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ABSTRACT 

The n-body problem for low-thrust  vehicles  with  optimal  thrust  control is formulated 
for the case of constant  thrust  with  coast. A successive two-body approximation  to  the 
n-body problem is also developed  under  the  assumption of tangential  thrust  during  the 
planetocentric  leg.  This  approximation  involves  one  arbitrary  parameter - the  planeto- 
centric  radius  at the  patch  point - whose  best  value  can  be  determined by comparison with 
n-body solutions.  Numerical  solutions of several  three-body  problems  indicate  that  the 
patch  radius  should be about 300 Earth  radii for either a circular or a  parabolic  initial 
Earth  orbit. 
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SOME  NUMERICAL  COMPARISONS OF THREE-BODY  TRAJECTORIES  WITH 

PATCHED  TWO-BODY  TRAJECTORIES FOR LOW THRUST  ROCKETS 

by W i l l i a m  C. S t rack  

Lewis   Research   Center  

SUMMARY 

The  n-body problem  for  low-thrust  vehicles with  optimal  thrust  control is formulated 
for  the  case of constant  thrust with coast.  Numerically  calculated  solutions  are  then  pre- 
sented  for  several  transfers  between  an  initial  low-Earth  orbit  (circular or parabolic)  and 
the  orbit of Mars. A successive two-body approximation  to  the n-body problem is devel- 
oped  under  the  assumption of tangential  thrust  during  the  planetocentric  leg.  This  approx- 
imation  involves one arbitrary  parameter - the  planetocentric  radius at the  patch  point - 
the  best  value of which can  be  determined by comparison  with  the n-body solutions.  This 
value is found to be  about 300 Earth  radii  for  the  circular  initial  Earth  orbit  case  and  for 
three  different  parabolic  initial  Earth  orbit  cases. If zero  thrust  is assumed  for  the 
planetocentric  leg  in  the  parabolic  orbit  case,  the  best  value of the  patch  radius is between 
100 and 160 Earth  radii. 

INTRODUCTION 

The prospect of using low acceleration  propulsion  devices  in  interplanetary  vehicles 
has led  to  the  development of elaborate  mathematical  techniques (e. g. , calculus of vari- 
ations  schemes)  that  are  used to  optimize  the  thrust  program  along  vehicle  trajectories. 
These  analyses are customarily  carried  out  under  the  assumption of two-body  motion and 
have  proved  quite  useful  in  the  solution of two broad  classes of problems involving (1) two 
bodies  only  and (2) more  than two bodies.  The  usual  case  involves a transfer  from  Earth 
to  another  planet. When the  planetocentric  legs of the  trajectory  are  to  be  performed  with 
high-thrust  systems  they are often  ignored.  The  simplified  problem  then  involves  motion 
in a single  gravitational  field.  The  usual  assumption is that low thrust  commences  in 
heliocentric  space  with a certain  hyperbolic  velocity  (often  zero)  added  to  Earth's  orbital 
velocity  to  determine the initial heliocentric  velocity.  The  time  required  to  escape  from 



Earth  orbit is usually  neglected  and  the  initial  heliocentric  radius  vector is assumed to  be 
that of the  Earth. 

If the  planetocentric  maneuvers are performed  with  low-thrust  systems a patching 
technique is ordinarily  used  wherein only  two-body motion is assumed at any  given  time. 
Quite  often  tangential  thrust  spirals  to  escape  energy are calculated with approximate 
analytical  expressions. If the  vehicle's  planetocentric  patch  radius  and  velocity 6 :e as- 
sumed  to  be  negligible  in  comparison  to  the  Earth's  heliocentric  radius  and  velocity,  then 
only  the  escape  time  and  the  propellant  consumption  during  escape  are  needed  to  com- 
pletely  determine  the  heliocentric  conditions at the  patch point. The same  approach is 
often  used  when  the  rocket is assumed  to  be on a parabolic  coast path  while  in  planeto- 
centric  space. 

Several  schemes  following  an  approach  commonly  used  in  high-thrust  trajectory 
studies  have  appeared  recently  (refs. 1 and 2) that  introduce  more  realism into the  models 
by relating the initial  heliocentric  conditions  to both: (1) the  planet's  position and velocity 
and (2) the  terminal  planetocentric  radius  and  velocity of the  rocket. The switch  from 
planetocentric  to  heliocentric  coordinates  takes  place at a particular  planetocentric  radius 
called  the  patch  radius  in  this  report. The initial  heliocentric  conditions  (mass,  time, 
radius, and  velocity) a r e  then  dependent upon the  patch  radius,  the  planetocentric  thrust 
mode,  and the s ize  and  shape of the  initial  planetocentric  orbit.  The  planetocentric  es- 
cape  path  can  be  determined  either by precise  numerical  calculations o r  by approximate 
analytical  expressions.  In  either  case,  the  right  patch  radius and  the  proper  spot on the 
patching  sphere  must  be  determined. The latter is easily  taken  care of by the  transver- 
sality  condition of the  calculus of variations.  The  "right"  patch  radius is not s o  easily 
determined  since  the  radius  used  in  high-thrust  studies is not necessarily  applicable. If 
it is picked  "properly, '' the  approximate two-body calculation will yield the  same mass 
ratio as the n-body calculation.  The  corresponding  trajectories,  however, will always 
differ  slightly. 

To date, no results  have  been  presented  comparing  these  approximate  patching 
schemes with  n-body variational  solutions  because  the n-body  solutions are difficult  to 
obtain  and  require a large  expenditure of computer  time. The purpose of this  report is 
to (1) present  several  three-body solutions.  and (2) compare  the  approximate two-body 
patching  technique  results  with  these  more  exact  solutions. 

Three-body  solutions are  generated  for low thrust   transfers  from low Earth  orbits  to 
the  mean  heliocentric  orbit of Mars. These  solutions are for a simple  problem  model 
involving three  bodies:  the  rocket, Sun, and  Earth.  This  simplification  in  the  sample 
problems  allows  attention  to be focused on the  main  issue - trajectories  that  pass  from 
one  dominant  gravitational  field  into  another.  The  thrust  vector is optimally  directed  and 
of constant  magnitude.  Coast  phases are  permitted. Two cases are considered: (1) ini- 
tial circular  orbit  about  Earth and (2) initial  parabolic  orbit  about  Earth.  These  cases 
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correspond  to  escapes  utilizing (1) all low-thrust  and (2) high thrust followed  by low 
thrust. The corresponding  patched two-body calculations are  carried  out  under  the  same 
rules  except  that (1) tangential  thrust is assumed  for  the  Earth-centered  portion of the 
trajectory  and (2) the two-body assumption is imposed.  The  tangential  thrust  assumption 
is not critical  since  tangential  thrust is very  nearly  optimum  for  low-thrust  Earth  escapes 
(ref. 3). Some  solutions are also  presented  for  the  parabolic  orbit  case  under  the as- 
sumption  that  the  vehicle  coasts  to  the  patching  point. 

ANALYSIS 

The  problem  posed is: Given the  initial  state of a rocket  in  Earth  orbit  and a helio- 
centric  final  state,  determine  the  low-thrust  transfer  trajectory  that  minimizes  the  pro- 
pellant  consumption.  The  accurate  solution of such a problem is difficult  and  quite  time 
consuming,  and no results  have  appeared  in  the  literature. A second  question,  therefore, 
arises:  How can  the  actual  solutions  be  closely  approximated?  This  question will  be  dis- 
cussed  later. 

N-Body Solutions 

Statement of problem. - The rocket is assumed  to  operate  with  constant  exhaust  ve- 
locity  engines  that  may  be  freely  turned on o r  off. Furthermore,  the  thrust  magnitude 
remains  constant when  the  engines a r e  operating.  The  vector  equation of motion of such 
a rocket  in a central  force  field  perturbed by n-2  other  bodies is: 

Figure 1 displays  the  geometry of the  problem  and all symbols a r e  defined in appendix A. 
The  center of the  dominant  gravitational body defines  the  origin of the  coordinate  system 
and  the  summation  term  vanishes  for two-body motion. 

The necessary  conditions  for  minimizing  the  propellant  consumption  are  given by the 
Euler-Lagrange  equations  (ref. 4): 
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( T = - -  / x /  
2 m 

where x is the  Lagrange  multiplier  vector  (also  called  the  adjoint  variable or primer 
vector). R1, rl,  and pl in  equation (2) are identical  to  R, r, and p in  equation (1). 
The  choice of on or  off mode of engine  operation is determined by: 

Equations (1) to (6) comprise a set of second  order  nonlinear  differential  equations 
that  must  be  numerically  integrated  to  yield  solutions.  Equations (1) and (2) a r e  equiv- 
alent  to  the  following first order set of differential  equations: 

R = V  

x = - x  

Just  as in  the  case of two-body  motion, the  transversality  condition (ref. 4) is: 
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-dmf + h dV + )c - dR + odm - C dtl0 = 0 [ f 
(11) 

where o and f denote  values  taken at the  beginning  and  end of the  optimal  control  phase, 
respectively.  This  equation  imposes  boundary  conditions  in  addition to those  explicitly 
required  in  the  problem definition. On a solution  trajectory a differential  vanishes at 
either end  point in  equation (11) if its corresponding  variable  has a specified  value at that 
terminus,  otherwise  the  differential is nonzero  and its coefficient  must  vanish.  In  par- 
ticular,  since mf is not  specified,  equation (11) shows  that of = 1. C is a constant of 
the  motion  and is given by 

The  following  additional  vector  constant of the  motion is valid for the two-body problem 
only  (ref. 5): 

X x R + R x i = a vector  constant (13) 

Two types of discontinuities  may  occur  along a trajectory. First, m may  switch f rom 

mmax 
ulates  that X ,  X ,  and o a r e  continuous across  such  corners  and it is easy  to show that 
C is also  continuous at such  points.  Second,  in  the  case of n-bodies, a coordinate  sys- 
tem  change may take  place at a certain  planetocentric  radius.  Thus,  R  and V a r e  sub- 
ject  to  discontinuities.  At  the  translation  point C is also  discontinuous. 

to  zero  or  vice-versa.  The  Weierstrass-Erdmann  corner  condition  (ref. 4) stip- 

Boundary ." . ~ value  problem. - The  boundary  conditions at the  initial  and  final  points a r e  
satisfied by successive  iterations of the  initial  values of X and X. In  practice,  the  ini- 
tial value of o may  be arbitrarily  chosen  since  the  set of equations (4) to (10) is homo- 
geneous  and  the of = 1 condition  may  be  satisfied  simply by rescaling  the  multipliers 
after  the  boundary-value  problem is solved. Many iterative  techniques  may  be  used  to 
satisfy  the  terminal  boundary  conditions.  The  technique  employed  in this study is a hy- 
brid  combination  consisting of (1) successive  univariate  searches when the  error  function 
is relatively  large and (2) a multivariate Newton-Raphson scheme when the  error function 
is relatively  small.  The  error  function is simply a weighted  summation of the  squared 
differences  between  the  final  desired  and  current  boundary  conditions.  Rather  than  com- 
puting  the  required  partial  derivatives of the  Newton-Raphson  scheme by finite  differ- 
encing,  the  partial  derivatives  were  generated by integrating  an  additional  set of equations 
simultaneously  with  each  trajectory  calculation.  The  advantages of this  technique a r e  that 
convergence of the Newton-Raphson scheme is facilitated  since  the  resultant  partial  deri- 
vatives are  more  accurate,  decisions  about the increments  in  the  initial  values of X 
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and X used  for  the  perturbation  trajectories are avoided,  and less  computer  time is re-  
quired  for a solution. For example,  inclusion of a third body in  the  problem  makes so- 
lutions  very  difficult  to  obtain by a finite  difference  scheme but relatively  easy with ana- 
lytical  partial  derivative  generation.  These  additional  differential  equations  come  directly 
from  the  equations of motion  and  the  Euler-Lagrange  equations.  Differentiating  equa- 
tions (4) to  (10) with  respect to an  arbitrary  variable  yi and  inverting  the  order of differ- 
entiation,  after  simplifying,  yields: 

m x  
+C" 

1x1 
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when ni is constant,  am/ayi = 0 and  equation (19) reduces  to  the  trivial  identity 0 = 0. 
With the  assumption of constant  thrust, m is constant  everywhere  except  the  points at 
which c 11 I - om = 0 in  which  case  am/ayi is unbounded causing  jump  discontinuities  in 
all equations  containing a am/ayi  term. The  appendix of reference 6 shows  that  the 
magnitude of these  jumps is given  in  general by: 

where 

S. = V, o, or m 
J 

(a continuous  function  everywhere).  Specifically, 

It  should be noted that  these  partial  derivatives  are  continuous  under an origin  trans- 
lation.  Also,  the  partial  derivative  equations (14) to (19) are  insufficient by themselves 
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for  the case of unspecified terminal time.  Only  fixed  terminal  time  cases are considered 
here. When coast  phases are permitted  the  yi are taken  to  be  the initial values of X 
and X .  When the  problem  does not  allow coat  phases, a is superfluous  and  the  initial 
value of any  one of the  components of X or X may  be arbitrarily  selected. For this 
case,  one of the yi is taken to be m since  for  fixed  time  problems m is unique  but 
unknown. The initial  values of the  partial  derivatives are functions of the  initial  boundary 
conditions. For example, if the  values of V and Ro a r e  fixed  then all partial  deriva- 
tives are initially  zero  except [aA/aqo and f??C/8?C], which are unit  diagonal  matrices. 
But if Vo and Ro are  some  function of A,, then  the initial values of aV/ar i  and 
aR/aYi a r e  not all zero. Adding a fixed  amount of velocity  via high thrust  propulsion  to 
some  reference  velocity (e. g. , the  Earth's  orbital  velocity)  in  an  optimal  direction is an 
example  in point. This will be  made  more  explicit later. 

The  Newton-Raphson iteration  scheme  can  be  represented  mathematically by: 

ynew - yold 
- -t k(AY) 

where  k is a damping  factor  whose  value  lies  between 0 and 1, AB is the  vector of re- 
sidual  errors in the  boundary  conditions,  and [A] is the  square  matrix of partial  deriva- 
tives aBi/ay  The  elements of [A] a r e  composed of a subset of the  definite  integrals of 
equations (14) to (19) or combinations of these  integrals  depending upon the  form of the 
end conditions. If the  end  conditions a r e  given by (point  to  point  problem): 

j*  

Vf = v 
- 

(29) 

where a bar  denotes a desired  value,  then [A] consists  simply of the  elements (aV/a y ) i f  
and ( a R / a ~ ~ ) ~ .  For the flyby problem with  fixed  terminal  distance but free  velocity and 
path  angle,  the end conditions  are: 

rf = r - 

Xf = 0 
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and  the  elements of [A] consist of (ar/ay.)  and ( a h / a ~ , ) ~ .  Here ( a h / a ~ ~ ) ~  is determined 
by integrating  equation (16) and (ar/ay.) is determined by integrating  equation (15) via 
the  relation 

I f  

I f  

Obviously  many  other  sets of end  conditions a r e  possible  and  each of these  results  in a 
different  form  for  the  elements of [A]. 

Most of the  results  presented later are  stated  in  terms of the propellant  expenditure. 
In  this  connection,  the  final mass  value may  be  linearly  corrected  for  residual  errors  in 
the  terminal  boundary  conditions.  In  the  simplest  case  the  terminal  boundary  conditions 
a r e  fixed  values of the  state  variables V and R. Since h and X may be  interpreted 
(ref. 7) as the  partial  derivatives of the  negative of the  final  mass  with  respect  to  their 
corresponding  problem  variables, 

Xf and Xf are  assumed  to  be  normalized by  uf = 1 as required by the  transversality 
condition. 

Procedure. - The  specific  problem  for which numerical  results  are  later  presented 
is the following: At  time  zero  the  Earth is on the X-axis  of a heliocentric  coordinate  sys- 
tem and a space  vehicle is at the  perigee of an  orbit  about  Earth. The perigee  altitude is 
185 km  and  the  vehicle's  orbit  about  Earth is either  circular  or  parabolic. At the  speci- 
fied  final  time  the  vehicle  arrives at the  orbit of Mars after  traversing 225' (arbitrarily 
chosen) of total  heliocentric  angle. For simplicity, the orbits of Mars and  Earth  are as- 
sumed to  be  circular  and  coplanar  with  the  vehicle's  initial  orbit  about  Earth.  Table I 
contains a list of assumed  values of problem  constants  and  table I1 displays  the  combina- 
tions of trip  time  and  initial  thrust-weight  ratio F/CW picked  for  sample  cases. 

Sketch (a) shows the geometry.  The  angular  location of the  initial  point with respect 
to  the  X-axis eo is free to  be  optimized. The optimization  can  be  accomplished by 
satisfying  the  transversality  condition (eq. (11)) or,  alternatively, by employing  any so r t  
of simple  search  scheme.  Specifically,  the  transversality  condition  requires  that 

cos 0 + X2v sin 0 + Xlr sin 0 - k 2 r  cos 0 (3 5) 

where X1 and h2  are the X and Y components of h and  similarly  for X1, X2,  and X .  
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The  numerical  calculations  were  carried  out  with  the  present  version of the  Lewis 
N-Body Code  which uses a fourth  order Runge-Kutta  integration  scheme  with  variable  step 
size  control  (ref. 8). Test   cases showed  that  solution  values  were  quite  insensitive  to 
the  planetocentric  radius at which the  origin  was  translated  from  the  Earth  to  the Sun. 
Over  the  range of 25 to 10 000 Earth  radii,  the  final  mass  change  was  less  than two units 
in  the  sixth  significant  figures.  The  particular  radius  used  for  data  generation  was 
145 Earth  radii.  Obtaining  solutions  for n-body problems is substantially  more  difficult 
than  for two-body problems.  The  computer  time  alone is one  to two orders of magnitude 
greater  for n-body  solutions  compared  to two-body solutions.  The  solution  method  used 
for  this  study is briefly  summarized as follows: First, obtain  the  solution of a relatively 
simple  problem  that only  approximates  the  actual  problem.  The  simple  problem is ob- 
tained by setting p2 = 0 s o  that  third body effects a r e  ignored  and by using a tangential 
thrust  program  until r = r* before  switching  to  optimal  thrusting.  Second,  gradually 
increase p2 to its real  value by solving a ser ies  of problems with p2 as a parameter. 
Third,  reduce r* to  the initial radius rin through  another  series of problems.  Finally, 
when r = rin the  solution  obtained is the  actual n-body solution of the  original  problem. 
When one  such  solution  has  been  obtained,  the  precise  solution of other  problems  can  be 
found by solving a ser ies  of problems  starting  in  the neighborhood of the  solved  problem 
and  proceeding  toward  the  desired one. The  only real  difficulty  with  the  above  procedure 
is that as r* approaches rin the  trajectories  become  increasingly  more  sensitive  to 
changes  in  the  initial  values of X and X .  This  situation  becomes so severe  that  conver- 
gence is impossible  for r* less than  about 20 Earth  radii  due  to  the  limited  number of 
significant  figures  carried by the  computer (8 in  this  study). Although distressing,  this 
situation is not so bad as to  prevent meaningful answers  from  being  obtained.  This is 
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true  because, as was  stated  in  the INTRODUCTION, tangential  thrust is very  nearly  opti- 
mum for  small r, and  therefore, a plot of  mf against r* can be  extrapolated  to rin 
quite  accurately (i. e.,  to 4 significant  figures). 

Approximate  Patched Two-Body Solutions 

Patched two-body approximations  to  the  low-thrust n-body problem  are  popular 
because of their  computational  simplicity.  The  assumption  usually  made is that the 
rocket  coasts or  is tangentially  propelled  to  the  patching  point  ignoring  the Sun's gravi- 
tational  effect.  From that point  on  the  rocket  motion is calculated  under  the  influence of 
no other  gravitational body except  the Sun. The  equations of motion a r e  much simpler 
and  can  be  solved  analytically  for  coast  phases. When low-thrust  propulsion  commences 
f rom a circular  planetocentric  orbit,  tangential  thrust is most  often  assumed  because it 
is very  nearly  optimal  (ref. 3) up to  the  escape  condition. When the  initial  planetocentric 
orbit is parabolic or hyperbolic,  coast  flight is usually  assumed  for  the  planetocentric  leg, 
although  tangential  thrust is also  sometimes  assumed.  Furthermore,  the  tangentially 
powered  motion  in  planetocentric  space is almost always represented with one of many 
analytic  methods  (e. g. , refs. 11 and 12). Optimal  thrust  programming  begins  in  helio- 
centric  space. 

In this  study  tangential  thrust is assumed  for  the  planetocentric  leg  and  optimal  thrust 
control is used  for the  heliocentric  leg.  Furthermore,  the  tangential  thrust  phase is 
numerically  integrated  rather  than  approximated  in  order  to  avoid  results  that  are  de- 
pendent upon specific  approximations.  In  some  cases  the  time  optimal  control  policy 
calls for a coast  phase at the end of the  planetocentric  leg.  This  situation  can be detected 
by the  presence of an  initial  coast  phase on  the  heliocentric  leg  and  in this case  an  i tera- 
tion  on  the  planetocentric  coast  duration is required  to  determine  the  best two-body 
patched  trajectory. 

A s  in  the n-body problem,  the  initial  heliocentric  position  and  velocity of the  vehicle 
a r e  obtained by vectorially  adding the vehicle's  planetocentric  position  and  velocity at the 
patching  point  to  the  heliocentric  position  and  velocity of the  departure  planet.  However, 
since  the  initial  planetocentric  point  may be anywhere  on a sphere of radius rs, the 
patching  point on this sphere is also  arbitrary.  This  arbitrariness is removed by re- 
quiring  that  the  patch  point  be  the  optimal  one.  This  in  turn  determines  the  optimal 
planetocentric starting point.  Suppose  that  in  general  the  position of the  departure  planet 
is Rp relative  to a Cartesian  coordinate  system with  the  origin  located at the  center of 
the Sun (see  sketch  (b)).  Let  the  planet's  velocity  be V and  let  the  vehicle  position  and 
velocity at the  patch  point  relative  to a planet  centered  coordinate  system  (alined  with  the 

P 
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Sun centered  system)  be Rs and V,. Then,  relative  to  the Sun: 

Ro = R + R s  
P (36) 

vo = v + vs P (37) 

And from sketch  (b), for the  two-dimensional  case,  the  components of Rs and V, a r e  

X' = r COS 8 S S (38) 

S S (39) y' = r sin 

and 

XI = -vs sin ( e ,  - pS) (40) 

$ 7  = vs cos (0, - P,) (4 1) 

The  transversality  condition  (eq. (11)) requires  that 

X. * dVo + )to - dRo = 0 (42) 

Evaluating  this  expression  with  the  aid of equations  (36)  to (41) and noting that  R 
r,, vs, and P, a r e  all fixed,  and  solving  for  the  optimum  value of 8, yields 

P' vP' 
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I 

IS vs(Xl sin Ps + X 2  cos Ps) + X E 

COS e, = E sin 8 = D 
S 

(4 3) 

(44) 

Convincing arguments  that  the  plus  sign is correct  in  equation (44) a r e  given in  refer- 
ence 2. Similar  relations  for the three  dimensional  case  exist but a r e  quite  lengthy (two 
additional  degrees of freedom are involved). A s  stated earlier,  problems  that  have  an 
initial  optimal  control  point  that is not fixed but lies on some  curve or surface  cause  some 
of the  analytical  partial  derivatives  to  have  initial  values  dependent on the  boundary  sur- 
face function.  The  heliocentric  leg of the two-body patched  scheme  outlined  above is a 
case  in point. From  equations (36) and (37)) 

These  equations are  solved  for  the  cases yi = Xi, and Y. = k. in  appendix B. 

this  report. The  remaining  portion is devoted  to  several  specific  examples  that  compare 
three-body  solutions with patched two-body solutions. 

1 1 ,  0 
This  completes  the  analysis of the n-body  and patched two-body techniques  used  in 

RESULTS AND DISCUSSION 

Three-Body Solutions 

The  sample  problems all involve a transfer  from  an  Earth  orbit  condition  to  the 
orbit of Mars. The  main  concern  here is the  computation of optimal  thrust  trajectories 
that  essentially  leave  one  gravitational  field  and  enter  another. All unnecessary  com- 
plicating  aspects of a real   problem  are avoided.  Thus, the n-body problem is reduced  to 
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a three-body  problem  by  ignoring  the  minor  perturbative  effects of bodies  other  than  the 
Sun and  the  Earth.  Furthermore,  the  orbits of Earth  and  Mars are taken  to  be  circular 
and  coplanar  with  the  vehicle's  orbit.  Three  dimensional  ephemeris  data  and  additional 
bodies  can  just as well  be  included (i. e.,  the  computer  code  used  contains  such  realism) 
but would serve no  useful  purpose  here. 

cases are for 275-day/225' transfers with F/W = Figure  2  shows  the  planeto- 
centric  phase  for  the  case of an  initial  parabolic  orbit  about  Earth. A s  explained  in  the 
ANALYSIS section, a short  tangential  thrust  phase is necessary at the s tar t  of the tra- 
jectory  for  computational  convenience.  The  switch  from  tangential  to  optimal  thrust  con- 
trol  takes  place at 23 Earth  radii.  In  Earth  space  the  optimal  angle-of-attack  (angle  from 
the  velocity  vector  to  the  thrust  vector)  increases  from 0. 5' a t  the  initial  point to only 
5. 2' at the  origin  translation  point.  Thus,  it is quite  unlikely that replacing  the  short 
tangential  thrust  phase  with  optimal  control would cause  any  significant  change  in  either 
the  trajectory or the  optimal  angle-of-attack  schedule. 

The  trajectories  for  case 1 and 2 of table I1 are diagrammed  in  figures 2 to 4. These 

Figure  3  shows  the  planetocentric  phase  for  an initial circular  orbit  about  Earth. 
Only the last two turns of the  spiral   are shown  and the  optimal  control  policy  begins at 
20 Earth  radii.  The  angle-of-attack  history is again  nearly  tangential but oscillates, 
starting at +4O, dipping  to - 13O, and  then rising  to -2. 5' at the  origin  translation  point. 
This  behavior  has  been  noted  before  in  the  optimal  Earth  escape  problem  (ref. 3). It  con- 
sists of minute  oscillations of the  thrust  vector  about  the  velocity  vector  until  the last few 
turns of the  spiral  where  the  amplitude of the  oscillation  grows  quite  rapidly. 

The  heliocentric  portions of cases 1 and 2 a r e  displayed  in  figure 4. Both trajectories 
are  rather  typical,  having a mixture of power  and coast  phases.  The  parabolic  orbit  case 
has two coast  phases but  the  circular  orbit  case  has only  one.  The  entire  angle-of-attack 
histories  are shown  in figure 5 for both cases.  The  initial  tangential  thrust  portion  for 
the  parabolic  orbit  case is so  short  that it is not  detectable  in  the  scale of this  figure. 
Quite  the  reverse is true  for  the  circular  orbit  case.  Here  the  tangential  thrust  portion 
is seen to last about 67 days  and  represents  the  average  angle-of-attack  history of the 
true  oscillatory  solution.  The  optimal  thrust  angle  history  in  inertial  space is, of course, 
continuous across  the  origin  translation.  However,  the  discontinuity  in  the  velocity  vector 
at this  point  causes a discontinuity  in  the  angle-of-attack  history as seen  in  this  figure. 

Mentioned earlier  was  the  fact  that a one-parameter  sequence of solutions is obtained 
wherein  the  parameter is the  radius of the  switch  point  from  tangential to optimal  thrust 
control.  Ideally,  this  sequence is terminated  when  the  switching  radius  becomes  equal  to 
the  initial  radius  thus  eliminating  the  tangential  thrust  phase.  Practically,  numerical  dif- 
ficulties  prevent  solutions  from being  obtained when the  switching  radius falls below about 
20 Earth  radii.  Nonetheless,  such a terminated  sequence  allows  the  ideal  solution  to  be 
accurately  determined  to  more  than  four  significant  figures  in  the  propellant  expenditure 
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by extrapolation.  Having  determined  the  three-body  solution (see table I1 for  propellant 
fractions),  the  percent  increase  in  propellant  expenditure is plotted  against  the  switching 
radius r* in  figure 6. The two curves  in  figure 6 have  discontinuous  slopes at the  origin 
translation  radius  because  the  tangential  thrust  vector is discontinuous  there (i. e. , tan- 
gential  thrust  with  respect  to  the Sun is different  than  tangential  thrust with respect  to 
Earth).  This  effect is much more  pronounced  in  the  parabolic  orbit  case  because  the  ini- 
tial optimal  control  in  heliocentric  space is much farther  from  tangential  than  in  the  cir- 
cular orbit  case (see fig. 5). In  either  case  figure 6 suggests  that if  the  rocket is in 
heliocentric  space  and  not  too far from  the  planet  then  tangential  thrust  with  respect  to 
the  planetocentric  velocity  vector is better  than  tangential  thrust  with  respect  to  the  helio- 
centric  velocity  vector.  The  most  important  point though is that  tangential  thrusting  in 
planetocentric  space is not far from  optimal  in  terms of propellant  expenditure.  That is, 
instead of insisting  that r* = rin, r* may be as large as 145 Earth  radii with less  than a 
0. 12 percent  penalty  for  the  circular  orbit  case  and  less  than 0.01 percent  penalty  for  the 
parabolic  orbit  case.  The much smaller  penalty  for  the  parabolic  orbit  case is a result 
of the much smaller  time  period  associated with these  nonoptimal  phases (e. g. , 1/2 day 
against 67 days for r* = 25 Earth  radii). 

Cases 1 and 2 illustrate  the  essential  features of the  three-body  solutions.  Cases 3 
and 4 are  presented  mainly  to show what  effect  changes  in F/fV and  mission AV have 
on the  comparison  between  three-body  and  patched two-body solutions.  These  compari- 
sons  are  given  in  the  next  section. 

Patched Two-Body Solutions 

Most of the  patched two-body solutions  used  to  approximate  the  three-body  solutions 
consist of a tangentially  propelled  planetocentric  leg  followed by a heliocentric  leg  with 
optimal  thrust  control.  Some  results  are  also  given  for  planetocentric  coasting  (instead 
of tangential  thrusting)  for  the  parabolic  orbit  case. In all cases  the  decision  must  be 
made of when to terminate  the  planetocentric  leg and  commence  the  heliocentric  leg.  The 
patch  point is chosen  to  occur at a specified  planetocentric  radius rs. This  patch  radius 
may,  in  fact,  be so chosen  that  the  correct  propellant  expenditure is calculated (i. e. , the 
propellant  expenditure  agrees  with  the  three-body  solution). Of course,  the two-body and 
three-body  trajectories will differ  slightly, but that is not  critical  for  most  mission 
analysis  studies. 

The  fact  that a correct  patch  radius  exists is easy  to  see by examining  the two 
limiting cases rs = rin and r = 00. If rs = rin the  Earth's  gravitational  field is lost 
and,  therefore, (1) the  propellant  needed  to  escape  the  Earth is saved  and (2) the  propel- 
lant  needed  for  the  heliocentric  leg is reduced.  The  heliocentric  propellant is reduced 

S 
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for two reasons. First, the initial heliocentric  velocity will be  most  favorable  since V, 
increases as rs decreases.  Second,  the  heliocentric  travel  angle  and  time wil l  be a 
maximum  thus  allowing  the  most  efficient  trajectory.  These  effects  taken  together  cause 
the  required AV to  be  minimal.  Thus,  the two-body propellant  mass is less  than  the 
three-body  propellant mass if rs is sufficiently  small. On the  other  hand, as rs -c 03 

the  propellant mass increases  until it approaches  the  initial  mass or  the  planetocentric 
time  exceeds  the  total  mission  time.  Clearly  then,  the two-body propellant mass exceeds 
the  three-body  propellant mass if rs is sufficiently  large. 

Tangential  thrust  for  planetocentric leg. - The ratio of the two-body propellant  mass 
to  the  three-body  propellant mass is presented  in  figure  7  for  cases 1 to 4 with  tangential 
thrusting  to rs. The  tangential  portion is calculated  exactly  to  determine  the  correct 
time,  velocity,  and  path  angle at rs. Equations (36) to (44) a r e  then  employed to deter- 
mine  the  optimum  initial  heliocentric  position  and  velocity.  Finally,  equations (4) to (10) 
are  integrated to determine  the  optimal  heliocentric  trajectory.  The  ratio of propellant 
masses  increases as rs increases  in  accordance  with  the  reasons given  in  the  previous 
paragraph.  Figure  7  shows  that at rs  = 300 Earth  radii  the  ratio is nearly  unity  for  every 
case.  This  indicates  that rs M 300 Earth  radii is the  correct  value  for  the two-body patch 
radius.  For rs < 300 Earth  radii not enough propellant is calculated by the  two-body ap- 
proximation  and  for rs > 300 Earth  radii too  much propellant is calculated. Note also 
that  for rs > 150 Earth  radii  the  curves  are fairly flat and  the  maximum  propellant e r ro r  
in  the two-body scheme  for 150 < rs < 600 Earth  radii is about  3  percent.  Larger  er- 
rors prevail at rs < 150 Earth  radii. 

investigated. rs values  between 250 and 600 Earth  radii  give  rise to less  than 1/2 per- 
cent  error  in  this  particular  case.  Sometimes  the  patching  radius  for two-body schemes 
involving an  escape  spiral is taken  to be that  radius at which escape  energy is attained. 
This  radius is problem  dependent  and  varies  considerably  with  acceleration  level.  For 
the  case  considered  here,  escape  occurs at 80 Earth  radii and this  gives  rise  to a -3  per- 
cent  propellant  error as noted  on figure 7. The  other  three  cases  are all for  an  initial 
parabolic  Earth  orbit.  Reducing  the F/W from to 0 . 5 6 ~ 1 0 ~ ~  reduces  the  correct 
r from 310 to 285 Earth  radii and increases  the  sensitivity of the  error to rs by about 
30 percent.  Reducing  the  trip  time  from 275 days  to 240 days  (this  increases  the  mission 
AV requirement by a factor of 22) causes no change  in  the  correct  value of rs and  only 
slightly  decreases  the  sensitivity of the e r ro r  to rs. 

* 

~ -. - - . " - - 

The case of an initial circular  orbit  about  the  Earth is the  least  sensitive of all cases 

S 

1 

"_ Coast  for .. ~~ planetocentric - ~ - .  leg. - If the  initial  planetocentric  orbit is parabolic no thrust 

In the  extreme  cases of very  small  mission AV and/or high F/W,  the  heliocentric * -~ - 

powered  phases  can  disappear  entirely as rs is reduced.  In  such a case  the  minimum 
propellant  case  occurs at rs > rin. 
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is needed  to  reach  the  patching point. The  vehicle  may  be  allowed  just  to  coast  to  this 
point. Assuming  coast  flight  for the planetocentric  leg  instead of tangential  thrust  for  the 
parabolic  initial  orbit case leads  to  the  results  given  on  figure 8. The  dot-dash  curve is 
for  the  additional  assumption V, = 0 and  illustrates  that-this  assumption  causes  the two- 
body approximation  to  be  over 10 percent  conservative  for  this  particular  problem. The 
other two curves show that  the  coast  assumption  alone  increases  the  sensitivity of the er- 
ror to rs and also  reduces  the  correct  value of rs from  about 300 Earth  radii  to 100 to 
160 Earth  radii  depending upon F/W. This  marked  increase  in  sensitivity  and  range of 
"correct rsvl is not surprising  in view of the  significant  coast  durations involved (e. g. , 
23 days  for r = 300 Earth radii). The  tangential  thrust  assumption is definitely  prefer- 
able  to  the  coast  assumption with respect  to  the  sensitivity  and  range  considerations.  The 
trajectories  will  also  be  more  accurate  under  the  tangential  thrust  assumption  since  this 
mode of operation  more  closely  approximates  the  three-body  solution. 

Comparison of rs to  analytic  sphere of influence  radius. - The  classical  sphere of 
influence  radius is obtained by setting  the  ratio of the  perturbative  force to primary 
force in planetocentric  coordinates  equal  to  the  same  ratio  in  heliocentric  coordinates 
(ref. 9). This  gives  rise to a value of 145 Earth  radii  for  the  Earth-Sun  system.  This 
value is roughly in agreement with  the  planetocentric  coast  results (100 < rs < 160 Earth 
radii) found in this  study. But is is only 1/2 the  value found under  the  tangential  thrust 
assumption. 

Another  sphere of influence  definition  (ref. 10) sets  the  Sun's  perturbative  force  equal 
to  the  planetocentric  force,  computed  in  planetocentric  coordinates. The formula  (derived 
in ref. 10) for rs using  this  definition is: 

rs = (planet's  orbit  radius) 1 Planet mass 

This  leads  to a sphere of influence  radius of 270 Earth  radii  for  the  Earth-Sun  system. 
This  value  compares  quite  well  with  the  empirical  values (280 < rs < 320 Earth  radii) 
found here  under  the  tangential  thrust  assumption. Extending the  usefulness of equa- 
tion (47) to other  planet-Sun  systems is tempting  because of the good correlation  in  the 
Earth-Sun case, but  such  an  extension  must  be  regarded as quite  speculative at the  pres- 
ent  time. 

The natural  suggestion  based  on  the  limited  number of cases  investigated is to  em- 
ploy tangential  thrust  for  the  Earth-centered  leg  (since it agrees  with  the  three-body 
power mode) and to use 300 Earth  radii  for  the two-body patching  radius rs. 
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CONCLUDING REMARKS 

The  three-body  variational  solutions  obtained  provide  reference  data  useful  in  the 
evaluation of approximation  schemes.  The  optimal  thrust  direction  in  planetocentric 
space is nearly  tangential  and  this  leads  to  the  assumption of tangential  thrust  during the 
planetocentric  leg of the  patched two-body scheme.  Under  this  assumption, a value of 
300 Earth  radii  for  the  patch  radius  never  causes  more  than 1/2 percent  error  in  propel- 
lant  consumption  for  each of the  four  cases. Of course,  these  four  cases  do  not  cover a 
wide enough range of problems  to  conclude  that 300 Earth  radii is a good value  for  most 
problems.  Nonetheless,  the  fact  that  doubling  the F/W, doubling  the  mission AV, or 
changing  the  initial  Earth  orbit  from  circular  to  parabolic  causes  such small disturbances 
in  the  error at this value  leads  one  to  believe  that it may  hold over a much greater  range 
of problems  than  considered  here.  Other  destinations,  for  instance, would probably  not 
affect  the  Earth-centered  leg  significantly  so  that this type of problem  alternation is 
unlikely  to  affect  the  answers found here. If a nontangential  thrust  program  were  speci- 
fied  because of a system  constraint (such as for  solar-electric  propulsion  system),  the 
results found here  again would seem  to be  applicable. 

The  planetocentric  coast  assumption  produces  less  uniformity  in  the  correct  value of 
r and  significantly  increases  the  propellant  error  at  other rs. It  also  decreases  the 
correct  value of r to 100 to 160 Earth  radii. Only parabolic  initial  Earth  orbit  cases 
a r e  examined here  although  the  circular  orbit  case  can  also  be  done if the  coast  phase 
begins  after  escape  energy is attained. In either  case, a planetocentric  coast  phase as- 
sumption  simplifies  the  problem  (permits  closed  form  solutions  to  the  planetocentric tra- 
jectory) at the  expense of accuracy. It should be noted here  that if the  three-body  trajec- 
tories  have a relatively  large  planetocentric  coast  arc,  instead of a thrusting  arc,  the 
right  value of r may  well  be  about 300 Earth  radii  instead of 100 to 160 Earth radii. 
This  conjecture is unresolved at the  present  time. 

S 

S 

S 

It seems  that  the  most  accurate method of approximating  the  three-body  solution is 
to  numerically  calculate both a powered  planetocentric  leg  and a heliocentric  leg. It is 
quite  possible  that  the need to  numerically  calculate  the  planetocentric  leg  can  be  removed 
through  the use of analytic  approximations  such as a r e  found in  references 11 and 12. 
This would certainly  reduce  the  required  computer  time  necessary  to  obtain  solutions  but 
still retain a high degree of accuracy. 

Lewis  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Cleveland,  Ohio,  January 24, 1968, 
789-30-01-01-22. 

18 



APPENDIX A 

SYMBOLS 

A 

B 

C 

C 

D 

E 

F/W 

d? 

k 

m 

R 

Rj 

R 
P 

RS 

r* 

r , r .  r 
1' s 

T 

V 

partial  derivative matrix 

residual  error  vector 

first integral of Euler-  Lagrange 
equation 

rocket  exhaust  velocity,  m/s 

defined by equation (43) 

defined by equation (43) 

initial  thrust-weight  ratio 

switching  function  defined by 
equation (2 1) 

damping  factor 

mass of rocket, kg 

position  vector of rocket, m 

vector  from jth gravitational 
body to  rocket,  m 

position  vector of a planet 
relative  to  the Sun,  m 

planetocentric  position  vector 
at which  the two-body 
patching  scheme is effected, 
m 

radius at which  optimal  thrust 
control  begins,  m 

magnitude of R, R and Rs, 
j' 

respectively,  m 

V, u, or m 

unit  vector  in  thrust  direction 

rocket  velocity  vector,  m/s 

characteristic  velocity  incre- 
ment,  m/s 

velocity  vector of a planet rel- 
ative  to  the Sun, m 

velocity  vector of the  rocket at 
the  patching  point,  m/s 

magnitude of V and Vs, re- 
spectively,  m/s 

coordinate  axes,  origin at Sun 
center 

coordinate  axes,  origin at 
planet  center 

X', Y' components of Rs, m 

path  angle 

vector of unknown initial  con- 
dition  variables,  usually 
composed of ho and x ,  

central  angle of rocket  relative 
to  the  X-axis 

Lagrange  multiplier  vector as- 
sociated with  velocity 

Lagrange  multiplier  vector as- 
sociated with  position 

magnitude of vector h (X is 
any  vector) 

gravitational  constant of j th 
3 2  gravitational body,  m / s  

Lagrange  multiplier  associated 
with  mass 
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Subscripts: 

f end of optimal  control 

i the ith component of a vector 

in  start of complete  trajectory 

j the jth gravitational body 

max maximum 

0 start of optimal  control 

S at the  patching  point 

Superscripts: 
- desired  value 

differentiation with respect  to 
time 
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APPENDIX B 

INITIAL VALUES OF THE ANALYTICAL  PARTIAL  DERIVATIVES 

Derived  here are the  initial  values of the  analytical  partial  derivatives  for  the two- 
dimensional  heliocentric  leg of the two-body patched  scheme.  From  equations (38) to 
(41), (45) and (46) the  required  derivatives  have  the  initial  values: 

where,  f rom equation (43), 

(g ) = -r S sin es 
0 0 

(x) ayi = rs cos es (2) 
0 0 

(E) = -vs sin (es - 0,) - 
0 ( aa:y) 0 

aD E" 

(%)o=( ;:+ 
D- 

(49) 

Specifically, if y is composed of the  components of ho and X,, then  from  equation (43): 

" aD - (;A;) - = -vs cos p, 
ay 1 0 

(53) 

2 1  



” - (3 - = vs sin ps 
a y  1 

0 

2.E =(E) = vs cos p, 
ay2 

0 

” aD -(;k;) - = 0 

a y 3  0 

= r  
a aD y4 - (;;) 0 

” aE - (;a) - = 0 

ay4  
0 

Substituting  equations (53) to (60) into  equation (52): 

+ vsrs(X1 COS Ps + k 2  sin p,) 
~~ . . ~ .  ” ~ ” ] 

D + E  2 2  
0 

2 vSxl + vsrs(X1 sin Ps - 

O L  D2 + E2 

(54) 

(57) 
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(:)o = -[ rsvs(-hl cos Ps + h2 sin P,) + rs k2 

2 2  

2 
_ _ _  ” . ~ 

D + E  

(2) 0 = 

- 
r v (x1 sin Ps + X 2  cos Ps) + s s  - 

D2 + E2 
. ~~ 

- 

0 

Finally,  substituting  equations (61) to (64) into  each of the  equations (48) to (51) leads  to 
the  sixteen  equations  that  determine  the initial values of the  analytical  partial  derivatives 
aR/ari  and  av/ayi.  These  equations  are not listed  here  in  their  completely  written  out 
form because of their  length  and  number. 

The  other  partial  derivatives  have  the initial value: 
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TABLE I. - PROBLEM CONSTANTS 

Problem  variable 

Gravitational  constant of Sun, km /sec 
Gravitational  constant of Earth,  km /sec 
Astonomical  units (AU), m 
Earth  radius,  m 
Initial  altitude  above  surface of Earth,  km 
Period of Earth  about Sun, days 
Final radius, F, m 
mnal velocity, T, m/sec 
Specific  impulse,  sec 

3 2  
3 2  

Assumed  value 

1. 32715445X1011 

1. 49599X1Ol1 
6 378 165 

185 
365.256 

2. 278X1011 
24 100 

5000 

3 .986032~10~  

TABLE 11. - SAMPLE CASES FOR  TRANSFERS FROM 185-KILOMETER 

ALTITUDE  PERIGEE  AT EARTH TO ORBIT O F  MARS 

p n g l e  between  Earth at t ime  zero and f i n a l  rocket  position, 225O.I 

Case 

1 

2 

3 

4 

Total  trip 
time, 
days 

~~ 

27 5 

275 

275 

240 
". . 

Type of 
initial  orbit 

Earth 

Characteristic 
velocity 

increment, 
AV, 

m/sec 
I 

Parabolic 

15 853 Circular 

8 074 

20 390 Parabolic 

11 318 Parabolic 

nitial  thrust-  Propellant 
Neight ratio,  fraction 

I 

0. 15185 

.27626 

0. 5 6 ~ 1 0 - ~  .20613 

I .34022 
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Figure 1. - Coordinate system definition 
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Figure 2. - Earth escape path for three-body 
solution. Initial Earth orbit, parabolic 
(case 1); initial  thrust-weight  ratio, 
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Figure 3. - Earth  escape path for  three-body  solution  (last two turns).  Initlal  Earth 
orbit,  circular  (case 2): initial  thrust-weight  ratio, 
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(b)  Initial  Earth  orbit,  circular (Case 2). 

Figure 4. - Heliocentric  trajectories for thee-body  solutions.  Initial 
thrust-weight  ratio, 
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(a)  Initial  Earth  orbit. parabolic (case 1). 
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Figure 6. - Effect  of  using  tangential  thrust instead of 
optimal  thrust  at  beginning of flight for three-body 
SOhtion.  Initial  thrust-weight  ratio, 
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Flgure 7. - Propellant  comparison  between  three-body  solution  and 
two-body solution with tangential  thrust  in  planetocentric  space. 

I I I 
Case  Initial  thrust- Planetocenb 

weight  ratio patch  velocil 
- vs 

1 Calculated 

3 0. 5 6 ~ 1 0 ' ~  Calculated 

"_ - 
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Assumed  ze  

" 

"- .- c 
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f 

100 200 300 
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;; 
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Figure 8. - Propellant  comparison  between  three-body 
a l u t i o n  and  two-body solulion  with  coasting  in  planeto- 
centric  space.  Initial  Earth  orbit.  parabolic. 
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