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ABSTRACT

Six different free fall missions that utilize the gravitational influence of a
passing planet are presented. The missions are: minimum flight time for deep
space probes, maximum inclination out of the ecliptic, maximum component of
the velocity normal to the ecliptic, maximum distance out of the ecliptic within
a specified time, minimum closest approach to the sun, and attaining a specific
value of perihelion. Any mission objective that can be defined as a function of
the heliocentric orbital parameters may also be treated. An iterative procedure
is used to optimize the post encounter orbit for the desired mission.

The patched conic assumption is used in that the actual flight path of a free
fall vehicle is approximated by conic trajectories in finding the post encounter
trajectory.

Examples are included of missions utilizing the gravitational influence of

the planet Jupiter. Without using Jupiter for an assist such missions would be
difficult to perform with our present technology.
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GRAVITY ASSIST OPTIMIZATION TECHNIQUE
APPLICABLE TO A
VARIETY OF SPACE MISSIONS

I. INTRODUCTION

When a space vehicle is launched on a free fall trajectory in such a manner
that it comes within the vicinity of a planet, the gravitational field of the planet
can considerably alter the vehicle's orbit about the sun. The approach trajectory
can be established in such a manner that the post encounter trajectory will allow
the probe to complete many missions that otherwise could not be accomplished
by a direct flight from Earth without extreme energy or payload penalties. For
example, if it is desired to fly a solar probe mission, a direct flight must have
sufficient energy not only to escape the Earth's gravitational field but also to
negate the Earth's orbital velocity. If the probe is launched with a hyperbolic
excess velocity of 11 km/sec, the closest it will come to the sun is .25 AUl
If, however, the gravitational influence of the planet Jupiter is used, it is then
possible to impact the sun with approximately the same hyperbolic excess
velocity.

In a similar manner, many interesting missions may be accomplished which
otherwise would be extremely difficult or expensive. It is the purpose of this
report to develop a theoretical method of utilizing the gravitational influence of
a planet in order to accomplish some of these missions.

II. FLYBY-DETERMINATION OF POST ENCOUNTER CONDITIONS

In determining the post encounter trajectory after it has passed through the
gravitational field of a planet, it is assumed that certain pre-encounter condi-
tions are known.

Assuming a fixed transfer time from a park orbit about the earth to the
planet or target we may obtain an approximate transfer trajectory to the target
as in Reference 2*. This trajectory assumes both the earth and the target
planet to be massless points. We obtain as a result the velocity vector (V;) of
the probe with respect to the sun at encounter with the target.

* Subroutine PLANET



We then take into consideration the gravitational field of the planet and
utilize the patched conic assumption which states that at any given time the
probe is under the influence of only one body. If m and M are the masses of the
planet and sun respectively then the radius (S) of the sphere of influence is

given by
m\2/5
- (2 P
S (M) R

where R is the planet's distance from the sun. We have V and knowing the
injection date of the probe and its transfer time we can flnd V 1 the hehocentl ic

veloc1ty of the target. Reference to Figure 1 shows that V = V1 - whcre
v1 is the velocity of the probe with respect to the planet.
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Figure 1

Within the sphere of influence 7, we assume that the probe's trajectory will be
hyperbolic with respect to the planet (see Flgure 2). We now make a basic and
very critical assumption. We assume that V1 is now the velocity of the probe
when it enters 7 and that we may choose the radius of closest approach of the
probe without significantly altering the direction or magnitude of V'; This is
equivalent to assuming that while the direction and magnitude of Vi are fixed at
the calculated value, we are still free to choose the point at which the vehicle
pierces the surface of + (point A in Figure 2). This equivalence is illustrated
in Figure 2: for a given asymtote and energy at entrance to v, the entire tra-
jectory within r, including the RCA, is determined by the location of point A.



That our agssumption is valid is indicated by Table 1 where V1 = V1 - V 1 lies
along the S° vector (Figure 2). This table was compiled for both retrograde
and posigrade flybys of the planet Jupiter and for a radius of closest approach
varying from 100,000 to 10,000,000 km.* The values for RCA span a far larger
region than we are interested in.

Table 1
s° |V, |
Posigrade Right Ascension Declination (km/sec)
RCA x 105 km (DEG) (DEG)
1 161.38295 -.037895218 13.863505
5 161.36287 -.037826118 13.873625
10 161.34038 -.037764311 13.882193
50 161.10998 -.037458739 13.910651
100 160.75975 -.037179910 13.922712
Retrograde
1 161.43148 -.037922481 13.863560
5 161.48549 -.037896001 13.873828
10 161.53529 -.037877017 13.882264
50 161.82623 -.037871506 13.910774
100 162.11483 -.037958746 13.923062

A convenient method for specifying the location of point A and the radius of
closest approach is to select the magnitude of the miss vector (1§| = BMAG in
Figure 2) and an angle ¢, measured between the B vector and a fixed vector in
the planet's orbital plane.

Now, the total effect of the encounter is simply to rotate V thru an angle v,
as illustrated in Figures 1 and 2, since we must have

if energy is to be conserved.

*Table 1 was generated using the refine option of the Quick Look Program (Reference 2).
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Figure 2

We may readily calculate y if BMAG is specified:

let a' = semi major axis of the hyperbolic trajectory in .

then

Ho S
a = m—
2u, = S|V}

from the energy equation.

From Figure 2 and the properties of an hyperbola we have the eccentricity

. 1
€ 7 cos € where € is the half angle between the asymptotes
. Bl _  BMAG
and sine= ——— = — (cos €)
a e a
BMAG

Therefore tan ¢ = '
a




Now » = m - 2¢ or

BMAG)

v oo = 2tan—1( -

In order to compute Vz we now need to define the second variable ¥ which with
BMAG will define the entrance point on 7. We establish an orthogonal coordinate
system consisting of the unit vectors S° T°, and R° in the following manner:

So = 1]? lies along the incoming asymptote. Let k° be a unit vector perpen-
dicularl'\it)lthe planet's orbital plane, then

T° = k° x S°, T° lies in the plane of the planet's orbit

Ro = 8o x o

Figure 3 shows VI, Vz’ and B in relation to this coordinate system.

Figure 3

Since B _L_ §°, B lies in the plane formed by T° and R°. Also, since the hyper-
bolic orbit lies in a plane B . V;, and Vg must lie in the same plane. We define
our second variable | to be the angle between T° and B measured from T° to
R°. Now with reference to Figure 4 we may decompose V; into its components



Figure 4

along Se, T°, R° and obtain
Vz = !VJ{@’ cos v = sin 'y[§° sin ¢ + T° cos x,[/]} .
L

For a first approxlmatlo% we assume _the t1me spent in 7 to be negligible and
therefore we let V5 7 - V1 then V = V2 + Vl (the heliocentric departure
velocity). S1m11arly if R, is the posmon vector of the departing probe we may
assume R = R where RP is the heliocentric position of the planet correspond-

ing to V5.

We now use the approximate values §2 and Vz of the probe to obtain a more
accurate estimate of the post encounter position and velocity. As before we have

1

Cos ¢ = —

e
/1 + Cos 2 ¢ 1
and Cos ¢ =}—F—— = -
2 e

and with reference to Figure 2 we see that
\71 . Vz = |—\"1| |_‘72| Cos (7 = 2¢) = - HI’I‘ |V2| Cos 2¢

N S
then e =} o5 2.



e' = 1_ Vl V2

IV, 1V,

NARTANA
e = i ] ] 1
y H}1| |V2i -V, v,

p=a' (1 - e 2) = the semi latus rectum. To find the true anomaly at exit from
7 we use the radius equation and obtain

o - Cos-l[f)_}s_}
Se

The time from periapsis to true anomaly & is calculated,* which is one half the
total time spent in 7. With this time, we may step forward and backwards along
the heliocentric orbit to obtain new values for \71, VF;, V‘;, ﬁlf, andﬁ‘;: We then
recalculate a', 7, §°, Te, Re, V;, o and 9 exactly as we did before. We re-
peat this iterative procedure until time from periapsis is within a predetermined

tolerance. Then V, = V; + V? using the values from the last iteration only.

We now need ﬁz, the heliocentric position of the probe when it leaves 7. To
calculate this we first calculate a unit vector B® along B. From Figure 4

B° = Cos LL‘T° + sin ¢/§°
and from Figure 2 we find

R, = S[B° Cos (9 + m/2 - ¢) + ¥ Cos (¢ - &)]

—_!

— _ =P
then R, = R, +R,

From ﬁz and V" we may now calculate the post encounter heliocentric
trajectory. From the area integral

R2><V2 = H

*Reference 2, Subroutine TCONIC .



The Hamilton Integral for the post encounter trajectory is V2 = ﬁ2 x (ﬁg + _é)

© |-

where e is a vector in the direction of perigee.

Upon cross multiplying on the right by ﬁ2 we obtain

then e = |el

also p = —— = a(l-ez)

and from this we obtain a. The true anomaly is easily obtained from the radius

3(1 - e?

ti =
equation r 1+ eCos 9

and the inclination by taking the dot product of ﬁz

and a unit vector perpendicular to the ecliptic. We now have the standard
elements needed to compute the total trajectory.

III. POST ENCOUNTER

Maximum distance out of the ecliptic within a given time

Appendix A describes a procedure for obtaining the maximum distance out
of the ecliptic that any given pdst encounter trajectory attains, When the period
of the orbit is large, it may not be realistic for a mission to be based on reach-
ing such a distance. A more useful mission might be to attain the maximum
distance possible within a specified time (At) from post encounter.

From At and the position and velocity vectors (ﬁ and V) at departure
from 7, the position and velocity (ﬁt , Vt) of the probe at time At can be
computed.* Figure 5 shows the orbit with respect to the line of intersection
with the ecliptic plane where the points P and P' represent the maximum
distances out of the ecliptic as discussed in Appendix A.

By defining u° to be a unit vector along the line of intersection it is easily
seen that

~Reference 2, Subroutine STEPD.



line of intersection of
ecliptic and orbital plane

Figure 5

If i is the inclination of the orbit to the ecliptic then the distances out of the
ecliptic are

d = Dsin i
dl = D1 sin 1

we now have computed four distances out of the ecliptic: the two maxima
associated with P and P', and d and d;. To determine which of these distances
is the maximum reached within At we define k° to be a unit vector perpendi-
cular to the ecliptic and form the dot products V + k° and Vt - k°. If these
quantities are both positive or negative then the maximum distance is the

larger of d, d;. If the dot products are of opposite sign then the proper solu-
tion is one of the distances associated with P and P'. The sign of V- k°
determines the correct one. Finally if either dot product is zero then we are
already at the maximum.

The distance thus found is the functional value to be used in the optimization
process.



Minimum Time for Deep Space Probes

In this option we compute the time from post encounter to a given heliocen-
tric distance (x A.U.'s). Using the post encounter elements, apogee is calculated
by
r = a(l+e)

a

For this option we therefore must have
r, > x A.U.

Knowing the true anomaly at departure enables us to calculate* the time t
from periapsis to that value of the anomaly. The true anomaly of the probe at

r = xA.U.is
a(l - ez) -r
4 = Cos™! re

and from this we may calculate the time (t,) from periapsis to x A.U. The
functional value we then wish to minimize is

Maximum Inclination to the ecliptic

From the position and velocity vectors (§ and V) of the post encounter
trajectory we obtain the angular momentum vector H = Rx V. If k° is a unit
vector perpendicular to the ecliptic then

— -
o

= Cos i_where i is the inclination

-

|H]

The maximum value of i occurs at 90° or Cos 1 = 0. The functional value for
the optimization process is |Cos i|.

Maximum velocity component normal to the ecliptic

For this option we easily obtain that component of the velocity vector which
is normal to the ecliptic from V - k°, where V and k°are defined as above. In

*Reference 2, Subroutine TCONIC.
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the ideal case this would occur at perigee and therefore the post encounter
trajectory should have a true anomaly near zero.

Minimum perihelion distance

Perihelion (rp) is determined from r, = a (1 -e). For this option it is
desirable for the probe to be moving toward perigee so that perihelion is
reached within a reasonable time. The optimization routine therefore constrains
the true anomaly to be greater than 180 degrees.

Specific perihelion distance

In this option it is desired to determine a post encounter trajectory which
makes r, equal to a specified value. Again true anomaly is constrained to be
greater than 180 degrees. The functional value to be minimized is the absolute
value of the difference between the desired and actual values of rg.

Additional Missions

The above options were analysed as examples of the class of mission ob-
jectives that are useful in a gravity assist program.

Further options that can be defined as functions of the post encounter
trajectory parameters may be included and treated in a manner similar to the
above missions.

IV. OPTIMIZATION PROCEDURE

As previously described, BMAG and  completely determine the post en-
counter trajectory for a given V;. This orbit is then used to obtain one of the
post encounter missions described above.

However, for any given mission, the original independent variables will not
be those which give the optimum for the mission desired. To accomplish the
optimization of the particular mission, a multi-variable nonlinear iterator* is
used which systematically alters the independent variables, calculates a new
post encounter trajectory and a new functional value for the iterator to use in
the next iteration. The functional value is that quantity to be maximized or
minimized depending on the mission chosen. The iterating process continues
until an optimum value is achieved.

*Reference 3.

11



V. EXAMPLES

In Tables 2 through 7, examples of each mission is given for five and six
hundred day transfer times to the planet Jupiter. It is seen that some trajectories
may be used for more than one purpose. For example the 500 day transfer for
attaining a perihelion of .25 A.U. also may be used for out of the ecliptic studies
since it reaches a distance of .9 A.U. from the ecliptic. As one might expect,
missions out of the ecliptic show a certain symmetry in that the probe can pass
above or below the planet with one trajectory being essentially an inversion of
the other.

Tables 8 and 9 show that for a specific perihelion and for maximum inclina-
tion out of the ecliptic there is a range over which y may vary and still permit
a successful mission to be performed. In Table 8, for ¥ between £15° the peri-
helion distance of .25 A.U. is reached by varying BMAG. Table 9 shows that
high inclination is attained along with useful distances out of the ecliptic for the
ranges

10° < < 60°
-60° < Y < - 10°

For y = +10°, the probe will reach only about 1/2 A.U. out of the ecliptic before
impacting the sun. However, for a multipurpose mission this may be acceptable.

12
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APPENDIX A

Maximum Distances out of the Ecliptic

When the post encounter trajectory takes the probe out of the ecliptic plane
it would be meaningful for certain missions to know the maximum distance out
of the ecliptic that the probe attains. Clearly this implies that the trajectory is
an ellipse. Such a trajectory with a relatively small period would be extremely
useful in studying those regions of space above and below the ecliptic.

Figure 6 shows a typical post encounter trajectory which is 1nchned to the
ecliptic by an angle 1. The vector @ is dlrected toward perigee; H = RxV
and is perpendicular to the orbital plane and k° is a unit vector perpendicular

ECLIPTIC PLANE

Figure 6
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to the ecliptic. 6_ is the angle formed by the vector & and the vector k° x H
which lies along the line of intersection of the two planes. The angles i and o,
are easily found from the post encounter trajectory as follows:

AR
Cos i =

|H|

Cos & = (k° xH) + e
S Te k° x #| |3l

To compute the maximum distances both above and below the ecliptic it is
convenient to consider a coordinate system with origin at the center of the ellipse
and with the X axis along .. Referring to Figure 7 we compute the maximum
distance from the ecliptic at the point (X_, Y_).

<

—-~——————— a ——-7
Figure 7

23



From the post encounter trajectory, a and e = l'e| are already known. The

equation of an ellipse is

x2 \*
y = +b (1 -~ where
a2
b = ayl-e?
and
dy Xb x2 %
EERr I G

at (X_, Y,) we must have

b X2\ "
X — (1 -— = 4+ Tan &
© a2 32 €
so that
at Tan? &
X 2 =
° b2 + a? Tan? &
a? Tan? @
X 2 =
° 1 - e2 + Tan? @
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thus D" = X Sin §_ - £ Sin §_ + ae Sin 6_

Y
also Tan 90 -9 = cot B = —; Y >0
e e é’ o —
Y, Sin c9e
then & =~ G
Y, Sin? 0, Y,
finally D = D' + D' = X Sin 6, -—C—C)Ww‘ ae Sin §_ * Cos )
or D = X, Sin(9e+Y0 Cos 0, + ae Sin 6,

for the distance on the opposite side of the ecliptic we obtain similarly

D, = Y, Cos 98 + Xo Sin 98 ~ ae Sin He

Finally, the distances out of the ecliptic are

d, D Sin i

d, = D, Sini.
The distance computed using equation (1) will be the maximum distance

(d,) attained by the probe. That distance obtained from equation (2) is the
maximum distance on the other side of the orbit (d,). If k° * e > 0 then d,

(1)

(2)

is positive and above the ecliptic while dé is below the ecliptic; the opposite is

true if k° * e is less than zero.
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APPENDIX B

BLOCK DIAGRAM OF COMPUTER PROGRAM

QUICK LOOK PROGRAM calculates ¥} and

time from 1950

'

SUBROUTINE FXMISS

calls FLYBY to calculate

the post encounter trajectory
calculates position and velocity of target

planet at given time

calls FUNCTN to calculate

ks the function to be optimized.
calls FCTS for initial printout -—’“ O
w
Z
-
) calculates the true anomaly
initialize for the iterator 8 -
Py constraint if true anomaly
D - .
n is to be negative (min.
- perhelion)
calls MINMAX (iterator) |
' . =
calls FCTS for final printout  ——]
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