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ABSTRACT

Six different free fall missions that utilize the gravitational influence of a

passing planet are presented. The missions are: minimum flight time for deep

space probes, maximum inclination out of the ecliptic, maximum component of

the velocity normal to the ecliptic, maximum distance out of the ecliptic within

a specified time, minimum closest approach to the sun, and attaining a specific

value of perihelion. Any mission objective that can be defined as a function of

the heliocentric orbital parameters may also be treated. An iterative procedure

is used to optimize the post encounter orbit for the desired mission.

The patched conic assumption is used in that the actual flight path of a free

fall vehicle is approximated by conic trajectories in finding the post encounter

trajectory.

Examples are included of missions utilizing the gravitational influence of

the planet Jupiter. Without using Jupiter for an assist such missions would be

difficult to perform with our present technology.
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GRAVITY ASSISTOPTIMIZATION TECHNIQUE
APPLICABLE TO A

VARIETY OF SPACEMISSIONS

I. INTRODUCTION

Whena space vehicle is launchedona free fall trajectory in sucha manner
that it comes within the vicinity of a planet, the gravitational field of the planet
canconsiderably alter the vehicle's orbit aboutthe sun. The approach trajectory
canbe established in sucha manner that the post encounter trajectory will allow
the probe to complete many missions that otherwise could not be accomplished
by a direct flight from Earth without extreme energy or payload penalties. For
example, if it is desired to fly a solar probe mission, a direct flight must have
sufficient energy not only to escapethe Earth's gravitational field but also to
negatethe Earth's orbital velocity. If the probe is launchedwith a hyperbolic
excessvelocity of 11km/sec, the closest it will come to the sun is .25 A.U.1
If, however, the gravitational influence of the planet Jupiter is used, it is then
possible to impact the sun with approximately the same hyperbolic excess
velocity.

In a similar manner, many interesting missions may be accomplished which
otherwise would be extremely difficult or expensive. It is the purpose of this
report to develop a theoretical method of utilizing the gravitational influence of
a planet in order to accomplish someof these missions.

H. FLYBY-DETERMINATION OF POSTENCOUNTERCONDITIONS

In determining the post encounter trajectory after it has passedthrough the
gravitational field of a planet, it is assumedthat certain pre-encounter condi-
tions are known.

Assuming a fixed transfer time from a park orbit aboutthe earth to the
planet or target we may obtain an approximatetransfer trajectory to the target
as in Reference 2*. This trajectory assumes both the earth andthe target
planet to be massless points. Weobtain as a result the velocity vector (VI) of
the probe with respect to the sun at encounter with the target.

*SubroutinePLANET



Wethen take into consideration the gravitational field of the planet and
utilize the patchedconic assumptionwhich states that at any given time the
probe is under the influence of only onebody. If m and M are the masses of the
planet and sun respectively then the radius (S) of the sphere of influence is
given by

2/s

where R P is the planet's distance from the sun. We have V1 and knowing the
injection date of the probe and its transfer time we can find V P the heliocentric

velocity of the target. Reference to Figure 1 shows that V1 = V1 - _ P] where
V'I is the velocity of the probe with respect to the planet.

f

J
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Figure 1

Within the sphere of influence _, we assume that the probe's trajectory will be

hyperbolic with respect to the planet (see Figure 2). We now make a basic and
very critical assumption. We assume that V1 is now the velocity of the probe

when it enters T and that we may choose the radius of closest approach of the
---_1

probe without significantly altering the direction or magnitude of V1. This is
equivalent to assuming that while the direction and magnitude of V 1 are fixed at

the calculated value, we are still free to choose the point at which the vehicle

pierces the surface of T (point A in Figure 2). This equivalence is illustrated

in Figure 2: for a given asymtote and energy at entrance to _, the entire tra-

jectory within % including the RCA, is determined by the location of point A.



That our assumption is valid is indicated by Table 1 where Vl = V1 - V 1lies
along the S° vector (Figure 2). This table was compiled for both retrograde
and posigrade flybys of the planet Jupiter and for a radius of closest approach
varying from 100,000to 10,000,000km.* The values for RCA span a far larger
region thanwe are interested in.

Table 1

Posigrade
RCAx l0 s km

1

5

10

50

100

Retrograde

1

5

10

50

100

Right Ascension

(DEG)

161.38295

161.36287

161.34038

161.10998

160.75975

161.43148

161.48549

161.53529

161.82623

162.11483

Declination

(DEG)

-.037895218

-.037826118

-.037764311

-.037458739

-.037179910

-.037922481

-.037896001

-.037877017

-.037871506

-.037958746

(km/sec)

13.863505

13.873625

13.882193

13.910651

13.922712

13.863560

13.873828

13.882264

13.910774

13.923062

A convenient method for specifying the location of point A and the radius of

closest approach is to select the magnitude of the miss vector (fill = BMAG in

Figure 2) and an angle V), measured between the B vector and a fixed vector in

the planet's orbital plane.

I

Now, the total effect of the encounter is simply to rotate Vl thru an angle y,
as illustrated in Figures 1 and 2, since we must have

Iv1 =

if" energy is to be conserved.

*Table 1 was generated using the refine option of the Quick Look Program (Reference 2).
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V2

V1

Figure 2

We may readily calculate y if BMAG is specified:

let a' : semi major axis of the hyperbolic trajectory in z.

then

a I

_p S

2t_p - s I_; t_

from the energy equation.

From Figure 2 and the properties of an hyperbola we have the eccentricity

1
e I = ---

COS 6 where e is the half angle between tile asymptotes

IBI BMAG
and sin c - - (cos E)

a _ e _ a _

Therefore tan c
BMAG

I
a
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Now _y -- _ - 2E or

In order to compute V2we now needto define the secondvariable _bwhich with
BMAG will define the entrance point on z. We establish an orthogonal coordinate
systemconsisting of the unit vectors _o, _o, and _o in the following manner:

V1
_o - lies along the incoming asymptote. Let _o be a unit vector perpen-

dicular to the planet's orbital plane, then

To = to × _o, _o lies in the plane of the planet's orbit

rio :

Figure 3 shows VI' V2' and _ in relation to this coordinate system.

/
i

/
/

/
/

Figure 3

Since B _ _o, _ lies in the plane formed by T ° and _o. Also, since the hyper-

bolic orbit lies in a plane B, V1, and V2 must lie in the same plane. We define

our second variable _ to be the angle between _o and B measured from _o to
-_,

_o. Now with reference to Figure 4 we may decompose V2 into its components



Figure 4

along _o, _o, _o and obtain

V2 = IV'If ° cos "v - sin 7 o sin _ + _o cos _ .
k

For a first approximation we asstmm the time spent in 7 to be negligible and
._,.!

therefore we let vP : V_,then V2 = V2 + V_ (the heliocentric departure

velocity). Similarly if R2 is the position vector of the departing probe We may

assume R: - R P1where R P is the heliocentric position of the planet correspond-

ing to vP.

We now use the approximate values R2 and V2 of the probe to obtain a more

accurate estimate of the post encounter position and velocity. As before we have

1
Cos __ = --

I
e

1 +Cos 2c 1and Cos _ 2 e'

and with reference to, Figure 2 we see that

i ) ._,,I t

1/then e' =
1 + Cos 2_

Iv', Iv:lco, ,,



e I 2

I ___4!

= _/I V2

__#! .___!

qVllIv_q

I

e

]_[, -"
I Iv21 -vl " v2

p=a, (1- e, =
_- we use the radius equation and obtain

the semi latus rectum. To find the true anomaly at exit from

: Cos- 1[ :os1
The time from periapsis to true anomaly _ is calculated,* which is one half the

total time spent in 7. With this time, we may step forward and backwards along

the heliocentric orbit to obtain new values for V1, U P,VP,RP, andRP: We then

recalculate a' , Y, _o, To, _o, V'2' P and _ exactly as we did before. We re-

peat this iterative procedure until time from periapsis is within a predetermined

tolerance. Then V2 = V2 + V P using the values from the last iteration only.2

We now need R2, the heliocentric position of the probe when it leaves _-. To

calculate this we first calculate a unit vector _o along B. From Figure 4

_o : Cos ¢7 ° + sin _°

and from Figure 2 we find

_._#!

R_ : s[fioco_(8+_/2- _) ÷_o Co_ (e- _)]

then R2 = R_ + R2

From R2 and V2"we may now calculate the post encounter helioeentric

trajectory. From the area integral

* Reference 2, Subroutine TCONIC.



1
The Hamilton Integral for the post encounter trajectory is _q2: p- H2 × (R_ + e)

where e is a vector in the direction of perigee.

Upon cross multiplying on the right by H2 we obtain

e _S 2

then e : l e]

also D
H2 " fi2

/_s
- a(1 - e 2)

and from this we obtain a.

equation r
_(1 - e 2)

1 + e Cos

The true anomaly is easily obtained from the radius

and the inclination by taking the dot product of H2

and a unit vector perpendicular to the ecliptic. We now have the standard

elements needed to compute the total trajectory.

HI. POST ENCOUNTER

Maximum distance out of the ecliptic within a given time

Appendix A describes a procedure for obtaining the maximum distance out

of the ecliptic that any given post encounter trajectory attains. When the period

of the orbit is large, it may not be realistic for a mission to be based on reach-

ing such a distance. A more useful mission might be to attain the maximum

distance possible within a specified time (4 t) from post encounter.

From A t and the position and velocity vectors (R and V) at departure

from z, the position and velocity (Rt, Vt) of the probe at time A t can be

computed.* Figure 5 shows the orbit with respect to the line of intersection

with the ecliptic plane where the points P and P' represent the maximum

distances out of the ecliptic as discussed in Appendix A.

By defining u ° to be a unit vector along the line of intersection it is easily
seen that

i Reference 2, Subroutine STEPD.



_of intersection of

ecliptic and orbital plane

Figure 5

If i is the inclination of the orbit to the ecliptic then the distances out of the
ecliptic are

d = D sin i

d I = D I sin i

we now have computed four distances out of the ecliptic: the two maxima

associated with P and p', and d and dl. To determine which of these distances

is the maximum reached within ZXt we define _o to be a unit vector perpendi-

cular to the ecliptic and form the dot products V • T ° and Vt " _o. If these

quantities are both positive or negative then the maximum distance is the

larger of d, dl. If the dot products are of opposite sign then the proper solu-
• . ! " ° -'*O

tion is one of the distances associated w_th P and P. The sign of V • k

determines the correct one. Finally ff either dot product is zero then we are

already at the maximum.

The distance thus found is the functional value to be used in the optimization

process.



Minimum Time for Deep Space Probes

In this option we compute the time from post encounter to a given heliocen-

tric distance (x A.U.'s). Using the post encounter elements, apogee is calculated

by

r a = a(1 + e)

For this option we therefore must have

r > x A.U.
a

Knowing the true anomaly at departure enables us to calculate* the time t
o

from periapsis to that value of the anomaly. The true anomaly of the probe at
r = x A.U. is

a(1 - - r]= Cos-I re

and from this we may calculate the time (tt) from periapsis to x A.U. The
functional value we then wish to minimize is

t 1 - t o

Maximum Inclination to the ecliptic

From the position and velocity vectors (R and V) of the post encounter

trajectory we obtain the angular momentum vector H = R × V . If k° is a unit

vector perpendicular to the ecliptic then

. _o
- Cos i where i is the inclination

The maximum value of i occurs at 90 ° or Cos i = 0. The functional value for

the optimization process is ICos i[.

Maximum velocity component normal to the eclipti c

For this option we easily obtain that component of the velocity vector which

is normal to the ecliptic from V • t ° , where V and _o are defined as above. In

* Reference 2, Subroutine TCONIC.
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the ideal case this would occur at perigee andtherefore the post encounter
trajectory should have a true anomaly near zero.

Minimum perihelion distance

Perihelion (rp) is determined from rp = a (1 -e). For this option it is

desirable for the probe to be moving toward perigee so that perihelion is

reached within a reasonable time. The optimization routine therefore constrains

the true anomaly to be greater than 180 degrees.

Specific perihelion distance

In this option it is desired to determine a post encounter trajectory which

makes rp equal to a specified value. Again true anomaly is constrained to be

greater than 180 degrees. The functional value to be minimized is the absolute

value of the difference between the desired and actual values of rp.

Additional Missions

The above options were analysed as examples of the class of mission ob-

jectives that are useful in a gravity assist program.

Further options that can be defined as functions of the post encounter

trajectory parameters may be included and treated in a manner similar to the
above missions.

IV. OPTIMIZATION PROCEDURE

As previously described, BMAG and _ completely determine the post en-

counter trajectory for a given 41. This orbit is then used to obtain one of the

post encounter missions described above.

However, for any given mission, the original independent variables will not

be those which give the optimum for the mission desired. To accomplish the

optimization of the particular mission, a multi-variable nonlinear iterator* is

used which systematically alters the independent variables, calculates a new

post encounter trajectory and a new functional value for the iterator to use in

the next iteration. The functional value is that quantity to be maximized or

minimized depending on the mission chosen. The iterating process continues

until an optimum value is achieved.

*Reference 3.
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\7. EXAMPLES

In Tables 2 through 7, examples of each mission is given for five and six

hundred day transfer times to the planet Jupiter. It is seen that some trajectories

may be used for more than one purpose. For example the 500 day transfer for

attaining a perihelion of .25 A.U. also may be used for out of the ecliptic studies
since it reaches a distance of .9 A.U. from the ecliptic. As one might expect,

missions out of the ecliptic show a certain symmetry in that the probe can pass

above or below the planet with one trajectory being essentially an inversion of

the other.

Tables 8 and 9 show that for a specific perihelion and for maximum inclina-

tion out of the ecliptic there is a range over which _b may vary and still permit

a successful mission to be performed. In Table 8, for _b between ±15 ° the peri-

helion distm_ce of .25 A.U. is reached by varying BMAG. Table 9 shows that

high inclination is attained along _ith useful distances out of the ecliptic for the

ranges

10° < _!60 °

-60 ° <__b < - 10°

For _ : ±10 °, the probe will reach only about 1/2 A.U. out of the ecliptic before

impacting the sun. However, for a multipurpose mission this may be acceptable.

12
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APPENDIX A

Maximum Distances out of the Ecliptic

When the post encounter trajectory takes the probe out of the ecliptic plane

it would be meaningful for certain missions to know the maximum distance out

of the ecliptic that the probe attains. Clearly this implies that the trajectory is

an ellipse. Such a trajectory with a relatively small period would be extremely

useful in studying those regions of space above and below the ecliptic.

Figure 6 shows a typical post encounter trajectory which is inclined to the

ecliptic by an angle i. The vector _ is directed toward perigee; H : R x

and is perpendicular to the orbital plane and k° is a unit vector perpendicular

\
I
I

/
/

/
/

Figure 6
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to the ecliptic. _e is the angle formed by the vector -_ and the vector _o ×

which lies along the line of intersection of the two planes. The angles i and
e

are easily found from the post encounter trajectory as follows:

Cos i - I_1

e ITo × _1 I-_1

To compute the maximum distances both above and below the ecliptic it is

convenient to consider a coordinate system with origin at the center of the ellipse
and with the X axis along-_. Referring to Figure 7 we compute the maximum

distance from the ecliptic at the point (Xo, Yo )"

X
e o

DI|

Figure 7
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From the post encounter trajectory, a and e = lel are already known. The

equation of an ellipse is

(y = _+b 1 - a2]
where

and

b = a ¢1- e2

dy Xb (1
- +dx --at

at (Xo, Yo) we must have

b( X2) oX° -- 1 = ± Tan 0
a2 a2 e

so that

No 2

a 4 Tan 2
e

b 2 + a 2 Tan 2 _?
e

substituting for b

Xo 2

a 2 Tan 2
e

1 - e 2 + Tan 2 _9
e

then Yo = a 1- e 2 1 °
a 2

where we consider only the absolute values of Xo and Yo. From Figure 7

Y
o

D'
Cos 0

e

Dr_

• Xo > 0Sin 0 e = Xo - f + a e '
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thus D" = X ° Sin _e - /: Sin _e + a e Sin 0¢

also Tan 90 - 0 = cot
e e

then _ =
Yo Sin _e

Cos (_
e

finally D : D° + D" = X° Sin _e --

Y
o

= " Y >0
_ O

Y Sin 2
o e

Cos 0
e

+ ae Sin 0 +--
e

Y
o

Cos
e

or D = X ° Sin 9e + Yo Cos 0 e + ae Sin 0 e (I)

for the distance on the opposite side of the ecliptic we obtain similarly

D2 = Yo Cos Oe + Xo Sin 0 c - a e Sin 0 e (2)

Finally, the distances out of the ecliptic are

d 1 = D Sin i

d 2 = D 2 Sin i .

The distance computed using equation (1) will be the maximum distance

(dl) attained by the probe. That distance obtained from equation (2) is the

maximum distance on the other side of the orbit (d2). If k ° • e > 0 then d 1

is positive and above the ecliptic while d 2 is below the ecliptic; the opposite is
true if k° • e is less than zei'o.
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APPENDIX B

BLOCK DIAGRAM OF COMPUTER PROGRAM

QUICK LOOK PROGRAM calculates V1 and

time from 1950

1 i

SUBROUTINE FXMISS

ca!culates position and velocityof target

planet at given time

calls FCTS for initial printout

initialize for the iterator

calls MINMAX (iterator)

calls FCTS for final printout

I--
u
ii

IJJ
Z

I---

o
ry
rn

calls FLYBY to calculate

the post encounter trajectory

calls FUNCTN to calculate

the function to be optimized.

calculates the true anomaly

constraint if true anomaly

is to be negative (min.

perhel ion)
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