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COMPUTER SIMULATION OF THE EVOLUTION.OF SPIRAL GALAXIES
By Frank Hohl

NASA Langley Research Center
ABSTRACT

A two-dimensional model is used to perform computer experiments for a
collisonless self-gravitating system. The gravitational field is obtained by
solving the Poisson equation and the system is advanced stepwise in time. Com-
puter simulations have been performed for systems with an initially uniform dis-
tribution over a circular or elliptical region in x-y space, zero thermal
velocity, and with given values of initial solid-body rotation. Up to
10 000 stars are used in the calculations. As such systems evolve in time
they display the various shapes observed in actual galaxies. It is found that

some of the calculations recently reported cannot be considered collisionless.

INTRODUCTION

Actual stellar systems, such as galaxies, contain about 1011 stars of
sufficiently large average separation so that binary encounters between stars
can be neglected. Stellar systems can therefore be described by the collision-
less Boltzmann equation. In order to simulate the evolution of such stellar
systems on a computer one would like to follow the motion of at least several
thousand masses or stars. Hohl and Feix (refs. 1 and 2) and Lecar (ref. 3)
used one-dimensional sheet models to study the evolution of self-gravitating
systems. A similar model where the motion of a large number of concentric

spherical mass shells is followed has been used by Henon (refs. 4 and 5).

Recently Hockney (ref. 6) and Hohl (refs. 7 and 8) introduced a two-dimensional




model where the stars are represented by infinitely long mass rods. In the
present paper the results of some simple experiments with the two-dimensional
model are given. The calculations show that spiral and other structures similar

to those of some actual stellar systems can be obtained by purely gravitational

effects.

DESCRIPTION OF THE MODEL

The model consists of a large number of rods of mass m per unit length
and the rods are of infinite extent in the z-direction. These rods move in
the x-y plane under the action of their mutual gravitational attraction.

The system of mass rods is advanced in time in the following manner. First,
the distribution of mass p{x,y) 1is used to obtain the gravitational potential
@(x,y) by numerically solving the Poisson equation. Second, the gravitational
field at the position of the particles is computed from the potential o(x,y).
Third, using Newton's laws the motion of all the mass rods is advanced for a
constant time step &t. These three steps represent one cycle and they are
repeated until the desired evolution of the system is achieved.

The crucial point in the computationg is the solution of the Poisson
equation. Tt is desirable that the time required for this process be only a
small fraction of the cycle time. If the system is advanced for a small time
step ©®t the mass distribution p(x,y) will not change very much. The
change in the gravitational potential will then also be very small. Thus, the
solution of the finite difference form of the Poisson equation by an iteration
method which uses the potential from the previous cycle as an initial guess
will converge very rapidly. The accuracy of the iterative solution of the

Poisson equation is continually checked during the calculations. This is done




by obtaining the values of the potential and the field at several selected
points by summing directly the contribution from each star. The values so
obtained agree with those obtained from the solution of the Poisson equation
to at least the first three digits. For a 10 000 star system with a
101 x 101 grid to solve the Poisson equation the cycle time is 7 seconds on the
Langley Research Center's CDC 6600 data processing system. This time includes
such operations as the checking of the gravitational potential, the calculation
of the energy and angular momentum, and writing the positions and velocities
of all stars on tape.

To solve the Poisson equation one first requires the boundary conditions
around the rectangular mesh. The potential at an arbitrary boundary point

Z = X + 1y can be written as

o(z) = 2G Z Pn,m ln|z - Zn.m (1)
n,m
where Zn,m = ¥n,m * iyn,m is the coordinate of the cell n,m of the rectang-

ular mesh, is the mass density in that cell and G 1is the gravitational

Pn,m

constant. Equation (1) can be written as

= + 2 Re|in(1 - ZRoD (2)
o(x,y) = 2GNm 1n|z| G Pp,m Re|n{l - =

n,m

where N 1s the total number of stars in the system. Since pn,m is nonzero

Zn,m
z

only for < 1, equation (2) can be written as

ax
@(X,y) = 2GNm lnlzl - 2G Re —— (3)
— kzf

[



where
- k
ax = }Z pn,mZn,m (4)
n,m
Z
and the series expansion for ln(l - —%?E) has been truncated after 15 terms.
The Poisson equation
2 2
o , 0% _ bnGo(x,y) (5)
2 2
ox oy

is solved by using the standard five-point difference equation

Po+l,m ¥ Pn,m+l * Pn-im Y Pnym-1 - l+ch,m = ““Gpn,m (6)

where Ax = Ay = 1 so that fh.m represents the number of mass rods in the
2
cell n,m. This set of simultaneous equations is solved by an iteration method

on the CDC 6600 data processing system in the form

r+1 _ . r r+l r r+l r r
%om = %n,m T 7(an-l,m * 9,1,m * Pn,m-1 t Pn,mel - 4Pn,m - hnGpn,m) (7)
The superscript r refers to the rth iteration and the parameter 7y is

adjusted to give the maximum rate of convergence.

The differential equations of motion for the stars are

oo
d“R:
—d = -I-(-)(-I_{J,t) (8)
at?
dR
—J -7, (9)
at J

where R is the position of a star and K is the gravitational field. The

evolution in time of the particle trajectories is given by the finite difference




approximation

2
- _%. - 8t i d
Rj(t + 5t) = RJ(t) + Vj(t)at + = K Rj,t) (10)
V.(t + t)—?(t)+ﬁ’*tt+5t2df (11)
Vit o) = Vy(e) + W{E,eor ¢ O
__)
where %% was approximated by the backward difference
= =,
&®. 1 K(ﬁ’-,t) - ?(?f.,t - 6t> (12)
at st \ Y J

Equations which were found to be as accurate as equations (10) and (11)

but which require fewer computer operations are

v, (t + -2-) - Vj( . 2_) + BtK(RJ-,t> (13)
E’-(t + 8t) = ﬁ-(t) + atV t + 2t (1)
J J J 2
—9
The term 9 in equation (11) was introduced to remove a computational insta-
dt

bility. Similarly, the use of the new velocity in equation (14) removes an
unconditional computational instability.

The kinetic energy of the system is

N
T=1n z V" (15)
2
3=1
and the potential energy is
N
=1 R
paln ) off) 0
=1

where the summation goes to N, the number of stars in the system. The total



energy of the system U remains constant and is

U=T+ P (17)

The relaxation time (ref. 9) for the two-dimensional model is of interest
to determine for how long the system can be treated as collisionless.
Consider an encounter between a rod of mass m and velocity V with a
stationary rod of mass M. If D 1is the distance of closest approach (impact
parameter) then the transverse force acting on the moving star during a time
2D/V can be approximated as 2GmM/D. The moving star has therefore acquired

a transverse velocity

8V = LGM/V (18)

For a star interacting with a system containing many stars the effect of many
individual encounters must be summed. The number of encounters in a time t
with impact parameter between D and D+ dD is tVn dD where n 1is the
density of stars in the system. The expectation value of Vl2 is then given

by
D

max
202
Jf 16tnG2M2 1
D

2
w,®> 5

min

16t062M2 (D ~ Diyin )V

16tnG2MED . [V (19)

since in general Dp,x > Dpi, where Dp.yx is the dimension of the system.
The relaxation time T, is defined to be the time required for <VT2> to be
of the same order of magnitude as V2. The velocity V is taken to be the

characteristic velocity Vg = Dmax/Tg where Tg = 2ﬂ/ﬂ/2ﬂGmn is the rotation
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period of a uniform circular distribution of mass rods with the centrifugal

force equal to the gravitational attraction. Equation (19) then becomes

v.J
Te = 2 (20)
l6nG2m2Dmax

where M = m. The ratio of the relation time to the rotation period is then

given by

_‘

C

2

N
e 21
500 (21)

m

Equation (21) is only a rough estimate but it nevertheless indicates that for
N equal to a few thousand, collisional effects can be expected to become

important after only a few rotations.
RESULTS AND DISCUSSION

Computer simulations have been performed for a number of systems with an
initially uniform distribution over a circular or elliptical region in x-y
coordinate space, zero thermal velocity, and various values of initial solid-
body rotation., In particular, systems with a ratio of minor axis a to major

axis b equal to 3, and with an initial solid-body rotation given by

wg2 = 8NmG/ka + 1) (22)

have been investigated in detail. It was found that for a system containing
2000 stars with a 51 X 51 grid to solve the Poisson equation, collisional
effects caused sufficient randomization to destroy the spiral structure after
only 2 to 3 rotations. The results are shown in figure 1 to 3. The normaliza-
tion G =m =1 were used in the calculations and the time is shown in rota-

tion periods Tg = gn/mg. Figure 1 shows the evolution of the 2000-star system
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in x-y coordinate space. The evolution of the velocity distribution in
Vx - Vy space 1s shown in figure 2. Figure 3 shows the evolution of the
velocity distribution after the initial solid body rotation has subtracted.

The radial velocity V., 1is plotted versus (Ve - W ) where Ve is the azi-

g
muthal velocity and r 1is the radius from the center of the system to a star.
Initially the thermal (or random) velocity of all mass rods is zero. As the
system evolves in time the thermal velocity builds up and the system expands in
vV, - (Ve - nm) space. After a time t = 1.75Tg there is little further change
in the velocity distribution. Thus, the calculations reported by Hockney

(ref. 6) with 2000 stars and a 48 x 48 grid cannot be considered collisionless
for more than 2 rotations. The same holds for the results given by Hohl (ref. 8)
for 2000 stars (with a 51 x 51 grid). To reduce collisional effects the calcu-
lations were repeated with an identical initial elliptical distribution but

with 4000 stars and a 101 X 101 grid to solve the Poisson equation. The results
are shown in figures 4 and 5. Figure 4 shows that the spiral structure now has
a somewhat greater stability but it still tends to randomize after about

4 rotations. The corresponding evolution in Vy - Vy velocity space is shown
in figure 5. The number of stars was increased to 10,000 and the resulting
evolution in x-y coordinate space is shown in figure 6. The evolution of yet
another system with 20,000 stars was computed up to four rotations and it
resulted in a structure nearly identical to that shown in figure 6. Thus, it
appears that in order to simulate collisionless systems for the first n rota-
tions, nearly 2n X lO5 stars are required. Figure 1 shows that at t = 6Tg

the spiral structure begins to randomize. To keep the system collisionless for
a longer time calculations are now being performed with systems containing up

to 200,000 stars.




An interésting point is that all systems investigated which have an
initially elongated distribution and a given solid-body rotation go through an
initial evolution similar to that shown in figure 6 up to t = l.OTg . At
t = 0.751'g the system shows a structure nearly identical to that of the
peculiar galaxy (GBL) discussed by Burbidge, Burbidge, and Shelton (ref. 10).
Ancther such integral-sign shaped galaxy is NGC 4656/7 reproduced in the Hubble

Atlas (ref. 11). Figure 6 shows that at t = 3.0T_, the two spiral arms begin

g
to overlap and give the appearance of a circular ring separate from the
nucleus, presenting a shape similar to NGC 3145 (ref. 11). At t = LL.OTg the
system shows a structure similar to NGC 5194 (ref. 11). An interesting point
is that at t = B.O'rg the spiral structure has almost disappeared and at

t = 5.75Tg, after less than one rotation, the spiral structure is again very
pronounced. This phenomena appears to reoccur from t = 1+.50Tg to

t = 6.00Tg. However, at t = 6.OO'rg collisional effects (or computer noise)
have already appreciably affected the evolution of the system. The author
expects that for the calculations presently in progress with 100,000 stars,
collisional effects will be small enough so that several such transitions from
a ring shape to a spiral structure can be observed. Such repeating density
waves resulting in spiral structure will prevent the arms from winding up.
This overall picture is in agreement with the theory of Lin and Shu (ref. 12)
where the stars pile up for a certain time in the spiral-shaped potential
wells. The evolution of the velocity distribution in Vg - Vy space 1is

shown in figure 7. At t = O.25Tg the system shows an interesting structure.

Condensation in velocity space has occurred and striation appears in the

velocity distribution. The corresponding evolution in V. - (Ve - nb)



velocity space is shown in figure 8. This distribution shows little change
after the first 3 rotatiouns.

One might expect that the appearance of the two-arm spiral structure
shown in figure 6 depends on the initially elongated distribution. This is
not the case as is illustrated in figure 9. Figure 9 shows the evolution of
a 10,000-star system with an initially uniform distribution over a circular
region and with an initial solid body rotation equal to that required to
balance gravitation, that is, o = g = 4yGNm. For the first two rotations
the evolution of the balanced cylinder is very similar to that of the
2000-star system presented by Hockney (ref. 6) and Hohl (ref. 8). Figure 10
shows the evolution of such a 2000-star system in x-y coordinate space.
For the 2000-star system it is found that the relatively small fourth mode
surface wave around the periphery of the cylinder quickly change to a second
mode surface wave (egg shape), then all structure is lost and the system
finally assumes a circular shape. Figure 9 shows that the evolution is quite
different when collisional effects are reduced. The fourth mode surface wave
now continues to grow and after five rotations a four-arm spiral begins to
form. After about 8 rotations two of the arms have disappeared and the system
has assumed a bar shape. One would now expect that a two-arm spiral structure
would form. However, figures 11 and 12 shows that after about nine rotations
collisional effects have increased the random or thermal velocity to such an
extent that they are of the same magnitude as the rotational velocities and the
model no longer simulates a collisionless system. Nevertheless, figure 9 shows
that the second mode surface wave will finally dominate. Figure 11 shows that
there is little change of the distribution in V, - Vi velocity space for the

y

first 5 rotations. After that time condensation in velocity space begin to
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océur. fhe evolution of the random velocity shown in figure 12 shows that
there is an almost linear increase in the random or thermal motion of the mass
rods.

It would be more appropriate to simulate spiral galaxies by means of a
model using finite length mass rods or even point masses moving in a plane.
The two-dimensional model does simulate spiral structure and shows that two-arm
spirals are very likely to occur. However, whether the two-dimensional model
correctly simulates some of the more refined properties of spiral galaxies can
only be determined by repeating the calculations with a model of finite length
rods or point masses. The reason for using the two-dimensional model is that
the solution of the Poisson equation is relatively simple. Since it was found
that the number of stars required to simulate a collisonless system for a suf-
ficiently long time is of the order of 100 000, the time used for solving the
Poisson equation represents only a very small portion of the cycle time. The
additional time required for obtaining the potential distribution for point
masses will, therefore, no longer be an important factor. For this reason
future calculations will be performed for systems of finite length rods and

point masses moving in a plane.
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Figure 3.- Evolution of a 2000-star system in V. - (Vg - rwg) velocity
space.
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(a) Evolution up to t = 2.757g.

Figure 4.~ Evolution of a 4000-star system in x-y coordinate space.
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(a) Evolution up to t = 2.757g.

Figure 5.- Evolution of a 4000-star system in Vy - Vy velocity space.
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Figure 6.- Evolution of a 10,000-star system in x-y coordinate space.
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Figure 7.- Evolution of a 10,000-star system in Vy - Vy velocity space.
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Figure 6.- Concluded.
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Figure 9.- Evolution of a 10,000-star system in x-y coordinate space.
The initial solid body rotation of the system equalled that required
to balance the gravitational attraction.
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Figure 10.- Evolution of a 2,000-star system where initially the
centrifugal force and gravitational attraction are in balance.
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Figure 11.- Evolution of a 10,000-star system in velocity where
initially the centrifugal force balances the gravitational

attraction.
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Figure 12.- Evolution of a 10,000-star system in Vy - (Ve - nng) velocity

space. The initial solid body rotation of the system equalled that
required to balance the gravitational attraction.



<

<

(Ve-rw}————>

=3.00 7

=~ 7,50
g

=950 7
t Tg

=10.50
t 0 Tg

(b) Evolution up to t = 12.57g.

Figure 12.- Concluded.

NASA-Langlev, 1968



