INTRINSIC MAGNETIC PROPERTIES OF THE LUNAR BODY

KENNETH W. BEHANNON

MAY 1968

GODDARD SPACE FLIGHT CENTER
GREENBELT, MARYLAND
INTRINSIC MAGNETIC PROPERTIES OF
THE LUNAR BODY

Kenneth W. Behannon
Laboratory for Space Sciences
NASA-Goddard Space Flight Center
Greenbelt, Maryland

May 1968
Abstract

Preliminary analysis of magnetic measurements by Explorer 35 in lunar orbit suggested an upper limit of $4 \times 10^2 \text{ gauss-cm}^3$ for the magnetic moment of the moon. A more detailed analysis of a larger body of Explorer 35 data from measurements in the earth's magnetic tail has subsequently been performed. Reversal of the ambient tail field by 180° when the moon and spacecraft traverse the neutral sheet permits a separation of permanent and induced field contributions to the total field observed near the moon. When compared to calculated permanent and induced field effects, the results of this analysis lead to new upper limits of 10^2 gauss-cm^3 on the lunar magnetic moment and 4γ on the lunar surface field. Limiting the moment induced in the moon by the magnetotail field permits an upper limit of 1.8 to be set on the bulk relative magnetic permeability of the moon.
Introduction

Previous spacecraft measurements in the vicinity of the moon have set upper limits on an intrinsic lunar magnetic field such that if a lunar field exists at all, it is very weak. In 1959 Luna 2 made measurements to within 55 km of the moon's surface (Dolginov et al., 1961), and no lunar associated magnetic field as large as 50-100\(\gamma\) was observed at that altitude. The experimenters set an upper limit of \(6 \times 10^{21}\) gauss-cm\(^3\) on the magnetic moment of the moon.

In 1966 the orbit of Luna 10 carried it to within 350 km of the lunar surface (Dolginov et al., 1966; 1967). The magnetic field measurements obtained by that spacecraft and their interpretation as detection of a pseudo-magnetosphere have been questioned (Ness, 1967). No new limit on the lunar magnetic moment was set by the experimenters. From the measurements reported, however, one may infer an upper limit on the moment of \(1-3 \times 10^{21}\) gauss-cm\(^3\). Neither Luna 2 nor Luna 10 detected a dipole-like variation in the magnetic field measured near the moon.

Lunar Explorer 35 was placed into selenocentric orbit on July 22, 1967 with apotelene = 9388\(\pm\)100 km, periselene = 2568\(\pm\)100 km, and period = 11.5 hours. Instrumentation of the Goddard Space Flight Center magnetometer on Explorer 35 and initial results have been previously described (Ness et al., 1967). Subsequently a more detailed study has been made of the interaction of the solar wind with the moon and the resulting perturbation of the interplanetary magnetic field.
(Ness et al., 1968). The GSFC experiment makes total vector measurements of the ambient magnetic field at 5.12 second intervals with a sensitivity of ±0.1γ. The initial results showed that the moon does not trap interplanetary field lines to form a lunar magnetosphere. They also enabled the lowering of the upper limit on the magnetic moment of the moon by more than an order of magnitude below the Luna 2 value, to 4×10^{20} gauss-cm3.

The purpose of this work is to present results of a more detailed study of Explorer 35 data which lead to a still lower upper limit on the lunar magnetic moment and in addition permit an upper limit to be placed on the bulk relative permeability of the lunar body.
Data Analysis

If the moon has a weak permanent magnetic field, it would be highly distorted by the solar wind outside the geomagnetic field. For the detection of the effect of a weak intrinsic lunar field, the best environment is the geomagnetic tail where the ambient field at the lunar orbital distance is known from previous measurements to be steady in magnitude and direction except in the vicinity of the plasma sheet (Behannon, 1968). The moon moves relatively slowly through the tail, so that under conditions of a steady tail field, a lunar field in the magnetotail should be treatable as a static case to a good approximation. The amplitude of the interaction between the medium and the moon should be below the level of detectability of magnetometers currently in use (Sonett and Colburn, 1968).

Figure 1 shows the path of the moon across the earth's tail in solar magnetospheric coordinates as seen from the earth during October 1967. There are periods of time when the diurnal neutral sheet oscillations move the sheet far enough away from the moon so that the field surrounding the moon is characteristically oriented in the solar or antisolar direction and is relatively steady. The first periselene passes on October 17 and 19 occurred during such periods.

When the moon traverses the neutral sheet during passage across the tail, then in principle one can make use of the field reversal across the sheet to distinguish between a permanent lunar field and a field induced in the moon by the tail field. This is because an
induced moment is given by

\[\vec{M}_{\text{induced}} = f(\mu_m, \frac{R_c}{R_m}) \cdot \frac{4}{3} \pi R_m^3 \vec{B}_{\text{tail}}, \]

where \(\mu_m = \mu / \mu_0 \) is the bulk relative permeability of the moon, \(R_c \) is the radius of a core region inside of which the temperature is above the Curie point, and \(R_m \) is the unit of lunar radius (1738 km). The induced moment is seen to be a function of the volume of the moon and of the inducing tail field as well. Thus, if the magnetotail field above the neutral sheet is \(\vec{B}_{T+} = \vec{B}_{\text{tail}} \), then the field below the sheet is \(\vec{B}_{T-} = -\vec{B}_{\text{tail}} \) and the induced moment below the sheet is \(\vec{M}_{\text{induced}} = -\vec{M}_{\text{induced+}} \).

If the total magnetic moment of the moon above the neutral sheet is given by

\[\vec{M}_+ = \vec{M}_{\text{perm}} + \vec{M}_{\text{induced+}}, \]

where \(\vec{M}_{\text{perm}} \) is a permanent lunar magnetic moment, then the total moment below the sheet is simply

\[\vec{M}_- = \vec{M}_{\text{perm}} + \vec{M}_{\text{induced-}} = \vec{M}_{\text{perm}} - \vec{M}_{\text{induced+}}. \]
The permanent and induced moments are then given in terms of the respective total moments by

\[\vec{M}_{\text{perm}} = \frac{1}{2} (\vec{M}_+ + \vec{M}_-) \] (2)

and

\[|\vec{M}_{\text{induced}}| = \frac{1}{2} |\vec{M}_+ - \vec{M}_-|. \] (3)

One can see from (2) and (3) that if the total field observed near the moon by the satellite is

\[\vec{B} = \vec{B}_{\text{perm}} + \vec{B}_{\text{induced}} + \vec{B}_{\text{tail}}' \]

then it should be possible to separate the various components by utilizing measurements from each side of the field reversal region, realizing that there is a difference in the coordinate system appropriate for identification of the respective components. Since an induced field should be aligned with the tail field, solar ecliptic coordinates are adequate for studying induced field effects. A permanent lunar field, on the other hand, should be fixed relative to the moon, which is rotating. Thus selenographic coordinates, which are fixed to the lunar surface, would be a suitable choice of coordinates for attempting to isolate a permanent field variation.
Using a selected pair of passes near the moon from below and above the neutral sheet, one can calculate from each set of field measurements performed at the same position in the respective coordinate systems the two vectors

\[\vec{B}_{\text{perm}} = \frac{1}{2} (\vec{B}_+ + \vec{B}_-) \quad \text{(selenographic)} \]

and

\[\vec{B}_{\text{induced}} = \frac{1}{2} (\vec{B}_+ - \vec{B}_-) \cdot \vec{B}_{\text{tail}} \quad \text{(solar ecliptic)} \]

In this way a suite of paired data obtained near the moon can be made to yield the separate influences of both permanent and induced lunar fields as functions of position and distance from the moon. As can be seen from (1), the detection or limiting of an induced field permits a limit to be set on the lunar permeability given a value for \(R_C\), the Curie point radius.
Experimental Observations

The experimental data to be discussed consist of field measurements performed by Explorer 35 during three successive passes of the moon through the geomagnetic tail in August, September and October 1967. No pairs of field measurement sets suitable for the field reversal analysis were found in August due to geomagnetic conditions being disturbed at the beginning of the tail pass (Σ Kp was 23 + on August 18) and the moon being continuously embedded in the plasma sheet near the end of the pass. Figure 2 shows paired data typical of the September tail pass. While the field was relatively steady on September 17 when the moon was below the neutral sheet, large intermittent variations in the field on September 19 when the moon was above the neutral sheet but closer to it limit the usefulness of this pair. Σ Kp was 25 + on September 19 compared to a value of 12- on September 17.

The best pair of measurements obtained from Explorer 35 were on October 17 and 19, around the first periselene passages on each of those days (see Figure 1). Σ Kp ranged from 18 on October 17 down to 9 on October 19. The data are shown in Figure 3. They consist not only of measurements of the field through periselene (marked P) but also through a solar ecliptic azimuth of 360°, which would be a pole of an induced field in the magnetotail. Individual points represent 81.8 second averages of 5.12 second vector measurements performed both below (.) and above (+) the neutral sheet. Even in the case of these
data the observed field was not completely steady. The effects of approximately 20 minute period waves, which have previously been observed in the magnetosphere by Explorer 33 (Behannon, 1968), are seen.

One would expect the reversal of the ambient field to result in antisymmetric trends in the pairs of data curves if the effects of an induced field are observed by the spacecraft. This is weakly suggested by the BX component data. On the other hand, permanent lunar field measurements from different passes should have nearly identical trends if the spacecraft tracks approximately the same path through the lunar field on each of the passes. Equivalently, the subsatellite point must trace out approximately the same path on the lunar surface in each of the passes. A transformation to selenographic coordinates permits one set of data to be shifted relative to the other so that this condition is satisfied if the data sets are not separated in time by more than a few days. The data shown in Figure 3 are in solar ecliptic coordinates with the respective positions of the zeros of selenographic longitude (λ_{SG}) indicated. The periselene distance varied from 817 km on October 17 to 869 km on October 19. A field that varies $\propto R_{M}^{-\frac{3}{2}}$ would decrease by 20% in that distance.

The analysis described in the previous section was performed on these data and the respective residual fields are shown in Figure 4. The solid curves, as functions of selenographic longitude, should show
the effects of a permanent field, while the dotted curves, as functions of solar ecliptic azimuth, should reveal any induced field effect. As can be seen, they show that neither a permanent nor an induced field makes a contribution of as much as 1\gamma to the magnitude of the observed field at the distance of Explorer 35 at periselene, or at an azimuth of 360° in the case of the induced component. A total field residual of 1\gamma is seen in the permanent field traces at a time which is post-periselene and occurs at a distance from the surface of 886 km. The field magnitude could increase with distance in a dipole field if the spacecraft is moving toward the polar region of the field. The observed peak is more probably the result of superposition of temporal variations occurring in the respective fields which have been summed.

Figures 5 and 6 summarize the total field variations observed by Explorer 35 from August through October for the selenographic longitude range of 0°-140°. The progressive advancement of the periselene point toward 0° is seen in the distance values. Selenographic latitude did not vary by more than 6° at any given longitude throughout the period covered by the data. The periselene distance from the lunar surface varied between 747-886 km during this period. The large degree of variability seen in the data is due at least in part to the close proximity of the moon to the neutral sheet much of the time. No consistent pattern of variation is evident, and no increase in the magnitude larger than approximately 1/2\gamma is seen near periselene on those passes where the field is relatively steady, as on September 17 (sequence 77,694) and on September 19 (sequence 79,710).
Table 1 summarizes the conditions of the environment in which the observations shown in Figures 5 and 6 were made. The date and telemetry sequence number of the beginning of each run plotted in the figures is listed in the table. For each of the 12 runs of greater than three hours the average total field magnitude F_{AVG} is tabulated, along with the value of Kp corresponding to that time interval and the distance of Explorer 35 from the solar magnetospheric equatorial plane at the beginning of the run. The average total field for all 12 passes was found to be 10.3 γ. A magnitude of 9-10 γ is predicted for the magnetotail field at 60 R_E from the earth by the tail gradient observations of Explorer 33 (Behannon, 1968; Mihalov et al., 1968).

In Table 2 is shown the average trend of the total field with selenographic longitude found from the data shown in Figures 5 and 6. The 12 passes were summed and averaged at 10° intervals of longitude from 130° to 0°, giving the 14 values of average magnitude F_{AVG}. The average selenocentric distance of Explorer 35 in lunar radii corresponding to each magnitude average is also given. As can be seen the standard deviation of the average total field was found to be only ± 0.2 γ for the 130° range of longitude although the average distance varied by 0.5 R_M.

The total field data also can be summarized in terms of solar ecliptic azimuth. Figure 7 represents a graphical summary for five of the passes near the moon in October. Again the temporal variability is evident, but the data from October 17 (sequence 108,681) and
October 19 (sequences 111,220 and 111,729) show little variation through either periselene or $\theta_{SSE} = 0^\circ$. An effect of approximately 1γ would be expected at 0° for an induced moment of 1×10^{20} gauss-cm3. This is illustrated in Figure 8, where the average tail field of 9γ and an induced moment of 1×10^{20} were used to compute the effect of an induced field along the actual trajectory of Explorer 35 in a steady ambient field of 9γ.

An induced field effect may be calculated at each point in the orbit using

$$B = \frac{B}{R} \cos \theta + 2M_I \cos \theta/R^2$$

and

$$B = \frac{B}{T} \sin \theta + M_I \sin \theta/R^3,$$

where M_I is the magnitude of the induced moment, R is the selenocentric distance to the point, and θ is the angle between the tail field vector and the radius vector to the point.

In Figure 8 the theoretical field is superimposed as a solid curve on the measured total field and component data from the first periselene pass on October 19. Even with the wave fluctuations in the field it is clear that no regular variation larger than one due to an induced moment of 1×10^{20} gauss-cm3 is seen in the field observed by the spacecraft.
Interpretation of Results

With these more detailed studies of Explorer 35 measurements near the moon, one is able to set upper limits on the lunar magnetic moment and surface field magnitude that are lower than previous estimates. Table 3 shows the permanent dipole field that would be observed at a periselene distance of 1.4 \(R_M \) (~700 km) for different values of the dipole moment magnitude \(M \) and equatorial surface field magnitude \(B_{eq} \). For each value of the moment and surface field the table gives the corresponding magnitude of the lunar field at the spacecraft at the given periselene distance if the satellite is over the pole, at 45° from the pole, or at the lunar magnetic equator. At the maximum periselene distance observed during August-September 1967 (approximately 200 km further from the surface), the field magnitudes that would be observed would be 25% less than the values listed in Table 3.

The most difficult situation to detect from an equatorial orbit would be one in which a permanent magnetic moment would be normal to the ecliptic plane. However, the total field values in the 90° column in Table 3 show that even in that most obscure case, the field due to a moment \(>10^{20} \) should be observable. It can be seen from the table that if no permanent field variations larger than 1\(\gamma \) are detected, then the upper limit on a lunar dipole moment must be of the order of \(1 \times 10^{20} \) gauss·cm\(^3\) with an equatorial surface field no greater than approximately 2\(\gamma \).
The tests for an induced field effect show that if an induced component is present in the Explorer 35 data through periselene and through an azimuth of 360°, then it is less than 1γ in magnitude also. The comparison with a computed field variation in Figure 8 further shows that if a magnetic moment is induced in the moon, it must be limited to $\leq 1 \times 10^{20} \text{ gauss-cm}^3$ as well.

When the magnitude of the inducing tail field is considered along with the upper limit on the induced moment, one can estimate an upper limit on the bulk magnetic permeability of the lunar material. The family of curves shown in Figure 9 relate induced magnetic moment to permeability for a range of values of R_1/R_M, the relative cavity radius, in a spherical shell of permeable material (Jackson, 1962). If one assumes a homogeneous solid moon ($R_C=0$) so that the equation for magnetic moment given in Figure 9 is valid, then a unique solution for μ_m, the relative permeability, is possible. For an inducing field of 9γ, corresponding to the average tail field magnitude on October 19, and an upper limit on the induced moment of $1 \times 10^{20} \text{ gauss-cm}^3$, an upper limit of 1.8 is obtained for μ_m.

The limit of 1.8 can be compared to values found in the laboratory for various materials which have been suggested for the composition of lunar rocks. It must be remembered that laboratory measurements are performed at temperatures well below the Curie point, since as a material is heated to that temperature the susceptibility goes to zero. A limited number of measurements have been made on chondritic meteorites.
Fensler et al. (1962) found D.C. permeabilities of 1.20 and 2.04 for the Leedy and Plainview meteorites. In a survey of 79 chondrites, Pochtarev and Gus'kova (1962) found values of χ ranging from 0.0032 to 0.220 cgs units. Since

$$\frac{\mu}{\mu_0} = 1 + 4\pi\chi,$$

one finds that the relative permeabilities of those samples ranged from 1.04 to 3.76. In addition, 16% had permeabilities larger than 1.8. Values for achondrites and eucrites surveyed ranged from 1.0025 to 1.25.

Measurements of susceptibility of common earth rocks (Grant and West, 1965; Clark, 1966) lead to relative permeability values that fall on or below an average of 1.01 for basalt. This is due to a tendency for magnetite to concentrate in mafic rocks, resulting in a higher magnetic susceptibility in these rocks than in more silicic ones. Thus the upper limit set by Explorer 35 on the bulk relative permeability of the lunar body is in the lower 1/3 of the range of measured values for chondritic meteorites and larger than values measured for achondrites and eucrites, as well as those found for terrestrial rocks.

If the Curie point radius for the moon is in fact large, it can be seen from Figure 9 that if $R_C = R_1$ and the magnetic moment is as large as 10^{20} gauss-cm3 then μ_m could be a large number. However, the
preceding discussion of laboratory measurements of μ_m suggests that the bulk relative magnetic permeability of the moon is probably no larger than the upper limit that was computed for the case of $R_C = 0$. This conclusion is supported by the results of the magnet experiments on Surveyors 5, 6 and 7. Those results were consistent with a basaltic structure for the moon's surface at the sites tested (de Wys, 1967, 1968).

The question of the value of R_C will remain indeterminate until sufficient measurements are performed on the moon to establish a reliable average value of μ_m for the moon and the induced moment is determined more precisely. If the lunar magnetic permeability is as low as has been measured for terrestrial rocks, even if the moon is solid Figure 9 shows that the moment induced in the moon by the tail field would be at least an order of magnitude lower than the upper limit set by Explorer 35 measurements.
Summary

Measurements obtained in the vicinity of the moon by Luna 2 established an upper limit of 6×10^{21} gauss-cm3 on the magnetic moment of the moon. Data from Luna 10, the first spacecraft to orbit the moon, suggested a slightly lower moment of $1-3 \times 10^{21}$ gauss-cm3. While not finding a dipole-like variation in the Luna 10 measurements near the moon, the magnetic field experimenters did claim to observe a significant excess of the near-lunar field over the undisturbed interplanetary field (Dolginov et al., 1966). However, they state that for the Luna 10 observations to be consistent with a static magnetization of lunar rocks, those rocks would have to have a magnetic permeability of 0.5. The interpretation of the Luna 10 magnetic measurements has been questioned by Ness (1967).

Measurements by the more sensitive GSFC magnetometer onboard Explorer 35 reveal no lunar field of the magnitude observed by Lunar 10 and reduce the upper limit on the lunar magnetic moment to 10^{20} gauss-cm3. This corresponds, in the case of a permanent dipole field, to an equatorial surface field of no greater than approximately 2γ (and a field no larger than 4γ anywhere on the lunar surface).

Limits of 1×10^{20} gauss-cm3 on each of the respective moments permit a total magnetic moment in the magnetotail as large as 2×10^{20} for the case in which the two moments are parallel and in the same direction. However, since the search for an induced moment should have detected that larger effect, it is not likely that such an alignment
ever occurs and hence the upper limit on the total moment is also probably of the order of 1×10^{20} gauss-cm3.

The upper limit on the magnetic moment along with the average magnitude of the earth's tail field permit an upper limit of 1.8 to be set on the bulk relative magnetic permeability of the moon if a solid, homogeneous moon is assumed. Laboratory measurements and Surveyor magnet results suggest that the magnetic permeability is probably not larger than that value, even if the moon's core is not solid. A magnetic permeability on the lower edge of or below the range of values found in the laboratory for chondritic meteorites suggests that the moon is not predominantly composed of cold chondritic material. It could be composed of warm chondritic material but then there would be other detectable effects such as those due to conductivity, and no effects of that nature have been found (Ness, 1968).

Failure to detect a lunar field effect with the Explorer 35 instrument reinforces the conclusion that the bulk of the moon did not cool through its Curie point at some past time in a strong uniform magnetic field, since a relative strong and stable remanence would have been acquired and should have been observed.
Acknowledgements

I am indebted to Dr. N. F. Ness for his many suggestions and continuous support throughout this work. Discussions with Dr. H. E. Taylor, the analysis assistance of Mr. H. E. Haney and Mr. W. H. Mish, and the engineering contributions of Mr. C. S. Scearce and Dr. S. C. Cantarano to the Explorer 35 experiment are also appreciated.

TABLE 1

AVERAGE TAIL FIELD MAGNITUDE SUMMARY

<table>
<thead>
<tr>
<th>SEQ</th>
<th>$F_{AVG}(\gamma)$</th>
<th>Kp</th>
<th>$Z_{SM}(R_E)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 Aug 1967</td>
<td>13.5</td>
<td>3</td>
<td>-15.6</td>
</tr>
<tr>
<td>19 Aug</td>
<td>12.5</td>
<td>2-</td>
<td>-9.3</td>
</tr>
<tr>
<td>19 Aug</td>
<td>12.0</td>
<td>3</td>
<td>-5.5</td>
</tr>
<tr>
<td>17 Sept</td>
<td>7.8</td>
<td>2</td>
<td>-11.7</td>
</tr>
<tr>
<td>17 Sept</td>
<td>10.2</td>
<td>2-</td>
<td>-9.1</td>
</tr>
<tr>
<td>18 Sept</td>
<td>12.5</td>
<td>3-</td>
<td>-3.8</td>
</tr>
<tr>
<td>19 Sept</td>
<td>10.0</td>
<td>3+</td>
<td>+3.3</td>
</tr>
<tr>
<td>16 Oct</td>
<td>9.2</td>
<td>0+</td>
<td>-14.8</td>
</tr>
<tr>
<td>17 Oct</td>
<td>7.7</td>
<td>1</td>
<td>-5.2</td>
</tr>
<tr>
<td>17 Oct</td>
<td>10.6</td>
<td>2</td>
<td>-8.0</td>
</tr>
<tr>
<td>19 Oct</td>
<td>9.2</td>
<td>0+</td>
<td>+6.2</td>
</tr>
<tr>
<td>19 Oct</td>
<td>8.1</td>
<td>1</td>
<td>+4.8</td>
</tr>
</tbody>
</table>

AVERAGE $= 10.3 \gamma$
<table>
<thead>
<tr>
<th>λ_{sc} (deg)</th>
<th>\overline{F}_{ave} ((\gamma))</th>
<th>DIST_{ave} (R(_M))</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>10.5</td>
<td>2.0</td>
</tr>
<tr>
<td>120</td>
<td>10.5</td>
<td>1.8</td>
</tr>
<tr>
<td>110</td>
<td>10.5</td>
<td>1.7</td>
</tr>
<tr>
<td>100</td>
<td>10.7</td>
<td>1.5</td>
</tr>
<tr>
<td>90</td>
<td>10.7</td>
<td>1.5</td>
</tr>
<tr>
<td>80</td>
<td>10.3</td>
<td>1.5</td>
</tr>
<tr>
<td>70</td>
<td>10.3</td>
<td>1.5</td>
</tr>
<tr>
<td>60</td>
<td>10.2</td>
<td>1.5</td>
</tr>
<tr>
<td>50</td>
<td>10.1</td>
<td>1.6</td>
</tr>
<tr>
<td>40</td>
<td>10.3</td>
<td>1.6</td>
</tr>
<tr>
<td>30</td>
<td>10.1</td>
<td>1.7</td>
</tr>
<tr>
<td>20</td>
<td>10.2</td>
<td>1.8</td>
</tr>
<tr>
<td>10</td>
<td>10.1</td>
<td>1.9</td>
</tr>
<tr>
<td>0</td>
<td>10.1</td>
<td>2.0</td>
</tr>
</tbody>
</table>

AVERAGE FIELD MAGNITUDE = 10.3\(\gamma\)

STANDARD DEVIATION OF FIELD = ±0.2\(\gamma\)
TABLE 3

PERMANENT LUNAR DIPOLE FIELD
at \(R = 1.4 \, R_M \)

\[
M = B_{eq} \, R_M^3 \\
|\overrightarrow{B}| = \sqrt{B_R^2 + B_\theta^2} \\
B_R = \frac{2M \cos \theta}{R^3} \\
B_\theta = \frac{M \sin \theta}{R^3}
\]

<table>
<thead>
<tr>
<th>(M)</th>
<th>(B_{eq})</th>
<th>(\theta = 0^\circ) (POLE)</th>
<th>(45^\circ)</th>
<th>(90^\circ) (EQUATOR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4.2 \times 10^{20}) cgs</td>
<td>8 (\gamma)</td>
<td>5.8 (\gamma)</td>
<td>4.6 (\gamma)</td>
<td>2.9 (\gamma)</td>
</tr>
<tr>
<td>(3.2 \times 10^{20})</td>
<td>6</td>
<td>4.4</td>
<td>3.4</td>
<td>2.2</td>
</tr>
<tr>
<td>(2.1 \times 10^{20})</td>
<td>4</td>
<td>2.9</td>
<td>2.3</td>
<td>1.4</td>
</tr>
<tr>
<td>(1.0 \times 10^{20})</td>
<td>2</td>
<td>1.4</td>
<td>0.9</td>
<td>0.7</td>
</tr>
<tr>
<td>(0.5 \times 10^{20})</td>
<td>1</td>
<td>0.7</td>
<td>0.6</td>
<td>0.4</td>
</tr>
</tbody>
</table>

\[|\overrightarrow{B}|_{1.5 \, R_M} = 0.75 \, |\overrightarrow{B}|_{1.4 \, R_M}\]
FIGURE CAPTIONS

Figure 1 Variation of the distance (Z_{SM}) of the moon from the solar magnetospheric equatorial ($Z_{SM}=0$) plane in units of R_E (earth radii) during the October 1967 pass of the moon across the geomagnetic tail. Periselene points (P) for Explorer 35 in lunar orbit are shown. Heavy shading along the trajectory indicates intervals when depressed field magnitude was observed, with positions at which temporary and final neutral sheet traversals occurred also marked (R).

Figure 2 Paired GSFC magnetic field data from Explorer 35 passes near the moon on September 17 and 19, 1967. Solar ecliptic component measurements of the vector field (in gammas) both below (·) and above (+) the neutral sheet of the geomagnetic tail are shown as functions of selenocentric solar ecliptic azimuth (ϕ_{SSE}), selenocentric distance of the spacecraft in units of R_M (lunar radii), and relative telemetry sequence number. Approximately 190 minutes of data are shown.

Figure 3 Paired GSFC magnetic field data from Explorer 35 passes near the moon on October 17 and 19, 1967. These measurements together with those shown in Figure 2, demonstrate the continuous absence of a large lunar field effect in a relatively steady magnetotail field.

Figure 4 Solar ecliptic component residuals near the moon obtained from analysis of October 17 and 19 data. These curves show
that both permanent and induced lunar field effects at the spacecraft are less than $\pm 1Y$ at periselene (P).

Figure 5 Total magnetic field magnitudes (F) on six periselene passes during August 18 to September 18, 1967 as functions of selenographic longitude (λ_{SG}). Selenocentric distance in units of R_M is given with each curve. No recurrent pattern of variation in field magnitude was observed.

Figure 6 Total magnetic field magnitudes measured on six passes during the period September 19 to October 19, 1967. As in Figure 5, no persistent variation with selenographic longitude that could be attributed to a dipole or remanent permanent lunar field is seen in the data.

Figure 7 Total magnetic field magnitudes observed by Explorer 35 during five passes near the moon in October 1967 as functions of selenocentric solar ecliptic azimuth (ϑ_{SSE}) and distance in units of lunar radii. Distance (Z_{SM}) from the solar magnetospheric equatorial plane is given for $\vartheta_{SSE}=0^\circ$. In this case no regular variation with solar ecliptic azimuth is seen.

Figure 8 Measured total field and solar ecliptic component data for the period 0830-1140 UT, October 19 with calculated induced field (for the case of an unaberrated tail) superimposed. A gradual increase is seen in the measured field around an azimuth of 360°, but a variation with the form of the computed induced field is not seen. The averages of the BX and BY
components during this period give an aberration angle for the magnetotail of $\sim 6^\circ$ (corresponding to a solar wind velocity of ~ 300 km/sec).

Figure 9 Induced magnetic moment (M) as a function of magnetic susceptibility (μ_m^{-1}), for inducing tail field magnitudes (B_T) of 10 and 15T. Relative equatorial surface field magnitude corresponding to a given induced moment is shown on the right-hand ordinate. The formulation for computing the induced moment for a solid, homogeneous moon is given.
POSITION OF MOON IN GEOCENTRIC SOLAR MAGNETOSPHERIC COORDINATES
OCTOBER 1967

FIGURE 1.
\(\phi_{\text{SSE}} = 90^\circ\)

\[
\begin{array}{cccccc}
\text{DIST.}(R_M) & 1.5 & 1.8 & 2.4 & 3.1 & 3.6 \\
\hline
B_x (+) & & & & & \\
B_y & & & & & \\
B_z & & & & & \\
\end{array}
\]

**17 SEPT. \(\phi_{\text{SSE}} = 0^\circ\) at SEQ. 77735
+19 SEPT. \(\phi_{\text{SSE}} = 0^\circ\) at SEQ. 79764

FIGURE 2
\[\phi_{SSE} = 135^\circ, 108^\circ, 90^\circ, 66^\circ, 360^\circ, 317^\circ, 291^\circ, 275^\circ \]

\[\text{DIST.} (R_M) = 2.6, 2.0, 1.8, 1.6, 1.5, 1.6, 2.0, 2.6, 3.1 \]

-17 OCT. \[\phi_{SSE} = 0^\circ \text{ at SEQ. 108681} \]

-19 OCT. \[\phi_{SSE} = 0^\circ \text{ at SEQ. 111220} \]
\[\phi_{SSE} = 90^\circ \]

DIST. \((R_M) = 1.8 \quad 1.6 \quad 1.5 \quad 1.6 \quad 2.0 \)

\[\begin{align*}
B_X & \quad 0 \\
B_Y & \quad 0 \\
B_Z & \quad 0
\end{align*} \]

\[\frac{1}{2} (\vec{B} + \vec{B}_-) \quad (SG) \]

\[\frac{1}{2} (\vec{B} + \vec{B}_-) - \vec{B}_{TAIL} \quad (SE) \]

\(\lambda_{SG} = 85^\circ \quad 61^\circ \quad 360^\circ \quad 312^\circ \)

OCTOBER RESIDUAL FIELDS

FIGURE 4
FIGURE 5
DIST.(R_M) = 1.8

SELENOGRAPHIC LONGITUDE

FIGURE 6
$B_T = 15^\gamma \quad B_T = 10^\gamma$

$B_{eq} =$ Equatorial Field
$B_T =$ Tail Field

$\mu_M =$ Magnetic Permeability

$M = \left[\frac{\mu_M - 1}{\mu_M + 2} \right] R_M^3 B_T$

$M \quad (\text{gauss-cm}^3)$

$R_1/R_M = 0.0 - 0.2 \quad 0.5 \quad 0.7 \quad 0.9$