 56424 46,27 35.42 23.28 9.50
3 181.10 164.62 147.69 130.06 111.53 91.59 69.81 45,37 17.71
4 299,71 272.33 244.14 214.77 183.67 150.53 114.05 72.90 25.67
H 445 .69 404.70 362.48 318.46 271.78 221.58 166.74 104.15
6 €17.54 560432 501.26 439.66 374.15 303.68 226.12 136.67
7 813.62 737.50 658.87 576.70 489.36 394.71 289.95 166.48
8 1€31.95 934,43 833.41 727.72 615.00 492.44 3155445
9 1270.75 1149.06 1022. 89 890.46 748.99 594.54 418.72
10 1527.62 1379.09 1225.09 1062.86 888481 697.17 474.36
11 1€00.31 1622.58 1437.66 1242414 1031.56 797.23
12 2€86.50 1876.79 1658.01 1425491 1173.91 889.08
13 2383.67 2139.26 1883420 1610.65 1311.80 961.38
14 2€89.31 2407.35 2110. 86 1792.98 1439.82
15 3€00.78 2678.22 2337.25 1968469 1548.68
16 3215,39 2948.77 2559413 2132.20
17 3€30.21 3215.73 2771.66 2274433
18 3542.16 3475.33 2969.24
19 4247454 3723.01 3142.26
20 4£43,56 3952.84
21 4824.31 4154.06
22 5€83 464
23 5310.09
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TABLE VI. - INPUT FORM WITH DATA FOR SAMPLE PROBLEM FOR COMPUTER PROGRAM FOR WKB
ROTATIONAL ENERGIES OF DIATOMIC MOLECULES AND MOLECULAR IONS
[Top row contains card column numbers. ]
1 10J11 ‘2021 T 73031 T 40]a1 _ 50151 . _ 60|61 _ 70[71 _ 80
NL JOL ARRAY —— ~ 77 ) ) N
15| 46608.72 1 39310.12 | 33107.52 | 27823.25 23313.34 | 19460.11 ] 16166.64 _
13358.53 7B904.35 | 5695.57__ | 3423.70 | 1866.97_ _| 860.12 ___ ] 278.37 __ | 26.27 .
I T0[11 20021 ©_ T 3031 T 40]41 50|51 _ . "8OT6l_ _ 7071 _ 80
RL ARRAY ———» o . _ o _ . .
47625 [ .50271 | .52917 _ ] .55563 _ | .58208 _| .60854 _ | .63500 . | .66146 A
. 71438 T .76729 | .82021 | .87313 1 .92804_ | .97896 _ | 1.03188 | __ T
T I0T11 ~ 20|21 3031 40741 50151 60|61 70]71 ~_ 80
TR TR ARRAY ——— T T ) - o B
15| 30.24 332.04 | 1334.71 _ ] 2934.51 4753.17 _| 8100.62 ] 13818,30 .
T7689.41 19994.75 21249.66 | 21891.94 | 22208.56 | 22363.11 | 22438.30 _ | 22475.68 |
1 Ioj11. — 2021 . 30]31 40]41 50']'_5’1' T Te0Je1 T T70l71 T 80
RR ARRAY —»  ~— T T et — ] T T ) ]
1.08479 JT.T6417 | 1 27000 _ | 1.40229  _ ] 1.53458 1.77271 | 2.24896 . | 2.72521
3.20146 | 3.67771 | 4.15396 | 4.63021 | 5.10646 5.58271 _ | 6.05896 _ ] ]
T iol11r 20|21 13031 40141 5051 B0Jsl _ .. 10|
NJ. AT ARRAY ——— = ) ] 1
5[ 1. | 3o0.. [41. _ — 143 N 1
T 516 10[1T __15Ti6 . 20]21 . 25]26 30
NSTOP ARRAY ———— = =~ |
1143 _1143] 1Ta3] _ 1143 _  1143] |
il I0JI1 —~ "20]2T 307031 40]41 _ 50|51 _60|6T 700171 _ 80 ]
NV GV ERRAY — N . |
18] 1145.08 _| 3336.71 _ | 5400.56 | 7340.29_ _] 9161.62 _ [ 10861.50 _| 12450.33 _ |
15932.54 | 15099.56 | 16554.96 _ | 17700.85 | _18733.55 _ | 19650.84 | 20450.59 | 21128.60 |
| 21679.25 | 22095.95 _| 22371.29 _ | T ) ]
1 13[14 2_6]27'_ 739140 _ 44|45 ’4‘9150 54|55 59|60  64]6" 69[70 75|
RE I 0L _ | _NZ | NMESH_] ] NR TE_INPUNCH__I.NM 1 NAME |
1.05685 | . .8364900E-24] . _ I~ 100] 1143} _ 10| _ of . _ ol S|H2+ X |

66



< —

i

Descrip-
soa
tion

1 < RR 1.08479CE OC 1.164170E 00 1.27000CE 00
3.677710E 00 4.15396GE 00 4.63021CE 00 5.106460E 00 5.582710E 00 6.058960£ 00

Vv 6. FV
VvV 9. FV
vV 12. FV
VV 15. FV

VvV 0. FV
VV 3. FV

vV 0. FV
2 €vv 3, FV
VvV 6. FV

vV 0. FV

TABLE VII. - OUTPUT FOR SAMPLE PROBLEM FOR COMPUTER PROGRAM FOR WKB ROTATIONAL

58,02
49.38
4l.12
33.05
24, €5
15,57

Vil) 17.65541 F(1)

17287, €5
14241.00
11100.11

VIl) 6.48722 F(1)

243C8.23

Vil}) 0.44822 FLl)

{vu) ~0.42914 F(1)

ERROR
ERROR
ERROR
ERROR
ERROR
ERROR

22477.50

ERROR
ERROR
ERROR

23699.72

ERROR

25618.54

26218.21

ENERGIES OF DIATOMIC MOLECULES AND MOLECULAR IONS

NSTOP 1143 1143 1143 1143 1143

=0.24
-0.08
C.
=0.17
-0.00
=0.95

-0.00
0.01
-0.03

AJ 30.0000C R4 4.2616532E 00 RRRINSTQP)

0.01

\_AJ 41.0000C R4 3.2549785E 00 RRR(NSTOP)

vV 10.
vV 13,
vV l6.

Vv{(100} -0.50000 F{100})

Vv 1.
vV 4.
vv

v{100) -0.50000 F(100)

vv

v{100) -0.50000 F{100)

v{l100) -0.50000 F(100}

(RE 1.056850E 00 RM 8.364900E-25 TOL 2.500000E~01 NZ

Fv
Fv
FV
FV
£V
Fv

Fv
EV

100 NMESH 1143 N

55.17
46.24
38.50
30.50
21.98
11.94

AJ 1.00000 R4 6.0589564E 00 RRR(NSTOP) 6.0589564E 00 5

16257 .42
13227.36

6.0589564E 00 5

6.0589564E 00 5

AJ  43.00000 R4 2.86E4221E 00 RRR(NSTOP) 6.0589564E 00 5

4 {AJ 44.0000C R4 O.

{v(n -0.5000C F{1)

AJ 43.00000 R4 0.

2gee p. 43.

26300.12

KRRINSTOP) 6.0589564E 00 5

RRR(NSTOP) 6.0589564E 00

v{100) -0.50000 F{1l00)

5

1.402290E 00 1.534580E 00

1.772710E 0C 2.24896CE GO0 2.725210E 00 3.201460E 00

NJ 5 AJ 1.CO00000E €C 3.000000E Ol 4.100000E Ol 4.300000E Ol 4.400000E Ol

ERROR -0.00

ERROR -0.22

ERROR ~0.00

ERROR =0.00

ERROR -0.10

ERROR -0.08
60.08

0 ) Qo

ERROR 0.19

ERROR 0.01
17808.08

0 ] o
25208.24

[+] [} 0
26198425

o 0 0

o 0 1
26300.12

o o o

10 NRITE

vy
vv

RL 4.7625006-01 5.C27100E-01 5.291700E-01 5.556300E-01 5.820800E-01 6.085400E-01 6.35000CE-Cl 6.614600£-01 7.143800E-01
7.672900E-01 8,202100E-01 8.731300E-01 9.260400E-01 9.789600E-01 1.0318B80& 00

G NPUNCH oM 5 H2+ X

ée FV 52.18 ERROR =0.25
5. FV 43.73 ERROR -0.01
8. FV 35.79 ERROR 0.00
1l. FV 27.79 ERROR =0.01
l4. FV 18.77 ERROR 0.00
17. Fv 7.94 ERROR —0.17
1 a 0o ) o 0 o
2. FV 15248.52 ERROR 0.01
5. FV 12192.86 ERROR 0. 01
[ [+] o 0 1] 0 0
0 Q 0 ) 0 o 0
0 [ 0 o] 4] [ 0
[ [ 0 0 1] 0 0
¢ [+] ] 1] 0 o 0

REC= 00000 FIL=

(NL 15 UL 4.£60872E 04 3.931012E 04 3.310752E 04 2.782325€ 04 2.331334E 04 1.946011E 04 1.616664E 04 1.335253E 04 8.904350E 03
5.6$5570E 03 3.423700E 03 1.866370E 03 B8.601200E 02 2.783700€ 02 2.627000E€ 01

NR 15 UR 3.C240C0E Q1 3,9404006 02 1.334710E 03 2.934510F 03 4.753170& 03 8.10C620E 03 1.381830E 04 1.768941E 04 1.999473E 04
2.124966E 04 2.189194E 04 2.220896E 04 2.236311E D4 2.243830E 04 2.247568E 04

NV 18 GV 1.145C80E 03 3.3367106E 03 5.400560F 03 7.340290E 03 9.161620€ 03 1.086150E G4 1.245033E Q4 1.393254E 04 1.529956E 04
1.655496E 04 L.770085€ 04 1.873355E 04 1.965084E 04 2.045059E 04 2.112860E 04 2.167925E 04 2.209595E 04 2.237129E 04

67
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TABLE VHI. - THERMODYNAMIC PROPERTIES OF Hg

o] o]
T, c, Hp-Hy | 83| 63 -Ho
K R RT R RT

298.15 | 3.5224 3.4623 17.1098 13.6475
300 3.5227 3.4626 17.1316 13.6690
400 2.5509 3.4806 18.1482 14.6676
500 3.6100 3.5000 18,9463 15.4463
600 33,6947 3.%5251 19.6117 16.0865
700 3.7922 3.5562 20.1885 16.6322
800 3.8918 3.5920 20.7013 17.1094
900 2.9874 3.6307 21,1653 17.9347
1000 4.0760 3.6708 21.5901 17.9193
1100 4.1568 3.7114 21.9824 18.2710
1200 4,2301 3.7516 22.3473 18.5957
1200 4,2967 3.7910 22.6886 18.8975
1400 4.3576 3.8294 23,0093 19.1799
1500 4.4136 3.8665 23,3118 19.4454
1600 4.4658 3.9023 23.5984 19.6961
1700 4.%149 3.9369 23,8706 19.9337
1800 4,5615% 3.9703 24.1300 20.1597
1900 4.6065 4,0026 24.3778 20.3752
2000 4.,6502 4.0339 24,6152 20.5813
2100 1 4.6931 4.,0643 24,8431 20.7788
2200 | 4. 7355 4.0938 25.0624 20.9686
2300 14,7115 4,1227 25.2739 21.1512
2400 4.8193 4.1508 25.4781 21.3273
2500 4.8607 4.1784 25.6757 21.4973
2600 4.9017 4.2054 25.86171 21.6617
2700 4.9419 4.2319 26.0528 21.8209
2800 4.9811 4.2580 26,2333 21.9753
2900 5.0189 4.2836 26.4087 22,1251
3000 5.0548 4.3087 26,5795 22.2708
3100 £.0885 4.3333 26.7458 22.4125
3200 5.1194 4.3574 26.9079 22.5504
3300 5.1473 4.3809 27.0658 22.6849
3400 5.1718 4.4038 27.2199 22.8160
3500 ] 5.1925 4.4261 27.3701 22.9440
3600 5.2093 4.4476 27.5166 23.0690
3700 5.2218 4.4684 27.6595 23.1911
3800 €.2301 4.4883 27.7989% 23.3106
3900 Se234) 4.5074 27.9348 23.4274
4000 5.233¢ 4.%5256 28.0673 23.5417
4100 §.2290 £.5428 28.1965 23.6537
4200 §.2201 4.5590 28.3224 23.7634%
4300 5.2072 4.5743 28,4451 23.8708
4400 5.1905 4. 5885 28,5646 23,9762
43%00 5.1702 4.6016 28.6811 24.07%4
4600 £.1465 4.6138 28.7944 24.1807
4700 5.1198 4.6248 28.9048 26.2800
4800 $.0901 4.6348 29,0123 24,3775
4900 5.0579 4.6438 29.1170 24,4732
5000 €.,0235 4.6517 29.2188 24.5671

-+

Hr
RT

606.3907
602.6731
452.8884
363.0263

303.1304
260.3607
228.2959
203.3675
183.4340

167.1324
153.5542
142.0704
132.2316
123.7086

116.2543
109. 6799
103.8387
98.6148
93.9155

89.6658
85.8044
82.2805
79.0521
76.0836

73.3451
70.8109
6844591
66.2709
64,2298

62.3214
60.5334
58.8546
57.2754
55.7870

54.3818
53.0530
51.7944
50.6005
49.4664

48.3875
47.3598
4643797
45.4437
44.5490

43.6927
42.8723
42.0855
41.3301
40.6043

—-589.2810
-585.5415
—434.7402
—-344.0800

-283.5187
-240.1723
—207.5%945
-182.2022
-161.8439

-145.1500
-131.2069
-119.3818
-109.2223
-100.3967

-92.6559
~-85.8093
-79.7088
-74.2370
-69.3003

-64.8226
-60.7419
-57.0067
-53.5740
-50.4080

-47.4180
-44.7580
—42.2258
-39.8621
-37.6503

-35.5756
-33.6255
-~31.7888
-30.0555
-28.4169

-26.8652
-25.3935
-23.9955
-22.6657
-21.3990

-20.1910
-19.0374
-17.9346
-16.8791
~15.86719

~14.8983
-13.9674
-13.0731
-12.2132
-11.3856
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TABLE VIO. - Concluded. THERMODYNAMIC PROPERTIES OF HJ

2

o] o] o

Ef( So |Hp-Hof Sp Gy - Hg Hr _Gr

R RT R RT RT RT
5100 4.9870 4.€65€E7 29.3179 24.6593 39.9063 -10.5884
5200 4.9487 4.6646 29,4144 24.7498 39.2344 -9.8201
5300 4.9089 4.6696 29.5083 24.8387 38.5872 -9.0789
5400 4.8679 4.6736 29.5996 24,9260 37.9631 -8.3635
5500 4.8258 4.6768 29.6886 25.0118 37.3610 -1.6724
5600 4.7829 4.6791 29.7752 25.0961 36.7796 -7.0045
5700 407394 4.56805 29.8594 25.1789 36.2179 -6.3585
5800 4. 6954 4.6812 29.9415 25.2603 35.6748 -5.7333
5900 4.6511 4.6810 30.0214 25.3403 35.1493 -5.1280
6000 4.6068 4.6802 30.0992 25.4190 34.6407 —-4.,5415
6100 4.5624 4.6786 30.1749 25.4964 34.1480 -3.,9730
6200 4.5182 4.6764 30.2488 25.5724 33.6704 -3.4216
6300 &.4742 4.6735 30.3207 25.6472 33.2073 -2.8866
6400 4.4306 4£.6700 30.3908 25.7208 32.7580 —-2.3672
6500 4.3874 4.6660 30.4592 25.7932 32.3219 -1.8627
6600 4.3447 4.6615 30.5258 25.85644 31.8983 -1.3725
6700 4.3026 4.6564 30.5909 25.9344 31.4868 ~-0.8959
6800 4.2611 4.6509 30.6543 26.0034 31.0867 ~0.4324
6900 4.2204 4.6450 30.7162 26.0T12 30.6976 0.0186
7000 4.1803 4.6386 30.7766 26.1380 30.3191 0.4576
7100 4.1410 4.6319 30.8357 26.2038 29.9506 0.8850
7200 4.1024 4,.6248 30.8933 26.2685 29.5919 1.3014
7300 4.0647 4.6174 30.9496 26.3322 29.2425 1.7072
7400 4.02718 46097 31.0047 26.3950 28.9020 2.1027
7500 3.9917 4.6017 31.0585 26.4568 28.5701 2.4884
7600 3.9564 4.5934 31.1111 26.5177 28.26465 2.8647
7700 3.9220 4.5849 31.1626 26.5777 27.9308 3.2319
7800 3.8883 4.5762 31.2130 26.6368 27.6228 3.5903
7900 3.8556 4.5673 31.2624 26.6951 2T.3221 3.9402
8000 32.8236 4.5582 31.3107 26.7525 21.0286 4.2821
8100 32,7925 -5489 31.3580 26.8090 26.7419 4.6161
8200 3.762} 4.5395 31.4043 26.8648 26.4618 4.942%5
8200 3.7326 4.5300 31.4497 26.9198 26.1882 5.2616
8400 3.7038 4.5203 31.4943 26.9740 25.9207 5.5736
8500 3.6758 4.5105 31.5379 27.0274 25.6591 5.8788
8600 3.6486 4.5007 31.5808 27.0801 25.4034 6.1774
8700 3.6221 444907 31.6228 27.1321 25.1531 6.4696
8800 3.5963 4.48Q7 31.6640 27.1833 24.9083 6.7557
890 3.%112 4.4706 31.70%45 27.2339 24.6687 7.0358
9ao 3.5469 4.4605 31.7443 27.2838 26.4342 7.3101
9100 3.5231 4.4503 31.7834 27.3330 24.2045 T.5788
9200 3.5001 44401 31.8217 27.3816 23.9796 T7.8421
9300 3.4777 4.4299 31.8594 27.4296 23.7593 8.1002
9400 3.4559 4.4196 31.896% 2T.4769 23.5434 8.3531
9500 3.4347 4.4094% 31.9330 27.5236 23.3318 8.6012
9600 3.4141 4.3991 31.5688 27.5697 23.1245 8.8444
9700 3.3940 4.3889 32.0041 27.6152 22.9211 9.0830
9800 3.3746 4.3786 32.0388 27.6602 22.7218 9.3170
9900 3.3556 4.3684 32.0730 27.7046 22.5263 9.5467
10000 3.32372 4.3582 32.1066 27.7485 22.3345 9.7722
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Partition function, qH+
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Figure 1. - Fairing together of low- and high-temperature approximations for partition function of H;.
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Figure 2, - Potentia! energy of H; for isosceles and equilateral triangle
configurations {reproduced from fig. 13 of ref. 5. Inner ordinate gives
internuclear distance R' in Bohrs (1 Bohr = 5. 29167x1077 cm) shown in
the sketch. Inner abscissa corresponds to two equal internuclear dis-
tances R (in Bohrs) also shown in sketch. Additional ordinate and
abscissa scales in centimeters have been added. Potential energies were
computed along lines A, J, K, M, N, Q, and S. Contours are lines of
constant potential energy in Hartrees (1 Hartree = 219 475 cm™) and were
faired in. To be consistent with figure 4 and rest of this report, 1.00

Hartree must be added to all potential energies in this figure.
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RS



*$8]2.12 Aq pajussaidal

aJe suojoud saay] adeds uj paxiy ade z pue ‘A X saxy m_._ Jo uolouny

uoiyMed soj uotjewixosdde aanyesadwsay- ybiy 4oy waysks Emc_Eooo "G 84nBi4

4

“7\
s

‘M4 sasenbs-)sea| Jo Aoel

-ndoe bumoys ‘z aunbyy ul jjam (eijuajed mI JO WoON0q Jo MalA pabiejul - f ainbid

Wo ‘(sapis {enba) adUeISIP J2AJINUIBYU|

g-01x¢ 1 'l 01T

6 8" L

_ _ _

_ _ _

sJyog ‘(sapis (enba) aoueysip Jea|anuLBj

91 vl

ve [ 07¢ 81
I

21

L~

A

91

ot —— —— ——

I —
P ey

ey

SN

Z/L f /B
, |
\ﬂwﬁ-, g - \

]

A

ﬁmowo'v i€~ et

J

{ Es $93J14BH
Mew% |eijuUd)0d

A
A

\ ::e _:; ~re
(514) "sba)

1) saienbs-1se8] — ——
2 a4nbly wou4

I T I o

siyog ‘(apts jenbaun) adueisip JeajonuJau|

|
I_A,N 1

w5 “(3pls jenbaun) adue)sip Jea|anuiauj

72



|
]
W

NASA-Langley, 1968 —— 33

I\
|\ \ Generalized
‘\ \ rotation
\ \ quantum
| \ N number,
‘ \ - i
Y T~
NN ~
— 35 N
A A
\ \ / ~o~
N o
£
s
£
[%]
=
S5
£
]
2
= (e} Points provided as input
hecU
——— hcu"
——-——hcF (4, 20
—--— hcF (0,0
- J_ —--— heF (Vpay 200
0_
1 2-’L—3 g 4
0

Internuciear distance, r

Figure 6. - Typical potential energy hcU and effective potential energy hcU' for
diatomic molecule or diatomic molecular ion (not to scale). For j=0, hcU and hct"
coincide. Vibration-rotation energy eigenvalues hc# (4, 20) and hc#(0, 0) are also
shown, as well as hcgi(vmax, 20), which is not an eigenvalue. Four interpolation
regions 1, 2, 3, and 4 are indicated just above abscissa.

LROOT LDIFU |-e{ LVVWV SIMPSI

Figure 7. - Block diagram of program and subprograms for WKB rotational
energies of diatomic molecules and molecular ions. Direction of call is indi-
cated by arrowhead. Common storage is indicated by letter C.
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