
NASA TECHNICAL NOTE - N A S A  TJ D-4485 
4 1 

f 

LQAN COPY: RETURN TO 

KIRTLAND AFB, N M E X  
AFWL [WLIL-2) 

A THEORETICAL APPROACH TO THE 
DETERMINATION OF MAGNETIC  TORQUES 
BY NEAR FIELD MEASUREMENT 

by J. C. Boyle, J. Greyerbierbi’, und E. J. Mosrber 

Goddard Spuce Flight  Center 
Greenbelt, Md. 

N A T I O N A L   A E R O N A U T I C S   A N D   S P A C E   A D M I N I S T R A T I O N  W A S H I N  
.. 



TECH LIBRARY KAFB, NY 

A THEORETICAL  APPROACH TO THE  DETERMINATION  OF 

MAGNETIC  TORQUES  BY  NEAR  FIELD  MEASUREMENT 

By J. C.  Boyle, J. Greyerbiehl ,   and E. J. Mosher  

Goddard Space Fl ight   Center  
Greenbelt,  Md. 

NATIONAL AERONAUTICS AND  SPACE ADMINISTRATION 

For  sale by the  Clearinghouse for Federal  Scientific and Technical  Information 
Springfield,  Virginia 22151 - CFSTI price $3.00 



ABSTRACT 

Using  the  concept of s t r e s s  in  the  medium as postulated by Faraday 
and developed  mathematically by Maxwell  and Jeans,  equations a r e  de- 
rivedfor  thetorque on a magnetic  object  immersed  in an arbitrary mag- 
netic  field.  The  calculation  requires a knowledge of the  magnetic  inten- 
sity  vector  over any closed  surface which encompasses  the  magnetic 
object of interest. 

Torque  equations  are  derived  for  the  case  where  the  closed sur-  
face is a sphere of arbitrary  radius and also  where  the  closed  surface 
is a right  circular  cylinder.  The  validity of the  equations is tested by 
applying  them  to a simple  intensity  distribution  (that of a theoretical 
dipole)  where  the  resultant  torque is known a priori.  There is also a 
discussion of permanent  versus induced  moments  and a technique which 
can  be  used  to  separately  identify  these  components  based on near  field 
information. 
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A THEORETICAL  APPROACH TO THE  DETERMINATION OF 
MAGNETIC  TORQUES BY NEAR-FIELD MEASUREMENT 

by 
J. C. Boyle, J. Greyerbiehl, and E. J. Mosher 

Goddard Space Flight Center 

INTRODUCTION 

Torques  are  produced on orbiting  spacecraft by interaction  between  the  magnetic  field of the 
spacecraft and the  ambient  magnetic  field. Such torques  tend  to  alter  the  attitude of the  spacecraft 
and are  therefore  important  to  the  problem of attitude  control.  Since  the  torque  depends  on  the 
active  magnetic  control  elements as well as the  permanent  magnetic  state and the  permeability of 
all the  spacecraft  components, it is generally  determined by measurements  made on the  completely 
assembled and integrated  spacecraft. 

Instruments have  been  developed for  the  direct  measurement of spacecraft  torques  in  pre- 
flight  testing  (Reference 1). It is not always  desirable  or even feasible  to  use  this method,  in  which 
case  torques  must be  calculated  from  magnetic  measurements. 

Magnetic torque may be  defined as* L = M X H. One way to find the  magnetic  moment M of an 
object is to  take  "far-field"  magnetic  measurements.  This  makes  use of the  fact  that  at  large  dis- 
tances  from  the  test  object  the  field  resembles  that of an  equivalent  simple  dipole, which is easy  to 
calculate  from  field  measurements. But when the  test  object is bulky (say, a large  spacecraft)  it 
may  be  necessary  to  retreat to such  distances  that  the  field of the  spacecraft is weak,  making the 
measurements  unrealiable.  This  circumstance  has  generated an interest  in  "near-field'' 
measurements-made  close enough to  the  spacecraft  to  be  reliable, which is to  say, too close  to 
reduce  the  craft  to an equivalent  simple  dipole.  This  report  develops a mathematical  approach  for 
calculating  torques  using  near  field  measurements. 

MATHEMATICAL APPROACH 

In classical  magnetic  studies by Maxwell, Faraday 
electric o r  magnetic  fields  used  the  concept of tubes of 

and Jeans,  the  calculation of forces due  to 
stress.  Observation of magnetic  lines of 

*For meaning  of  mathematical  symbols  refer  to Appendix C. 
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force and their  effect on material  bodies  led  Faraday  to  believe  that the lines  tend  to  shorten 
themselves and repel  one  another when placed  side by side.  Maxwell  (Reference 2) assumed 
the  existence of a transmitting  medium  in a state of stress. Where  no  magnetization is pres- 
ent  (as in air or vacuum), the stresses consist of a tension  along  the  lines of force  equal  to 
H2/8n combined  with a pressure in all directions at right  angles  to the lines of force, also 
equal  to H2/877. 

Although the  concept of an  all-pervading  ether as a transmitting  medium is now in  considerable 
disrepute,  Maxwell's  mathematics is not, since it confirmed the numerical  results of experimen- 
tal observation and (incidentally)  established  the  propagation of light as an  electromagnetic 
phenomenon. 

Sir  James  Jeans  (Reference 3) uses  the  s t ress  on a medium and Green's  theorem  to develop 
a set  of equations  defining  electric  torques on an assemblage of charges  in  an  electric field. If it 
is true that the  computation  to  determine  the  torque  due  to a magnetic body in a magnetic  field is 
analogous  to  the  electrical  computation  referred  to  above,  then  Jeans'  equations (when written in 
their  magnetic  counterparts)  will  be  valid  for  magnetic  studies. 

A practical  near field magnetic  survey is likely to be  made  over a sphere  or  cylinder; and, 
since  Jeans'  formulation is in  rectangular  coordinates, it is not particularly  suitable.  Instead of 
transforming  Jeans'  equations  into  other  coordinate  systems it was found easier  to  develop ex- 
pressions  directly  from  Maxwell's  stress  equations. 

Using  the  mathematical  approach  developed  for  analyzing  stresses  in  elastic  solids, we obtain 
expressions  for  the  interaction  torque of a magnetic body in a magnetic  field.  The  approach  taken 
in  this  writing is outlined in  the  next two paragraphs. 

Consider a free body of a continuous  surface  such as a sphere or cylinder, or even an irregu- 
lar shape,  completely  surrounding a magnetic  specimen. As an example,  Figure 1 illustrates  the 
octant of a sphere  whose  origin is located  at  the  geometric  center of the  specimen.  It is not neces- 
sary  that  the  specimen  be  centered,  this is a convenience only. The  axes have  been selected  such 
that  the  ambient  field, H a ,  is parallel  to  the  y-axis. At some  general point P, on the  sphere,  the 
specimen  creates a field Hs . These two fields  combine  to  form  the  resultant H .  Let us  now look 
at  the  elemental  area dS, described  in  the  spherical  coordinates r ,   0 ,  6. as shown in Figure 2. 
Continuing to  Figure 3, replace  the  field  vector H , with a tensile  stress  vector k H 2 .  Enclose 
the  stress  vector in a square  tube of ether of unit  width  with  one pair of sides  parallel, and the 
other  pair  perpendicular  to  the  plane  containing  the  stress  vector and the unit normal 6. Impose 
a compressive  stress  vector  equal  to kH2 on each  side of the  tube.  Establish  the  tube as a free 
body and determine  the  stress  vector on dA necessary  to  maintain  the  tube  in  static  equilibrium. 
This  then  determines  the  stress  vector (I on the  surface  element of ether  that will  keep  the  element 
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Figure 1 -Vector  representation of a  magnetic  specimen  Figure  2-Orientation of intensity  vector  relative  to  an 
in  a  magnetic  field.  element of the  surface. 

stationary. It can be shown that this stress vector is in the  same  plane (a principal  plane) 
as the unit normal n and the  tension  vector and makes an angle of 2+ with ;1. The  angle 
between a and is bisected by H. 

Knowing the stress  vector  in  the  ether, 
write the equation for  the  differential  torque 
for  an  elemental  surface  using  the  appropriate 
spherical or cylindrical  coordinates.  Resolve 
the  equation of torque  to X, Y , z components 
with the  components still written in spherical 
or  cylindrical  coordinates.  Integrate  over  the 
complete  surface  to  find  the  expressions  for 
the rectangular  torque  components. When the 
resultant  expressions are tested for the case 
of a simple  dipole  in a magnetic  field, the ac- 
cepted  expression 

L = M x H a  

is obtained. 
Figure  3-Magnetic stress on an  element of the sur- 

rounding  medium. 
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ANALYSIS 

The  square  tube of ether shown in  Figure 3 may  be  treated as a body in  equilibrium  under  the 
action of external  forces. If the  tube is viewed so that  the area d~ is seen "edge on," the  force 
picture is as shown in  Figure 4. 

Equilibrium  requires  the  force on dA to - kH dA cos6 

have a vertical  component  equal  to 

kHz dA cos 3 

and a horizontal  component  equal  to 
S 

kHz dA s i n  3 .  

In vector notation \ \ 
\ 
\ '\ 

dF = kHz(; * d A ) Q  - kH2(fi x d A )  x fI (1) \ 

Figure  4-Equilibrium  diagram  of  magnetic forces. 
The stress on dA is then 

In general,  the  elementary  area dA will not be  oriented  the  same way as dS , which is the con- 
ventional  elementary area based on an r ,  e ,  @ spherical  coordinate  system  and which is more 
convenient  mathematically.  Since we are dealing with the  same stress in  either  case, we may now 
express  the  elementary  force on dS as 

The  torque  generated by each  element of force is 

dL = r x d f  = r x u d S  

dL = r x [2kHz(h . G)k - kHZG]dS. 
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Expressing  the  vector  torque  equation  in  terms of a spherical  coordinate  system and  recog- 
nizing that 

and that for a sphere ;1 = ;, then 

dL = (r x 2k(H * ;)H - r x kH2;)dS . 

Since  the  second  term  goes  to  zero, we  obtain 

dL = ( r  x 2k(H . F )H) dS . 

For a sphere of radius a 

,. - 
r - ar 

then 

dL = (r  x 2kHrH) dS 

= [.; x (2kH: ; + 2kHrH,̂ B + 2kHrH$)]dS 

= (2akHrH,$ - 2akHrH+;) dS . (5) 

Resolving  the  torque  into  components  along  each of the  Cartesian axes yields the desired 
result 

d L x  = 2ak(HrH6 s i n  8 - HrH, s i n  @ cos 6)dS ( 6 )  

d L y  = -2ak(HrH6 cos 6 t HrH, s i n  8 s i n  @) dS (7) 

d L z  = 2akHrH0 cos 4 d S .  (8 1 

Equations 6, 7, and 8 represent  the  elementary  torque  components along  the  three  orthogonal 
axes in  terms of the scalar field  components  and  the  associated  angles  expressed  in  spherical 
coordinates. 
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The stress in  the  medium is equal  to ~ ~ / 8 ~  , so that 

Also, in the spherical  coordinate  system 

dS = a2 cos + dM8 , 

so that  the  torques  may  be  finally  written  as* 

a3 
Lz = - 2n HrHe cos2 4 d4dB . 

An alternate  solution  to the problem of determining a vector  torque equation for  near-field 
measurements  may  also be  found by transforming  Equation 3 into  cylindrical  coordinates. 

Rewriting  Equation 3: 

For the  cylindrical  portion of the  enclosing  volume, we have 

Substituting  the  above  relations  in  Equation 3 gives 

dL = (p t z) x [2k(H . C)H - kHz;] dS , 

*The  torques-appear-to  be  functions of the  radius of the  sphere;  however,  when  the  components of H are  evaluated  it  will be found 
that  the  torques  are  actually  independent of the  radius. 

6 



but 

and 

Therefore 

dL = (p + z )  x [2kHpH - kHz;] dS , 

dL = p(2kHrH,z - 2kHpH,g) dS t z(2kH;; - 21dIpH,; - kHz;) dS,  

dL = -2kzHpHe dSp + (2kzH: - 2kpHpHz - kzHZ) dSg + 2kpH,H, dSz . (12) 

Again  resolving  the  torque  equations into components  along  each of the  Cartesian  axes,  yields 

d L x  = dL, C O S  6 - dL, s i n  B , 

d L y  = dL, s i n  (3 t dL, COS e , 

d L z  = d L z  9 

or 

d L x  = -(2kzHpH0 COS 8 )  dS - (2kzH; - 2kpH,Hz - kzH2) s i n  B dS , 

dL,, = -(2kzH,H0 s i n  8 )  dS t (2kzH; - 2kpH,Hz - kzH2) COS 8 dS , 

= 2kpH,H, dS. 

Therefore,  we  obtain  for  the  cylindrical  portion 

d L z  = 2kpHpH, dS I 

For the  top  surface of the  cylinder, 



The  torque  expression  for  this  surface may now be  expressed as 

dL = (p + z) x [2kHZH - kHz;] d S ,  

Resolving  into  components, we have 

d L z  = 2kpH,HzdS . 

For the  bottom  surface of the  cylinder 

dL = (p f z )  x [-2kHzH + kHz;]  dS , 

dL = 2kzHeHzdSp - (kH2p - 2kpHi + 2kzHpHz) (dS); - 2kpHBHzdS; 

Putting this into  component form, we have 

d L x  = 2k c zH,Hz cos  8 t (c - pH: + rHPHz) sin C] dS , L 

- pH: + zHpHz ) COS C] dS , 

d L z  = -2kpH,HzdS . 

For top  and  bottom of the  cylinder,  the  elementary area is 

dS = pdpd8 

For the  cylindrical  portion 

dS = ad8dz . 

Integrating  and  adding  the  torques  for  the  three  surfaces of the  cylinder  yields 
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zoHeHz (cos S )  pdpdS t 

1 
- zoHeHz (cos S )  pdpd8 + la p = o  e=o ($ - pH: + (-zo)HpH)(sin 8) pdpdS 1 . 

Since 

HZ = H i  + H: + H: , 

we have 

r 1 

7 1 

1 -zoHeHZ (s in   8)pdpdS - ja rn 
P=O e=o 
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It should be noted  that  the  components of the  torque  in  the X ,  y, z directions  for  the top and 
bottom surfaces do  not cancel  each  other but  depend  on the  limits of integration  chosen  for  the 
volume. 

To  illustrate  the  use of the  equations  in a sample  problem, a simple  dipole is placed  in a uni- 
form  magnetic  field with the  dipole axis normal  to  the  field  (see Appendix B). With spherical 
coordinates,  the  resultant  torque  on  the  dipole is then  calculated  and found to  agree with  the  ac- 
cepted  expression L = M x H,. 

Further  verification  may  be obtained by placing a representative  test body in a magnetic  coil 
facility  in which the  external  field  may  be  accurately  controlled.  The  torques  calculated  from 
magnetic  measurements  then  may  be  compared  with  direct  torque  measurements. 

CONCLUSION 

Equations 9, 10, and 11 for  the  spherical  case and 24,  25, and 26 for  the  cylindrical  case  per- 
mit  us  to  calculate  the  components of magnetic  interaction  torque from near-field  measurements. 
The  expressions  derived  are  quite  general. It is not necessary  that  the  enclosing  surface  be cen- 
tered with respect  to  the body being  tested.  Also,  the  ambient  field  has no restrictions as to 
uniformity. 

Goddard  Space  Flight  Center 
National  Aeronautics  and  Space  Administration 

Greenbelt,  Maryland,  November 20, 1967 
039-02-01-10-51 
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Appendix A 

Determination o f  Dipole  Moment 

If we are interested  in  the  components of dipole  moment of the  spacecraft, both permanent and 
induced,  we  may determine  them  from  the  torques by the following procedure: 

In  general, if  three  components of external field are applied,  we  have 

A t  first glance it seems that the above  equations will suffice  to  find M ~ ,  M ~ ,  and Mr. This 
turns out  not to be the  case,  since  the  determinant of the coefficients  vanishes.  This  difficulty is 
overcome by making  two measurements. For example, i f  we apply the  external  field  parallel  to 
the  positive x-axis, we obtain 

so that  Equations 27, 28, and 29 reduce  to 

Lx = 0 ,  
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Ly = 0 ,  

and M~ may now be  determined  from  Equation 33. 

The above would suffice if there  were no induced  moment. If an  induced  moment is present, 

Mx = Mxp + M x i  , 

MY = Myp + Myi , 

MI = MzP + Mzi . 

Equations 30 through 33 may be rewritten as 

~z = ( ~ x p  + 'xi) H a y  

Now it is known that  the  induced  moment  will  reverse if  the  applied  field is reversed while 
the  permanent  moment will not. The  equations which represent  this are 

Solving the last two sets of equations  simultaneously  yields  for  the  permanent  moment 
components 

12 



Ly - L'y 
'ZP - 2% x 

and for  the  induced  moment  due  to H a x  , where H~~ = H a =  = 0 ,  

Similarly,  for  the  induced  moment  due  to H~~ , where H~ = H a X  = 0, 

Equations 34, 35, and 36 completely  define  the  magnetic  moment  due  to  the  permanent mag- 
netism  present. No such  unique  definition is possible  in the case of the induced  magnetism,  since 
this  moment  depends on the  applied field vector.  Equations 37 and 38 and  Equations 39 and 40 de- 
fine  the  torque-producing  components of the induced  magnetism  for  fields  applied  in the x and Y 
directions,  respectively.  Similar  expressions  may  also  be  obtained  for  the  components  due  to a 
field  applied  in the Z direction. 

From  the above it is evident  that  equivalent  dipole  determination by the method described above 
involves  much  computation. At least four  sets of magnetic  field  readings  must  be  made  for  each 
element of surface  over which the integration is to be performed. 

An alternative method  involving  integration of only the  radial  field component  taken  over a 
spherical  surface is presented  in  Reference 4. 

13 





Appendix B 

Application of Analysis 

From Equations (6), (7), and (8 )  derived  in  the "Analysis"  section, we may  obtain the inter- 
action  torque  for a simple  dipole  placed  into a previously  uniform  magnetic field. Choosing a 
dipole  whose axis is along the z - a x i s  and knowing that the  total  vector  field is composed of both 
the  ambient  field, Ha and  the  field  due  to  the  dipole H, we may  write 

H = Ha t H, 

where 

He = H a ?  (along the + Y axis) 

and 

H a r  = Ha s i n  6 cos 4 

Ha* Ha cos (3 

Ha d = -Ha sin B sin 4 .  

Therefore,  the  ambient field vector is 

H~ = H~ (sin B cos +) 1 t H~ ( c o s  8) 6 - H~ (sin B sin 4) & 

The dipole  field  vector  may be expressed as the gradient of a scalar 

H, = -VV 

where 

and 

M = "k (along the -z axis) . 
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The  components of the  dipole  moment  in  spherical  coordinates are then 

Mr = -M s i n  d, , 

M, = 0 ,  

Md = -M cos d, , 

or 

Therefore we may write 

v = -  M s i n  4 
r' 

also 

H d  = -vv = - - ; t - 4 .  
r 3  

2M s i n  4 M cos 4 - 
r 3  

Adding Ha and H, we obtain 

Rewriting  Equation  6 we have 

d L x  = 2ak (HrHd s i n  8 - HrH, s i n  4 cos 8) dS 

where H r ,  H,, and H+ are the components  along  the r, 8, and d, directions  in  Equation 41. 

Combining  Equations  6  and 41, we obtain 

~MH, cos2  8 s i n 2  6 

r 3  
H: s i n  8 c o s 2  B s i n  4 cos 4 - -3 dS} 
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In spherical  coordinates 

dS = a’ cos + dBd+ 

Making this substitution, 

2 ~ ’  s i n  e s i n  + cos’ $ ~ M H ,  cosz e sin’  + cos+ 
ab  - H: s i n  @cos2 @ s i n  $cos’ + + a3 ] de..>. 

Integrating  term by term  yields 

But k = 1/87 , so that 

Similarly,  from  Equations 7 and 41: 

2MH, s i n  B cos B s i n 2   + c o s  + 
a3 

s i n ’  BCOS e s i n + c o s 2  + + 

s i n  B C O S  e c o s 3  + 2 ~ ‘  c o s   B s i n + c o s 2  + 
t 

a3 a6 

2MH, s i n  Bcos B sin’  +cos  + 
a3 

+ Ha2 s i n 2  6 cos 0 s i n  +cos’ + - ] d&de . 

From which, 

Ly = 0 .  
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From Equations 8 and 41: 

From which 

L z  = 0 

Thus the above analysis  shows that Equations 6, 7, and 8 give  the  correct  result when applied 
to a simple  dipole  in a uniform  magnetic  field.  Equations 13,  14, and 15 for the  curved  portion of 
the  cylinder,  Equations 17 through 19, and 21 through 23, for  the flat portion,  have  likewise  been 
tested for the  case of a simple  dipole  in a uniform  field.  The  analysis is lengthy  and is not pre- 
sented  here;  however,  the  correct  result was  obtained  in  this  case  also. 
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Appendix C 

Symbol List 

a fixed  radius 

k constant 

n normal unit vector 

r variable radius of r , 0 ,  @ coordinate  system 

X, y 3  z rectangular  coordinates 

B magnetic  induction 

H magnetic  intensity 

L torque 

M magnetic  moment 

V potential  function 

df force on element dS 

dA element of area as defined on Figure 3 

d~ force  on  element dA 

dS element of a r ea  as defined  on Figure 2 

11, 6 spherical  coordinates as defined on Figure 2 

IC, angle  defined on Figure 2 

p ,  0, z cylindrical  coordinates 

cr stress 
1 
\ 

~ _ _ _ _ _  Subscripts 

a ambient 

d dipole 

i induced 

P permanent 

S specimen 

x, Y ?  z ,  r ,  p ,  e, 4 coordinate  system  directions 

NASA-Langley. 1968 - 23 19 
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