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FOREWORD

This report summarizes studies performed under Contract NAS12-500 with
the Guidance Laborato—ry, MASA Electronics Research Center, Cambridge,
Mag;sachusetts. The period of performance was from 15 September 1966 through
31 October 1967. Technical director for the contract was Mr. W. E. Miner of

the Electronics Research Center Guidance Laboratory.

Nortronics personnel who contributed to this study and this report are
listed on the cover page. The writing and organization of this report was

done by M. L. Thompson.

Computer time needed during the course of this study was obtained from
the Marshall Space Flight Center's Computation Laboratory under the NASA

Resource Sharing Pro‘gram.
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SUMMARY

Described in this report are studies completed under Contract NAS1Z2-500

with the NASA Electronics Research Center, Cambridge, Massachusetts,

These studies are concerned with series solu;ions of two-point boundary
condition problems that result from applying the calculus of variatioms to
optimal guidance problems. The major cobjective was to use these solutions to
devise accurate, analytical approximations to guidance functions for optimal
ascent to orbit. This work is essentially an extension of that completed

under Contract NASW-1165, which is described in reference 1.

An outstanding problem associated with these studies is the need to perform
algebraic manipulations of lemgthy and complicated fofmulag. In particular
thé multiplication of symbolic, polynomial~like expressions occurs frequently.
An integral part of the work was to devise new techniqugs or apply existing

ones to automate symbollc mathematical operations on digital computers.

In addition, research in the calculus of variations was carried out by
Mr. Robert Silber. The result of these efforts was a modification of the
Bolza problem to include end-orbits governed by n-body attractions. This work

is available in reference 2 and is not discussed at length in this report.

iii



TR-792-8-283

iv

NORTRONICS —HUNTSVILLE
TABLE OF CONTENTS

Section Title Page
FOREWORD ii

SUMMARY iii

I GENERAL STATEMENT OF PROBLEM AND APPROACH TO SQLUTION 1-1
1.1 DEFINITIONS 1.1

1.2 DIFFERENTIAL EQUATIONS 1-1

1.3 BOUNDARY CONDITIONS 1-2

1.4 APPQOACH TO SCLUTION 1-3

i1 OPTIMAL ASCENT TO CIRCULAR .ORBIT" 2-1
2.1 TINTRODUCTION 2-1

2.2 S0OLUTION FOR MULTIPLIERS 2-2

2.3 SOLUTION FOR FLIGHT TIME (At) 2-4
2.4 SUBSTITUTION OF At EXPRESSION INTO OTHER SERIES 2-12
2.5 SIMPLIFICATION OF COEFFICIENTS 2-13

I3 OPTIMAL RENDEZVOUS WITH SATELLITE IN CIRGULAR ORBIT 3-1
3.1 INTRODUCTION 3-1

3.2 SOLUTION FOR MULTIPLIERS 3-3

v OPTIMAL ASCENT TO ELLIPTICAL ORBIT 4-1
4.1 TINTRODUCTION 421

4,2 SOLUTION FOR At 4.2

4,3 SOLUTION FOR MULTIPLIERS 4-4

v SYMBOLIC MANTPULATION OF POLYNQOMIAILS 5-1
5.1 BACKGROUND 5-1

5.2 THE MULFO PROGRAM 5.2

5.3 DIRECTIONS FOR READING OUTPUT FROM MULPO 5-3

Vi CONCLUSIONS AND RECOMMENDATIONS 6-1
VIiI BOL.ZA PROBLEMS WITH END ORBITS 7-1
VIIiI REFERENCES 8-1
APPENDIX A A-l

APPENDIX B B-1

APPENDIX C c-1



TR-792-8-283

NORTRONICS ~ HUNTSVILLE
LIST OF ILLUSTRATIONS

Figure Title Page
2-1 APPROXTIMATIONS TO AF FOR DIFFERENT VALUES QF 2-9

2.2 APPROXIMATIONS TO At FOR DIFFERENT VALUES OF 2-10
2-3 APPROXIMATIONS TO At FOR DIFFERENT VALUES OF 2-11
4-1 APPROXIMATIONS TO At FOR DIFFERENT VALUES OF_ 4.5

LIST OF TABLES

2-1 EFFECT ON At VALUES 2-7

2-2 SERIES FOR RADIUS CONDITICON 2-15
2-3 SERIES FOR ORTHOGONALITY CONDITION 2-35
3-1 SOLUTIONS OF EQUATIONS FOR MULTIPLIERS 3-4



TR-792-8-283

NORTRONICS - HUNTSVILLE

SECTION I
GENERAL STATEMENT OF GUIDANCE PROBLEM AND APPROACH TO SOLUTION

In this section, only a cursory description of the problem treated and
the approach to solution is given. A detailed description has been given in

reference 1.

1.1  DEFINITIONS .

We make the‘following agsumptions and definitions regarding the vehicle
and its performance:

o Constant thrust magnitude, F, and mass flow rate, m.

® Rocket is represented ﬁy a point mass, m.

# Single-stage rocket with continuous thrusting to orbit.

e Spherical, non-rotating, airless central body of attraction.

® Trajectory and orbit are coplanar.

o The optimum trajectory is the one that requires a minimum time from

initial state to- terminal orbit.

1.2 DIFFERENTIAI. EQUATIONS
The coordinate system used is shown in the following figure. The equations

of motion are written in this system

A

X

|

1-1
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B
i
g |+

sin y - g,

= E-cos -
y n X gy

Application of the calculus of variations yields an additional system of
differential equations. These equations may be coupled with the preceding

equations to yield; in vector form:

- '1;' _}: —_
V=0 7= " B4R
m Ill 1
I=e.1¥+ (» * )y R (1)

where
GM
B = —
1 ()

GM
- (3
Ri

The second of equations (1) is usually called the Euler-Lagrange equation, and

the A and A are called Lagrange multipliers.

1.3 BOUNDARY CONDITIONS
The initial conditions on éhe solutions of equations (1) are known with
the exception of ikto) and'i(to). At the unspecified terminal time, tf, it is
necessary that the solution of equations (1) satisfy functions that generally are
of the form -
RE TN D0 Gm L0 @)
Some of these‘Fj are the transversality conditions and some are relations

that describe the desired terminal orbit.

1-2
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1.4  APPROACH TO SOLUTION

We first note that there are as many boundary conditions to be satisfied
as there are unknown initial conditions. Because of the homogeneity of the
Euler-Lagrange equation, one of the multipliers may be set to an arbitrary
value at the initial point. The same thing can be accomplished by letting
IKW =1at t = £ This additional condition will also introduce simplifications
in subsequent developments. For brevity we will refer to this relation as the

"scaling condition'.

We now have a total cf five conditions on the solutions of equations (1)
and also five unknowns. In order to make use of the Fj we expand them in
Taylor series about the interval (tf - to)’ to express them approximately at

the initial point. This yields a system of equations of the form:

-1-—93—(1:) (¢, -t )" =0 (3)
O_n! aet j . £

It o~

0
n

0

Repeated substitution of equations(l) and their derivatives in the series
coefficients of equations (3) is used to reduce equations (3) to a systeﬁ of
algebraic equations in the Lagrange multipliers. Equations (3), together with
the scaling condition, then impl%citly define wvalues for the multipliers and

the flight time, (tf - to), which we define as At.

Numerical verification of the validity of this approach for ascent to
circular orbits has been demonstrated previously for numerous trajectories
(see reference 1). Usually the error in the solution for the multipliers is

1 percent or less for series of order four or greater.

1-3
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Actually, the solution for the multipliers was not carried out simultan-
eously with the solution for At. Instead,.one of the series expansions was
solved for At explicitly by a procedure known as "series jinversion" and the
result was substituted into the other expansions. The reason for this is dis-~

cussed in the next section.

Now, with At eliminated from the equations we have four algebraic equations
in the four unknown Lagrange wmultipliers. These equations can be solved for
values of the multipliers at the initial point when values of the state
variables and constants are known. It can also be shown that a simple relation—
ship exists between the multipliers and the steéring angle, yx for an optimal
trajectory [cf. equations (1)]. Thus, a solution for the multipliers is a

solution to the optimal guidance problem.

Subsequent sections of this report discuss the application of this approach
to three different missions; optimal ascent to circular orbit, optimal ascent
to rendezvous with a circular orbiting target satellite, and optimal ascent

to elliptical orbit.

In order to test or verify the validity of the analytical developments in
this study, comparison is made with numerically computed, optimum trajectories.
These trajectories are called 'nominal'. Values for the state variables and
constants are taken from these nominal trajectories and used in the numerical
evaluation of formulas. Comparisons are then made between nominal values for

the multipliers and flight time and those values predicted by the formulas.

1-4
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SECTION I1I
OPTIMAL ASCENT TO CIRCULAR ORBIT

2.1 INTRODUCTION
In this guidance problem we are concerned with the problem of steering
a vehicle along an optimum path to insertion into a circular orbit of specified

altitude.

The terminal functions to be satisfied are:

2 2
Vf - vco =0

2 2
Rf - RCO =0 (&)
Rf . Vf =0

Alv - Azu + A3y - A4x =0

It can be shown that the last of equations (4), the transversaliiy condition,

is for this problem, an integral of the differential equations and is valid at
to' It can be applied directly without being expanded in a series, as can the
scaling condition, |A| = 1, by definition at t = ¢ .

o

The first of equations (4) will be used to illustrate the expansion in a

Taylor series.
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where At = (tf - to) and the subscript "o" indicates a value at t = to.

After the remaining functions are expanded in a similar fashion, the
derivatives of the differential equations can be substituted into the series!
coefficients to reduce equations (4) to a system of five nonlinear algebraic
equations in the four Lagrange multipliers and At. (For reference, these

derivatives are listed in Appendix A.)

At this point we could solve these five simultaneous equations. However,
we choose to eliminate At froﬁ_thé equations by a technique called “series
inversion”. One of the series is inverted to obtain an analytical expression
for At and this expression is then substituted for At in the other expansions.
There are two reasons for this approach. TFirst, one of the series may, for a
given order, implicitly define more accurate walues for At than the other
series. In fact this was shown to be the case in reference 1. Second, it may
be desired to calculate approximate At values independently of the multipliers

during the guidance process.

2.2 SOLUTION FOR MULTIPLIERS
The solution of the systems of algebraic equations for the four Lagrange
multipliers was discussed at length in reference 1. Details to be found there

will not be discussed here.
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Of major concern during this study was the possible‘simplification of
analytical derivations. It has been verified previously that systems of
equations can be derived that define quite accurate solutions for the multipliers.
More accuracy can be attained by using higher order series. Therefore, primary
attention was directed toward analytical solutions of the equations that de?ine
the multipliers, elimination of insignificant terms, and determining approxi-
mations associated with certain classes of missions. For convenience and
simplicity, the systems of equations derived from third-order series were used

in the search for analytical solutions. -

Two methods for solution of the equations for the multipliers were examined.
The method of "Successive Substitutions' was considered as a means of getting
an explicit formula for the multipliers as functioms of the local state
variables and mission constants. At first it seemed that this technique could
be easily applied. But in order to obtain the third -step approximations, about
100,000 terms would be involved. A few algebraic simplifications such as
combining terms were possible but did not cause any significant reduction in
numbers of terms. It was decided that, if used, this method should be applied

after the coefficients in the equations were numerically evaluated.

The second methéd considered was to invert the system of equations in the
multipliers. This would lead to less complicated formulas for the solution
but not much is known about the practical question of convergence. Formulas
for this inversion are derived in Appendix B. For illustrative purposes, the
formulas are for two series in two variables. The inversion technique should

converge rapidly if estimates of the multipliers are available. By restricting

2-3
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the problem to a class of trajectories it may be possible to expand the

equations in the multipliers about a "standard estimate" associated with a

class of trajectories. One would then have a system of equations in which the
variables are corrections to the estimates. If the corrections are relatively
smaller than the estimates, there should be many opportunities for simpl?fication

and approximation.

An approach analogous to the above (but in one variable) was taken in the
solution for time—to-go or At, described in the following subsection. There, a

great amount of simplification was possible.

2.3 SOLUTTON FOR FLIGHT TIME (At)

0f the three possible expansions to be ifverted for At, the one describing
the terminal velocity condition, equation (5) was chosen. The reasons for this
choice were: (1) A third-order series implicitly defines accurate At values.
(2) Velocity, for anm optimal trajectory, should be a monotone increasing

function of time and the possibility of a singularity is avoided.

We rewrite equation (5) as

2 3

Z = AjAt + AAET + AJAE (6)
where
z = [v? —vz)/zﬁ'-ﬁ
co (]
Al:l LN ] L] - »
A2=(Tr-‘€+5-§)/z“€-'€
A3=(?r'-'\?+3§-'€)/6?°i?.
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Equation (6) can be inverted to obtain an approximation for At

. 2 3
At-.BlZ+B2Z +B3Z + ... (7

It often happens that the inverse series, equation (7), requires an
unwieldy number‘of terms to approximate a root of equation (6}; and the coef-
ficients of the inverse series become progressively more complicated. The
number of terms needed in the inverse serieg can be significantly reduced by
expanding equation (6), not about the origin but about an estimate of tf.
Define

At = 1 + dt,
where T is an estimate and dt a correction to t. -Substitution into equation
(6) vields

! 2 3

L t 1
Z = Al dat + A2 dt” + AB dt (8)

Equation (8) can now be solved for the correction by a series of inversion.

There are several means of estimating At. One way is to take only the
linear terms of equation (6) and have
Atz Z=crt (4, = 1).
Another wéy is to use the "rocket equafion" which is fairly accurate for short-

arc flights:

where

A= _(vco - Vo)/vexhaust.

A third method of estimating time is to assume that it is known from a

previous in-flight computation, say, five seconds ago, or that the expected
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flight time is known from preflight planning. This latter possibility is
quite attractive, because the At estimation formula is rather tolerant of

"poor" estimates.

Considerable simplification is possible in equation (8). It is only

necessary, for most estimates, to invert the series to one term; i.e.,

1

'
Z=A_ 4t

i
T
dt = _Z_'____ >
Ay
where
' 2 3)
Z =Z - Alr + AZT + A3T
! 2
Al = Al + 21:A2 + 37 A3

]

Within the Al coefficient it was possible to neglect the term 3T2A3 and

frequently possible to neglect the term 274 However, to assure accuracy

¢
over a reasonable range of 1 values, the latter term was retained with a further

approximation. The formula for A2 was approximated as

Azz'ﬁ'?/z‘\‘r"ﬁ=c

The expression for At in simplified form is

2 3)
Z -1+ AZT + A3T

1+ 2C

At = 1 +

or

+ + dt,, ®

At
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In cases where it might be necessary to invert equation (8) to higher
T
orders than the first, the Ai coefficients can be replaced with the Ai coeffi-
cients of equation (6) with no significant loss of accuracy.
The terms Z and C both involve terms with V in their denominators. This
leads to formulas that involve A.and A, in the denominators when the equations

1 2

of motion are substituted. To circumvent this difficulty, another approximation
was made. It is assumed that the components of E; in denominators onlj.

would be treated as measured accelerations rather than the accelerations
associated with the optimal trajectory. This approximation was tested in
equation (9) by using accelerations obtained by perturbations on the steering

angle around a nominal, optimum value. The effect on At values was relatively

insignificant as Table 2-1 indicates.

Table 2-1. EFFECT ON at VALUES

% ERROR IN y ERROR IN At (SEC)
1 0.45
2 0.85
3 ‘ 1.5
4 ) 1.6
5 1.66

-1 0.04
-2 0.5
-3 . 1.1
-4 2.0
-5 2.7
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No further simplifications in equation (9) appear to be possible. For
missions different f£rom those represented by the nominal data used, the approxi-

mations may be invalid.

If equation (9) is written in terms of the mult;pliers after substitution
of the differential equations, there is 3 total of 19 terms. (These are tabu;
lated in Appendix C.) This is an improvement over results previously obtained
(reference 1) where the At formula had 50 terms when written in terms of the

multipliers.

The great difficulty in eliminating At from the equations is substitution
of a formula such as equation {9) into the other series where it must be
squared, cubed, etc. But note that if T is a good estimaie for At, then th
is relatively smaller than 1. We would then expect the following‘approximations
to the powers of At'to be sufficiently accuréte.

) .

9 .
(ALY r ¥+ 2Tth

(At)3 z 3 +3T2dt
A
etc.

In fact, for a comfortable range of t, these formulas approximate the

powers of At rather well. Representative data is shown in Figures 2-1 through

2-3.

It should be noted that At and its powers can be approximated by expressions
that involve only 19 terms in the multipliers. Further, the algebrai& form of
the approximations is the same for the different powers. Only the coefficients

need be slightly altered by a constant multiplicative factor.

2-8
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The effect of these approximations on the solution for the multipliers
wasestimated without actually substituting the At formula. This was done by
evaluating the approximations for .At and its powers with nominal data, including
the multipliers. The coefficients of the equatiéns in the multipliers were
evaluated with these At values instead of nominal At values, and then solved.
The effect of the approximations for At was a small decrease in accuracy in the
solution for the multipliers from that obtained when nominal At values were used.
The difference between the two solﬁtions ranged from less then one percent to

about five percent in the worst case.

2.4 SUBSTITUTION OF At EXPRESSION INTO OTHER SERIES

As discussed previously, the expression for At is to be substituted into
the other two series in order to have a system of four equations in the multi-
pliers. From equation (3), it is evident that the coefficients of At in the
series will generally be polynomial-like expressions in the multipliers. We
are thus faced with the rather formidable problem of substituting one multi-
variate polynomial into another., The problem can be represented as determining
the right-hand side of the equation:

P, + BiQ +P,Q, + PQ ... =8,

where the P's and Q's are multivariable polynomials. The right-hand side, S,
should be simplified in the sense that like powers of the variables and like

coefficients are collected.

Note that the problem is considerably simplified if the approximations
to At, previously described, are used. In that event, each of the Q's is
essentially the same as far as algebraic manipulation is concerned. Only the
coefficients associated with each Q need be distinguished. The problem is still

not practically manageable if done by hand,

2-12
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The Northrop MULPO program, developed under Contract NAS12-500, was used
to perform these algebraic manipulations. (See Section V for a more deéailed
description.) The analytical approximations for At and its powers were sub-
stituted into third-order expansions of the terminal functioms that specify
;utoff radius and path angle. The results are shown in Tables 2-2 and 2-3. (See
subsection 5.3 for a key to reading Tables 2-2 and 2-3,) There is a total of 100
différent.cémbinations of lambda exponents in one expansion (radius) and 176
in the other (path angle). As an estimate of the reduction in numbers of terms
éenerated, the At expression without truncation of powers was substituted and

the result simplified by MULPO. The resulting series had over 9000 terms.
2,5 SIMPLIFICATION OF COEFFICLENTS

Attempts were made to eliminate terms in the system of equations that
define the initial values of the multipliers. (The formula for At had not been
substituted.) This problem was discussed previously in reference 1. Essentially

no simplifications other than those described in reference 1 were achieved.

One approach that was tried was to write the differential equations'
derivatives in vector form and then attempt to drop numerically insignificant
terms. (See Appendix A.) This approach was less fruitful than working with

components of the vectors as was done previously.

It was noted that simplifications that are made according to the be-
havior on one trajectory are also valid for neighboring trajectories that
have different initial values. Thus, simplifications already found are

valid over a class or field of trajectories.
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After the analytical approximations for At and its powers are substituted,
as shown in Tables 2-2 and 2-3, there may be possibilities for further simpli-
ficatioﬁs. The system—of equations in‘the multipliers obtained after substitution
of At has not been coded for solution because of lack of available time.
However, Northrop is sponsoring an effort to code a computer program to solve
these equations numerically in order to determine their vglidity. A part of
this effort would also imvolve the elimination of temms that do not contribute

significantly to the solution.
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Table 2-2. SERIES FOR RADIUS CONDITION
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Table 2-2, SERIES FOR RADIUS CONDITION {(continued)
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Table 2-2. SERIES FOR RADIUS CONDITION {continued)
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Table 2-2. SERIES FOR RADIUS CONDITION (continued)

(o1

Q%

0=

Ox

TR-792-8-283

Ox
O#

O=

(_)z

0%

2-18

LE



TR-792-8-283

NDRTRONICS — HUNTSVILLE
Table 2-2. SERIES FOR RADIUS CONDITION (continued)

Fi L2712 wta L5 Le
1 1 1 G
i
B s Q0% O O= 1% 1= 1% 1% 0O 1=
X A 2. -
C O O+ 0= O# 1# 1 1% 1% 0= 1=
1 .
3] O Qx O% O+ 1% 1% 1a# 1% O 1=
1
G 1« 1% 1= O+« I+ Ox Oz O0# 0Ox 1+

Ll L2 L3 L4 Ls Lz

1
B C# Q% O Os I®x 2 O% Ox 1a 1
i
C O 0% QO O= % 2% Q0#f D= 14 1=
1 .
D 0= O#x Ox D= 1w 2% Q0O# O 1z 1=
L1 Lz 13 L4 5 L&
2 -0 1 0
1
1} o O= e O i O# Qx 0O+« O= 1=
£l L2 L2 L4 = L
3 0 #] 0
1. .
B 0+ O« O& O= Jz 3% 0Ox Q# (Ox 1=
1 A
C Qs Qs+ O G ]+ Ia Cu O O I#
1
& O Q% Qs O« i= 3% 0% 0O# O 1%
LI L2 L3 L% L.
#] 1 1 2
1
i g Qs Q= i* s Qs 1u 1= 1« 1=
S R L2 L4 LB L&
0 1 2 1
1
D O Q= 0= 1® lx QO 1= 2% 08 1=
i
D 0 0% lx O« 1% Oz 1% 1% 1s 1=

2-19



NORTRONICS = HUNTSVILLE

Table 2-2.

TR-792-8-283

SERIES FOR RADIUS
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Table 2-2. SERIES FOR RADIUS CONDITION (continued)
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Table 2-2.
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SERIES FOR RADIUS CONDITION (continued}
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Table 2-2, . SERIES FOR RADIUS CONDITION (continued)
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Table 2.2,
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SERIES FOR RADIUS CONDITION (continued)
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Table 2-2. SERIES FOR RADIUS CONDITION {continued)
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SERIES FOR RADIUS CONDITION (continued)
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Table 2-2.
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SERIES FOR RADIUS CONDITION (continued)
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Table 2-2. SERIES FOR RADIUS CONDITION (continued)
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Table 2-2. .SERIES FOR RADIUS CONDITION (continued)
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Table 2-2. SERIES FOR RADIUS CONDITION (continued)
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Table 2-2. SERIES FOR RADIUS CONDITION (continued)
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Table 2-2. SERIES FOR RADIUS CONDITION {continued)
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Table 2-2. SERIES FOR RADIUS CONDITION {continued)}
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Table 2-2. SERIES FOR RADIUS CONDITION (concluded)
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Table 2-3. SERIES FOR ORTHOGONALITY CONDITION
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Table 2-3. SERIES FOR ORTHOGONALITY CONDITION (continued)
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Table 2-3. SERIES FOR ORTHOGONALITY CONDITION (continued)
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Table 2-3. SERLES FOR ORTHOGONALITY CONDITION (continued)
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Table 2-3. SERIES FOR ORTHOGONALITY CONDITION (continued)
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Table 2-3. SERIES FOR ORTH(_)GONALITY CONDITION (continued)
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Table 2-3. SERIES FOR ORTHOGONALITY CONDITION (continued)
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SERIES FOR ORTHOGONALITY CONDITION {continued)
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Table 2-3. SERIES FOR ORTHOGONALITY CONDITION (continued)
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Table 2-3. SERIES FOR ORTHOGONALITY CONDITION (continued)
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Table 2-3. SERIES FOR ORTHOGONALITY CONDITION (continued)
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Table 2-3. SERIES, FOR ORTHOGONALITY CONDITION (continued)
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Table 2-3. SERIES FOR ORTHOGONALITY CONDITION (continued)
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Table 2-3. SERIES FOR ORTHOGONALITY CONDITION (continued)
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Table 2-3. SERIES FOR ORTHOGONALITY CONDITION (continued)
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Table 2-3, SERIES FOR ORTHOGONALITY CONDITION (continued)
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Table 2-3. SERIES FOR ORTHOGONALITY CONDITION {continued)
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Table 2-3. SERIES FOR ORTHOGONALITY CONDITION (continued)
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Table 2-3, SERIES FOR ORTHOGONALITY CONDITION (continued)
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Table 2-3. SERIES FOR DRTHOGONALITY CONDITION (continued)
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Table 2-3. SERIES FOR ORTHOGONALITY CONDITION (continued)
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Table 2-3. SERIES FOR ORTHOGONALITY CONDITION (continued)
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Table 2-3. SERIES FOR ORTHOGONALITY CONDITION {continued)
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Table 2-3. SERIES FOR ORTHOGONALITY CONDITION (continued)
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Table 2-3. SERIES FOR ORTHOGONALITY CONDITION {continued)
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Table 2-3. SERIES FOR ORTHOGONALITY CONDITION {continued)
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Table 2-3. SERIES FOR ORTHOGONALITY CONDITION (continued)
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Table 2-3. SERIES FOR ORfHOGONALITY CONDITION (continued)
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Table 2-3. SERIES FOR ORTHOGONALITY CONDITION (continued)
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Table 2-3. SERIES FOR ORTHOGONALITY CONDITION {continued)
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Table 2-3. SERIES FOR ORTHOGONALITY CONDITION (continued)
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Table 2-3. SERIES FOR ORTHOGONALITY CONDITION (continued)
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Table 2-3. SERIES FOR ORTHOGONALITY CONDITION {continued)
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TabTe 2-3. SERIES FOR ORTHOGONALITY CONDITION {continued)
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Table 2-3. SERIES FOR ORTHOGONALITY CONDITION (continued)

tr bz L3 Le £E e
2 2 Z 1
e i e et s e = e e e ..
C wR 2= I e ja Z2e  ix 3w 1w 1x
T e e r—
1 12 1= &+ I# 1l 1z Z#+ :ix J# 14
1 ) -
c e 31w i+ Gw s« 1w 2  lx 1w i%
B
¥ T% 2w 1+ J#x i= 2w =& l® 1®  i=x
v e — e
¥ I# 1w D8 le L# 1y Z#& s Gx 1w
ey -1.. ™ - "
£ IR 1= iw O=x Tx s L i 1= i
. 11» - - - - - - - . oy
N is 2% 1x 1® 1w 1= i#& 1= (% 1+
1
¥ 1= 2+ 2¢ 2+ 1w 1# 1z s 1x 1=
1 v
£ 2% ke le  i1# s Ow  gw  1s ¢ 1s
Ll L2 L3 La LE L&
# Z =Mt ARG
1 .
L - 2= 2+ 12 0% 14 2% j# ZFa Ls- 1w
3 )
T i= IR I R i iu pE e G i
2
(e -3 7k T LV DA w: Ml - tnnaae b e St oo - SEEECS I8
1
£ T# - l=x c1le B 1w lw 22 2x 0% 1w
]
B i 2% 2% O« 12 1w 1® 1¥ 0% 1#
1.
b 4 A e e Saurer i o Dl ¢ 5 RENE- o et e MR G RL &
Ll Lz L2 b4 LI L&
& 4 0 2
- - - . )
[ o 2x o oo0x 0w 18 2¢ I® Cw¥ 2w 1w
l WA T LA A mima - > m e owe awwax
M b 2« 0w G# 1w l# Zs& L 28 1
}. -
[ 2% l®  2e 2% lx O¥% Sx % Tx 1w

2-70



TR-792-8-283

NGRTRONICS — HUNTSVILLE

Table 2-3. SERIES FOR ORTHOGONALITY CONDITION {continued)
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Table 2-3, SERIES FOR ORTHOGONALITY CONDITION (continued)
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Table 2-3. SERIES FOR ORTHOGONALITY CONDITION (continued)
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1 .
g B T S I it i 2= 1= 1w
l .
T ,f-;% T O i T e e~ Fen
1 .
L 1= 1% =2 1# 1» 24 18 2#
1
f3 1e 1= 1w On 1w 2e 1% ]=
b
N I 2w 2s = s 2% Lw L
1
M 2 = R 1 I 14 L 2
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Table 2-3. SERIES FOR ORTHOGONALITY CONDITION (continued)

Ll tz L3 L4 LE Lé
3 Z z G
L
C l® 1+ 1= 9% 1 2% 1x 2% Cx 1«
—t - e — .
C 1« 1# 1s Q# 1z 2= 1# Z= L# 1%
1
£ Z# 1w 2% T l# 1% 1# 1w ¢+ 1=
tl L2 L2 L& LE LE
e T T e F-F -G -2
1
D 1= 2% ©% 0= 1w 2% 1% Cx 2% =
2
T K 1= Foe Cn 1% 1= 2H c* 2 1 *
— e 3 L LS L6
3 2 1 1
- - l N
) 1y ow% 2% Cx  iw  2e  iw  lx Ia ix
.2. - - - - nmme e e -
L z# 1% Gx Gx  1x 1w 2+ 1# 1= 1=
Ly Lz L3I L4 LE L&
- - 3 3 Z G
1
c Le - 2% 0= O 1 2% 1% zx Cx 1=
2
ey — P gy — - v b# - 2w 2%- G 1#
£l Lz L2 L4 LT Lé¢
4 i £ 2
i
C 2% o%® LTx 1+ 1 2% 1# C+ 2% 1=
1 - S — — -
L - %= (= o= Iz 1w 2= 1# C# 2% 1=
J—— . - 1 e m— e - -
C 2+ 1w Q= 2% 1% 2« Cx Cx 1x 1=
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Table 2-3. SERIES FOR ORTHOGONALITY CONDITION (continued)'

Li Ltz L2 L& LI LE

- ity e o} 2
i
C - 2« {= 9+ 1+ s 2x 18 1= 1w 1=
1
C 2#- €% Jw - b 1w 2% l# 1w L® 1=
1
e 2t —-f— - 2k L —Lw . - b6 ol
L1 Le L3 L4 LE LE&
4 1 2 1
1
C ¥ (= C# 1% 1 2% 1# Z® Cx 1#
¥ e e e
G cx L= BE |3 1 2 # 1% PR C# 1%
1 .
C 2%  1# 2% Cx 1w 22 ox {x 1w 1=
L1 Lz L3 L4 LE L&
4 P c P
1
== fr w22 iz 2= 1 3% Uu <2 0 1=
2
AR P I 2FE CTwT DEoGw 1z 2= 1= L 1+
1 A
fr 3 T O 0 rr"l*"_z-**—-ﬁ-% =% o -iu-
Ll Lz L3 L4 LE Lé
4 Z 1 1
"1
C 1= 2% 1= 1 i 2u uH s O 1=
9 - e e mamemmn e .
C 2% 1% ©O% Cs% 1x 2% [# 1la 1w 1=
ceme ] e = . .
o 23 Cx ML 0 1 ix px- 1+ 1= 1
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Table 2-3. SERIES FOR ORTHOGONALITY CONDITION {continued)

L1 L2 L3 L4 p& L
B S G
i
L 1 2% 2% COxn 1% 3= LE Cx e 1=
Z
D 2% fx- Csx Cex & 2% 1a Ze w1
1
th TIETTE T U v 1% 2% Swc Ca la
" B Ll Lt L2 ts L& Lé
< 1 G 2
i
C 2w g g 2 1w R ] L Ce D lsg
e e e e+ rt emi . - e e
[ ig M Da e s 2g 1# LY 2% 1=
Li Le L2 L& L& e
- - 5 i 1 i
i
4 7w T T = T% Fw- Ty e v fin in
1
TUE T TR Ow P s Izs 2= i= 2 1= in
- - T e o LI L3 LE te 1®f L¢
3 1 Z {
n - = e v - o o n .
(S 2% 1w 2% 3% 1% 3# Cs C& Cu 1=
C-y e e a em .
N 3« % Nk G¢ la 2% s % Cw  Yu
LI Ltz L3 L& n® Le&
= — Z & iy i
1
B e 2% G2 2% 12 1w 28 < 2% is
- L1 1z L3 L4 L e
Z 4 H 2
Y — S .
e is 7% x 7 HE T P 1 1« iu
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Table 2-3. SERIES FOR ORTHOGONALITY CONDITION (continued)

Ll Lz L3 L4 LE L&
- - e F ey s P -9
1
2 1= 2% "Qw  2x i« 1+ Z# ie (= 1=
i N
L le 2= 1% Yo ix l® Z# 1x 1= 1l
i
L 1% = I Na 1 e % T R 1+
- Ll btz L3 Ls LE L&
‘ 4 2 I
1
£ 1% & # 1 1+ 1+ 1= 28 e® L l=
1 Tk — T e — o - P — ——r o
D 1= 2% 2% HES i 1= o 1% 1= L E
I Lz L2 L4 { L&
2 4 4 3
1
L2 TS e i e o i oSS I SIS RV g
- L LZ L2 L4 L= ¢
3 2 G 4
1
0 i P Cn 2H 1+ Ly in o e 1
1 P .
[N 3 1u Ja pE] 1% 1 ) C+ e 1=
LI L2 L2 L4 LE L&
T - 2 2 =
1
5 P20 —Pw—-Tu- P - T2 Q1w . L
i
£ To= 2w o= 1= 1% 2¢ 1% (% Zx  1#
1
el e @R 1% 1% % 1w la 1w
i
fr T o 34t 1 i+ 3 D¥e Tt - Dog 1
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Table 2-3. SERIES FOR ORTHOGONALITY CONDITION (continued)

s e m—— 1k L2 L=
2 2 2
- - 14 - - e ame -
C IT# 2= {x 28 1% 2% iz Fs Cx
}_ [ U
C I Z# 1» Ja 1w 28 1z l& 1=
1 PR - . N
I 1= 7 rE S 1+ 2% 1% P - Zu
- 1.. - —van - - amwm e — - -
[N 2% 1w 0% 2% 1w l®x 2% Za (=
3 - .
T 2% i« 1¥ 1# 1w 1% 2% 1= 1=
am - 1 e ww wmwna - v . PR
£ 2% 1l 2% =x la 1x 2= hC* Z=
Ll L2 Lz
- modee e L 3
1
e b 2 s G pw 2% 1w Zx 0%
1
154 It o e N R A T R = P
i
8 i O il [N, S ¥ N SR ol
1
& &% A ..Pa O 1 1x 2 1 1=
- ti Lt L2
2 2 4
1 M b i e e it s
c 1# 28 28 0= 1# 2% I« 22 U=
1 -
£ 2% 1s 2% Ju  ju  lx 2% 2z (=
Ll Lz L3
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1
B -2 ~tw s O Zwc- 1w 2w i Cx 2«
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4 Z i
1 ——r e -
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Table 2-3. SERIES FOR ORTHOGONALITY CONDITION {concluded)

vl Lz L2 L4 LS L€
—('f."" 2 A..Z.... ..2 P
1
N 2% % Q= 2w 1w 2= e Z# OCa 1=
i1
R ) ol 2% " ltw clw Ik - 1a 2u 1% 1% 1% i
|
T R B A v S S I S o A R
- Ll tz Lz ta&a LE LE
4 ¢ 2 i
- l e Fr— -
C 2# 1% 1 1z "1 2= L. 2+ (=« 1#
i — i ——— e« T wAs M = = —rr - - - -
C 2% 1= 2# e 2+ b 1w 1w 1
L1l Lz L3 L4 LE L¢
= e e ee 4 e s e e mmiemae— = e vemea— . - . ,g‘ . 2 - 4 :.
1
T 3 3 23 e 3 A e A sz " Qa2

T T REH R R N AN A E AN N A FH AN A AR SN AT IR T A AR SRR H N RN A R R ERY

TS AVE TAFET aht
CASE IC= x#L+Y#L
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SECTION III
OPTIMAL RENDEZVOUS WITH SATELLITE IN CIRCULAR ORBIT

3.1 INTRODUCTION

The mathematical model for this problem is nearly the same as that for
optimal ascent to circular orbit. The only difference is that one of the terminal
conditions is different. Instead of a non-trivial transversality condition,
there is a condition that describes the rendezvous of the powered vehicle and

a target satellite.

The coordinate system is shown in the following figure.

¥

We define:
9 as the angular rate of the target
by 2S the angle between launch vertical and the target at the time of
mignition". (Assumed to be known.)
tig as the time when the flight begins, the "ignition" time
t, as the current initial time
te as theltime from t, till rendezvous

At as (tf - to)_
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At any to we compute ¢ as
= +—‘ -
$ ¢o 0 (to tig)‘
For the '"rendezvous" terminal condition we have
- ] -+ A =
Xg Rco Sin (¢0 gAt)Y = 0,

or Vg = R, Cos (¢0+ fat) = 0,

In addition we have the terminal conditions for the circular orbit

2 2
Vf - Vco =
2 2 _
Rf - Rco =0

The solution of this problem proceeds in the same way as that of the optimal

ascent to circular orbit. The solution for At that was obtained in that prob-

Jem applies here.

The expression of the rendezvous condition is written as

2
= + e
0= W +WaAr +Wt R
where

- ¥ - + A
W R, sin (¢0 6AL)

o o
W1 ~ Y%
WZ = 1.'10
WB - go

This expansion can be put in terms of the multipliers by substitution for the

u time derivatives. Together with similar expansions for the final radius
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and path angle conditions and the scaling conditions, we obtain a system of four

algebraic equations in the multipliers.

The unknown parameter, time-to-cutoff, or At, appears implicitly in the
rendezvous condition. It was necessary to approximate the sine term with a
series expansion in order to have At appear explicitly. The term.W0 is replaced

by:

~ . 3
WO X - Rco (¢0 + eAt - ¢0 - 3¢

é2 2 s3

-3 AT - B At3).

0

3.2 SOLUTION FOR THE MULTIPLIERS

The solution for the multipliers in this problem was carried out in the
same way as in the ascent-to-circular-orbit problem with the exception
that the transversality'!condition of the circular problem is replaced
by the rendezvous condition. 'To obtain a reasonably accurate solution for the
multipliers'it was- necessary to have a fifth-order series representation for
the rendezvous condition. The other conditions were represented by third-,

fourth-, and fifth-order series.

Typical solutions are shown in Table 3-1. The equations were solved with
nominal values of At assumed. The Newton-Raphson method was used to compute
solutions; three or four iterations were usually required before corrections
became less than 0.5 x 10F5. Initial estimates were the nominal multipliers!

values.

No reason was found for the case where convergence did not occur. The
. . . -3
tolerance on the corrections to successive iterates was increased to 10 = but
there was no convergence. The derivations and coding for this system of equations

is being checked for errors.
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Table 3-1. SOLUTIONS OF EQUATIONS FOR MULTIPLIERS

Nominal Multipliers

Computed Solutions

0.98382817

Ay = 0.97371974 Al =
Ag = 0.22774957 Ay = 0.17911486
Ay =0.17809198 x 1072 5‘3 = -0.43654483 x 1072 -
Ay = 0.45610352 x 1072 A, = 0.42815572 x 10—2‘
Radius condition represented by third-order series in at '
Orthogonality condition represented by third-order series in At
Rendezvous condition fepresentgd by fifth-order series in At

At = 170.34 séc .Nominal Trajectory AA-1
Nominal Multipliers Computed Solutions
AL = 0.97371974 Ay ; 0.96952223
Ay = 0.22774957 Ay = 0.24500336
Aq =-0.17809198 x 10,'2 Ag =-0.17845442 x 1072
A, = 0.45610352 x 1072 A ='0.48520438 x 1072

Radius condition represented by fourth-order series in pt

Orthogonality condition represented by third-order series in At

Rendezvous condition represented by fifth-order series in At

At = 170.34 sec Nominal Trajectory AA-1

Nominal Multipliers

Al = 0.97371974

Ay = 0.22774957
13 ="0.17809198 x 10'2'

A, = 0.45610352 x 1072

Computed Solutions
Non-Convergence
Non-Convergence
Non-Convergence

Non-Convergence

Radius condition represented by fifth-order series inat

Orthogonality condition represented by fourth-order series in At -

Rendezvous condition represented by fifth-order series in At

At = 170.34 sec Nominal Trajectory AA-1
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SECTION TV
OPTIMAL ASCENT TO ELLIPTICAL ORBIT

4.1 INTRODUCTION

A third guidance problem studied was that of éptimal ascent to elliptical
orbit. The approach to solution is the same as for the previously described
problems except that the terminal boundary conditions are different. It is
assumed that the orbit is described by its associated, specific energy and
magnitude of angular momentum, and the direction of perigee with respect to
an earth-centered cooxrdinate system. These terminal conditions may be

expressed through the following equatiomns:

Ve ~25 - 2B, =0 (Energy)
f
Iﬁf x Vfl - 'ﬁcol =0 (Momentum)
X (®-T) V2
Cos ¢ -+ (EE + = o = ) =0 (Perigee)
i
(—g.h—d.) -?Tf . Ef +—;_‘—f . "Tf =0 (Transversality) .
£

The first two conditions determine the major axis and eccentricity of the
orbit. The third condition is derived from "Hamilton'!s Integral® for the two-
body problem; ¢ is the angle between the x-axis and the perigee direction.

The coordinate system is shown in the following sketch.
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As noted, the approach to solution for this problem is the same as for the
two problems described previously. A nominal trajectory (i.e., é numerical
solution for optimal ascent to elliptical orbit) was obtained. Data from this
nominal case was then used to test, numerically, the analytical developments.
Attempts were made to achieve correlation between the nominal case and values
predicted by analytical approximations. At the time that these comparisons
were made, two-dimensional nominal trajectories were not available. A nominal
case was used that was very slightly three-dimensional; out-of-plane flight was

only a few meters.
4.2 SOLUTION FOR FLIGHT TIME (At)

In the optimal ascent to circular orbit and rendezvous problems, the ex-
pression for At was obtained by inversion of one of the series expansions for
a terminal condition. This expression could then be substituted into the other
expansions and the explicit appearance of At would be eliminated. However, it

may be desired to solve five equations in five unknowns if At is not eliminated.

If At is eliminated by substitution, one should choose the 'best" series
to invert for At. The "best! series is the one that requires the fewest terms
to implicitly define At and also requires the fewest terms Co invert. To

determine which series would be the best candidate for inversion, all four

4-2
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series expansions were taken to third order and their coefficients were evaluated

with nominal data.
all of their roots.

appears to define the most accurate values for At.

These third-degree polynomials in At were then solved for

The third-order expansion for the terminal energy condition

In addition, approximations for At and its powers, analogous to those in

Section II, were attempted., Let the series expansion be

_ 2 3
W —-Al At +'A2 AT + A3 At
where
= o GM
7R - Vo)
"ELE = e = =
Z[V-V-('—l:.,: R-V]
Al =1
2’\?-?+2’\F-V+3(%)[R-v}2- %}(\T.V+§-V)
A, =
2 N T
2V vV - ( R) vV
etc.

Assume that an estimate to At, defined as T, is available.

After following

througﬁ the steps outlined in Section II, the following approximations are

obtained:
At"'l.’-f"th
At2 o 12 + 2t dt
A
At3 b 13 +-3T2 dt .
A
where
W - (T +-A2T2 + A 13)
dt, =
A 1+ A212

4-3
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Figure 4-1 shows the result of using various values of T to estimate At and its
powers. While the At values predicted by the formula above are nét close to
the true At values, they are close to the actual root of the polynomial that is
closest to the true At value. 1If the series exﬁansions of the terminal energy
condition were taken to the fourth or fifth order, and then inverted, the

approximations would probably be closer to the true values.

However, because the approximations for At are rather complicated in this
problem, it is advisable to comsider solving for At simultaneously with the
multipliers. There was not enoiugh time available to follow through on this

possibility during thé term of this contract.
4.3 SOLUTION FOR MULTIPLIERS

In solving for the multipliers, it was assumed that At would be eliminated
by substitution of the inverted series for the energy condition. Thus, the
series for the perigee, transversality, and momentum, together with the scaling
condition on the multipliers,would be used to derive a system of algebraic equations
that could be solved for the initial values of the multipliers. These algebraic
equations were derived by substituting the differential equations' derivatives

into the third-order expansions.

Attempts to solve, numerically, this sjstem of four equations in four un-
knowns failed. Derivations and program coding were checked for errors but none
were apparent. The expansion of the transversality condition to third order
has a very large remainder term when evaluated with nominal data. It is likely
that if this series is extended to higher orders, a solution for the multipliers
can be achieved. Again, there was insufficient time available to pursue this

problem during the term of this contract.

bty
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Figure 4-1 shows the tesult of using various values of © to estimate AE and its
powsrs, Fhils the &t vatues predicted by the formulas above are wof close to
the true At values, they are close to the actual ront of the polynomial that is
closest to the true At valwe. If the seriss expansions of the terminal 8nergy
condition were taken to the fourth or £ifth order, and then invertod, the

approximations would probably be cloger to the true values.

However, because the approximations for At are rather complicated in thig
problem, it is advisable to consider solving For At simultanecusly with the
muitipliers, There was not enough time available to Follew through on this

possibility during the temm of this contract,
4,3 SOLUTION PoR MULTIPLIERS

Tn solving for the multipiiers, if was assumed that At would be aliminated
by substitution of the inverted series for the snergy condition. Thus, rhe
saries for tha perigee, transversalinsy, and momentum, together with the sealing
oomdition on the muitipliers, wopld he used to derive a system of algebraic squatisns
that could be splved for the initial valves of the multipliers. These algebraic
equations were derived by substituting the differential equations! derivatives

into the thivd-prder expansions,

Attempts to solve, mtmerically, this system of four equations in four un-
knowns failed. Derivations and program teding were checked for errors but none
ware appatent. The expansion of the fransversality condition ©o third order
ha® a very large vemainder term when evalvated with nominal data. It is likely
thelf if this series iz extended to higher orders, 8 splution for the muitipliers
can be achisved, Again, there was insufficient time available to pursue this

problem during the term of this somtract.,
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SECTION V
SYMBOLIC MANIPULATION OF POLYNOMIALS

5.1 BACKGROUND

An outstanding characteristic of the work described in this report is the
amount of algebraic manipulations required, These manipulaticds can be put into
two classes: (1) Differentiation, and (2) Substitution, multipiication, and

simplification of polynomial-like expressions.

There are presently available a number of computer languages that are
more or less suitable for handling these kinds of symbolic mathematical problems.
One language that appears to be strongly oriented toward function differentiation
is FORMAC. 1It, like the other symbol-manipulation languages known to the

authors, suffers from an inability to exploit ocff-line on "non-core'" storage.

By the time the significantl? difficult parts of our analytical devélopw
ments were reached, the storage facilities of FORMAC had been exhausted.
Attempts were made to segment problems into portions that could be handled by
FORMAC. But it was soon evident that the.bookkeeping problems associated with
this approach offset the advantages. This is not to say that FORMAC or a
similar language is without value, but that for the problems we dealt with it

wag of relatively small utility.
It was apparent that most of our symbolic computations imvolved polynomial-

like structures; e.g., power series or determinant expansions. Most of the

operations required with these expressions involved multiplication as the most
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difficult step; e.g., substitution of polynomials. Tﬁese are also the kinds
of operations that the symbol-manipulating languages fail to perform for

polynomials that have a large number of terms.

Because of these difficulties, it was decided to develop a computer
program, written in a general purpose language, that would accomplish at least

the multiplication of polynomials.

5.2 THE MULPO PROGRAM

The MULPO Program is designed to multiply polynomials, in one to six
variables, which have literal coefficients. An additional feature is the
ability'to add polynomials of the same type as it can multiply. Thus, the program
can perform substitution of polynomials into other polynomials. It is written
entirely in FORTRAN IV, and is intended for use on the IBM 7094, However, it
can be run, with minor changes, on another machine with a comparable FORTRAN IV
translator and enough tape units. A users guide for MULPO is given in reference

3.

At one point im its development,_MULPO was written in ALGOL 60 for
the Burroughs B5500 computer. The reason for this was to obtain faster
execution speed. Due to the widespread use of FORTRAN, however, it was con~
verted to that language. TFor all but unusually long problems or volumes of

production work, the relative inefficiency should not be noticeable.

As a test of its ability to handle large-scale problems, the program was
asked to multiply four polynomials together; then add this result to the

product of three polynomials; then add this result to the product of two
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other polynomials. Each polynomial was in terms of four variables and consisted
of about ten terms each. The result was a polynomial of over 11,000 terms; and

its like powers and coefficients were combined.

In addition to studies such as repbrted here, a program like this
probably has numerous other applications; for example, in perturbation techniques

in celestial mechanics.

5.3 DIRECTIONS FOR READING OUTPUT FROM MULPO

Consider the following problem:

Given:

_ i .5 .k .1

e I R R

1,3 1k 51

- A Ak

P =) Biski M1 M2 3 My
_ i .5 .k ,1

2, =1 Ci1 M1 %2 23 M
_ i j .k Al

By = LDy M M A5 %
_ 1.3 .k .1

Q =L X N ANy here Y. =K X

ikl 5 Xiqka
L.3 .k .1
Q=2 Y. Ar A A A _
2 ijkli "1 2 '3 4 Zijkl Ké Xijkl

_ 1§ k.1

Q=120 M A2 A R

Form
S=)8 Aadakal—p +pq +P0, + PQ

igkl M 22 M3 A T B TR T EQ T ERg
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and "simplify® 8 by collecting like combinations of powers resulting from
multiplications, and by combining like coefficients when they occur as sums

in a like combination of powers. For this example, an é*polynomial term will
generally have a multi-term coefficient made up of a éerm from Fo ﬁﬁicoefficiegt}‘
a term from the product of qul (B-coafficie?ts times X-coefficients), a term
from Pzéz {C~coefficients times Y-coefficients), and a term from P3Q3 (D~

coefficlents times d~coefficients).

Referring to Table 2-2, it can be seen that the integers directly under
Li, Lz,[etc are the powers of the lambdas in the S~§;1ynomial. (Note that the
ocutput is arranged se that the polynomial is ér&ereé according fo increasing
powers.) The integer on the next line is the numerical multiplier of the

literal coefficient on the next iine dowm.,

The symbol for the coefficient comes fi;ét, then the next four integers
repraesent its subscript. The fifth integer is the exponent én the coefficient,.
(The asterisks should be ignored when they. appear,) When the remainder of the
line is blank, interpret this as a plus sign and go to the pext line, 1EF only
one more term appears {(i.e.,, five integers), then these integers represent the
four subseripts and the exponent of the coefficient in a Q—geiynomial that

multiplies the term immediately to the left.

Which Q-polynomial is involved depends on the coefficient symbol at the
start of the lime. The coefficients of the Ql polynomial always multiply the

B-coefficient, the QZ polynomial's coefficient the C~coefficienty, ste.,
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If more than three terms are on one line, the last term is a coefficient

of a Q-polynomial. The preceding coefficients are, as befére, identified by the

alphabetic symbol at the far left., In some cases enough coefficients are

combined to cause the program to carry over the remainder of a coefficient té the

next line. In such cases the appropriate alphabetic symbol reappears at the

beginning of the next line.

Actually, reading the output is far simpler than describing how to do so.

We can translate the first four terms of Table 2-2 into conventional notation

as.:
0.0 .0.0
Coefficient of Al lz A3 AQ
Agoon T
Boooo Foooo T
C0000 Yoooo t
Pao00 Zo000
0.0.0.1
Coeff#cient of Al lz 13 14

Cooor Zo000

Coefficient of 1? Ag A; 12
Dg010 %0000
Coefficient of l? lé Ag xg
Bo000 Xor00 *
%9000 Yo100 *
So100 Yoooo *
+

Daooo Zoi00

Do100 Z0000
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SECTTON VI
CONCLUSIONS AND RECOMMENDATIONS

Based on the studies conducted under this contract, several conclusions
and vecommendations can be mzde. The first part of this section deals with the
study described in this report. The second part is concerned with reconmended
modifications to the approach described herein and possible alternative

approaches to obtain ewplicit guidance formulas.

A major accomplishment has been the suscessful autemation, oun digital
computers, of the manipulation of polynomials that have literal coefficients.
This computer program has an advantage over other, general purpose symbol
manipulating langnages because there are no practical limitations on computer
storage. In conjunction with a language suchas FORMAC, it should pive an
analyst the capability of multiplying or substituting power series or poly-
nomials of wvirtually any number of terms. The program was designed to accommodate
polynomials oy power series involving as many as six variables, should the nged
arise in the future. It was also coded in a general purpose language (FORTRAN
IV) that is commonly used and should be available in the Future. It is alse
possible, but not easy, to alter the program to perform partial differentiation

of multivariable power series or polynomials,

Much of the effort during this study was directed toward simpiification
of the analytical developments. The term fsimplification™ is taken to mean
the dropping of terms in formulas for the guidance functions when these terms
do not significantly influence the answers, or approximating complicated

formulas with simpler ones. ‘The simplification process was rather successful
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in the formulas for At; particularly for ascent to circular orbit and rendezvous
in c¢circular orbit. However, no simplifications in the solution for the
multipliers or guidance function beyond those previously reported were achieved.
A further test of these simplifications was made by perturbing the initial
values of the state variables on a nominal trajectory. Simplifications that

were valid on the nominal trajectory were also valid on neighboring trajectories.

Application of the Successive Substitution method to solve the equations
in the multipliers is recommended only when the coefficients of the system of
equations are numbers, Application to a system having literal coefficients
results in an impractical number of terms. If approximate values of the initial
multipliers are assumed known, the method of inversion should be tried. This
approach to solution of the equations in the multipliers is analogous .to that
used in Section II for solution for At. Such an approach could allow for a
considerable amount of simplification as was found in the approximations for

At‘

No solution was obtained for the multipliers in the problem of optimal
ascent to elliptical orbit. This is believed to be d;e to the insufficient
order of the series expansion for the transversality condition. It is
recommended that this problem be studied further, series orders extended, and
solutions for the multipliers be attempted. Because of the complexity of the
formula for At that is got by inversion of the energy condition expansion,
consideration should be given to solving for At simultaneously with the

multipliers.
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SECTION VII
BOLZA PROBLEMS WITH END ORBITS

The work discussed in reference 2 pertaining to Bolza problems is not
closely related to the topics discussed in other parts of this Summary Report.
However to keep the reader informed on all aspects of the contract efforts, an

abstract of reference 2 is provided in the following paragraphs.

It is well known that mény of the problems of space vehicle guidance can
be formulated in such a way as to be susceptible to the methods of the calculus
of variations. The problems considered fall roughly within the class of problems

referred to as problems of Bolza.

Many space missions are formulated in such a way that considerable further
analysis is needed to bring the problem within the format of the Bolza problem,
as regards the end-point constraints. It is usually the case that conditions
are imposed on the orbits determined by the end points of the burn trajectory,
but the translation of these conditions into conditions applying directly to the
end point values of the states énd time requiree that the orbital motion be
expressible as a function of the end-point conditions and time, and that the
conditions on that orbital motion then be invertible to yield conditions on the.
end-point values. Both of these préblems can be quite profound, so that it is
not often possible to give analytic expressions for the end-point constraints,
although these are assumed available in the formulation of the problem of

Bolza.
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We therefore formulate a modified Bolza problem, called a Bolza problem

with end orbits. The objective is to define the problem in terms of that

information which actually is available, and to obtain conditions which apply

to that available information. Thus in the new prabiem formulation, there

are given 6ifferan£ial equations (analogous to the gravity equations) to which
the end points of ény admissible curve determine particular solutions, called

the end orbits of that curve. Other conditions are given, which apply to the

end orbits {not to tée end points}, called end-orbir constraints, or simply
orbital constraints. The,trausvérsality condition is then deduced in such a

form as to apply directly to the differential equations of the end orbits and

the orbital constraints. 1In particular, it is not required that the differential

equations of the end orbits be solved.
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where

ch L2 22 =
A, = [33. BiR™ + B, (R

All variables are evaluated at t
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APPENDIX A
TIME DERIVATIVES OF DIFFERENTIAL EQUATIONS
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APPENDIX B

INVERSION OF SERIES IN SEVERAL VARIABLES

Suppose that we are given the two equations in two variables.
Fl(x1 ,xz) =0
Fz(xl ,xz) = 0.

We wish to solve them for roots ;:1 and }_cz. Let the functions F, and F,
be expanded about a point ;{1 and :7:2 which is presumably near :_:1 and ;:2.
R .. 3‘F1 - . oFy
FyGeyoxy) = By (Rys%y) F a%, Gy = %)+ o, Gy - %) F =0
and similarly for Foe These expansions are rewritten as

— 2 LI IR
%g0 = %10 X1 Togy Xy T X T

_ . 2 ...
00 = Bio ¥ TRy Xp T By Xy F

-agg = Fp (xp5%p)
~Bog = Fpxy %50+
We assume that the inverse may be represented as

2 2 *eoN
1 = A0 %0 T 41 Boo T %20 %00 T 211 00 Boo T 202 Boo t

2 2

X, = Byg %0 * Bo1 Boo T Bao %00 T B11 %00 Boo t Boz Boo T 77T

B-1
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It is now necessary to determine the coefficlents of the inverse series in
terms of the coefficients in the original series. The derivations will be

simpler if we write the inverse as
xlle ”*“22 +33 T

X

g =W R, R W R,

3
where zn and Wn stand for all terms of degree n in the y's and 8is.
The assumed form for the inverse is substituted into the original series

and the method of undetermined coefficients ig used to determine the zn and

Wn. For the firgt-degree terms we have

-1
2 0 %1 %90
Wy 816 B fao
For the second-degree terms we have
1
Zy %9 %y )
Wy Bio  Bpy )
whera
K, = 22+, z W b oo Wl
Ky = 00 2p Ty 2y W oy, W
_ 2
~3p = By %y F By B Wt By, W’i
I general,
& Zy
o + + ..
W ",
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APPENDIX ¢

SIMPLIFIED SERIES FOR at FOR ASCENT TO CIRCULAR
ORBIT AND RENDEZVOUS PROBLEMS

_ 2
A% = Boooo T 1000 M1 T Boroo 22t Brier M Mg Ay * Bogor A Mg

3 3

2
+8 Ay A 1 T Bopsag A3

+8 1002 *1 %4 T B3ggp A

2
0120 %2 A3

2 2 2

2 2
thyr M2 1202 M1 22 A4 ¥ Baygp A A5 23

2111 *1 g rg Ay T8

2

T Bio11 M 22 A3 At Bigry Ay A3y, FBgipg Ay Ay Ay

2.2 2 . 2 2 2
T 81220 21 23 A5 TByi0p A7 A5 G * 80210 22 3 T Bygar A Ay

where
B e g2 -~ = 2 2. 2
0000 = [B;V" + B, (R « V)- e = BRTT /28 + 1 + 2/(1 - 20)
—{332v2 - 8312(§ eV +o@® D + 30,0, ] 3768
: 2
8100(} = [azu - 2&181}{} /28
. 2 3
- {a3u - 3&2 Slx - BBzalx - Aazﬁlu - oY ¥ - Zalyxyv] T /68
= _ - ' 2
Pot00 =~ - 2 918,31 /26
ke _ 2 .3
- Iu3v - 30;231 y SBzuly 4m181v a yxy zalyxyu} t~ /68
= - [a,u]1%/25~ [20,u - 3a.B.x] 73/65
1101 1. 2 171
Boogy = = Loy v1t?/28- [20,v - 3u.8.y] 13/68
0201 1 : 2 "1
B . = lo vitd/6s
Q120 1

o 3
B 1002 = Togult™/68

_ 2 2 3
83600 = [OtlYux = O Yuy” - 2u.YxyvitT /65
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2 2
80300 =’[ainy - ainx - 2uinxyu]T3/66

_ 3
32111 = = [6alu]‘t /638
Brony = - [30,ul/65
1202 1
B = - [30,v173/66
2120 1
B, oyy == 170 vt /68
1211 1
B8 = [20 v]T3/65
1011 1
By = [20,u]T0 /88
0111 1
B = [3a,u]T /66
1220 1
8 = [3a v}r3;55
2102 . Y1
8 = {au tzfzé + 201 - 38,c,%] 13/6§
0210 1 p F1%1
8 = [o v 23{254— 2e,v - 3B,0,v] *:3!63
2001 1 2 11
where
B 3
B, = GM/R

B, = - 3(M/R7)(R-T)
Y= -3a@/R°

P =15 (GM/R')(RT)
§= (T-1) + (F-¥)
O = Fi;n

ty = ~F/m (tfm)

G =‘_f * ?fﬁf_‘- v

T = the estimated value of Af,
c-2



