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FLUCTUATIJXJG PRESSURES ON THE AFTERBODIES O F  FIVE 

By Robert C .  Robinson, Bruno J. Gambucci, 
and Robert E. George 

Ames Research Center 

SUMMARY 

Pressure f luc tua t ions  w e r e  measured on t h e  afterbodies of entry-vehicle 
configurations a t  angles of a t t ack  from -14' t o  +lkO and Mach numbers from 

based0.60 t o  3.50. The Reynolds number range w a s  2.0X106 t o  6 . 3 ~ ~ 0 ~  on model 
diameter. 

The models w e r e  t yp ica l  of configurations which have been considered as 
entry vehicles f o r  t he  M a r s  atmosphere. Forebody fineness r a t i o s  were 1/3 and 
l/8 and the  afterbodies were conical with half  angles of 30°, 60°, and 80°. 

The pressure f luc tua t ions  measured at  subsonic Mach numbers were of low 
reduced frequency (below 0.30) and w e r e  highly correlated.  A t  supersonic Mach 
numbers the  bandwidth of t he  f luctuat ions increased and the  degree of 
cor re la t ion  decreased with increasing Mach number. 

INTRODUCTION 

Vehicles which en ter  t h e  Mars atmosphere a t  a veloci ty  of 3 t o  6 km/sec, 
and a re  required t o  slow down t o  a low speed f o r  landing or experiment pur­
poses, must be made very l i g h t  i n  re la t ion  t o  t h e i r  f r o n t a l  area (see,  e .g . ,  
r e f s .  1 and 2 ) .  This places a premium on t h e  minimization of s t r u c t u r a l  
weight. An important f r ac t ion  of t h a t  weight can occur i n  t h e  afterbody fair­
ing, which is  subject t o  r e l a t i v e l y  low steady-pressure loading, but may be 
subject t o  osc i l l a t ing  loads due t o  unsteadiness of t he  flow off t he  body 
base. To evaluate t h e  e f f ec t  of t h a t  loading on the  s t ruc tu re  it is necessary 
t o  know t h e  spec t ra l  densi ty  and s p a t i a l  cor re la t ion  as well  as the  l e v e l  of 
the  f luctuat ing pressures.  Such information has not been avai lable  f o r  t he  
afterbodies of the very blunt configurations being considered f o r  Mars entry.  
To provide such data  a s e r i e s  of wind-tunnel tests w a s  made i n  which the  pres­
sure  f luctuat ions were measured on the afterbodies of f i v e  re la ted  entry-
vehicle  configurations a t  subsonic and supersonic Mach numbers . 
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CD 


cP 
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FPL 
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qW 


R 

t 

T 

VW 

a 


Y i  

6 

f r o n t a l  area 

bandwidth , HB 

drag coef f ic ien t  

p-poo

4, 


%iTlS 

g, 

model diameter, em 

f luc tua t ing  pressure l eve l ,  Apms converted t o  dB ( r e  reference 
pressure of ~ X L O - ~N/m2) 

a l t i t u d e ,  k m  

LdD
Strouhal number, -

VW 
Mach number; o r  mass, kg 

Nl o c a l  s t a t i c  pressure,  -m 2  
Nfree-stream s t a t i c  pressure, -m 2  

time h is tory  of pressure f luc tua t ion  a t  a P.T., i = 1, 2, 3 ,  4, 5 

pressure transducer 

Nfree-stream dynamic pressure,  ­m2 
Reynolds number based on free-stream propert ies  and model diameter 

time, see 

sample length,  see 

m
f ree-stream veloci ty ,  s 
angle of a t tack ,  deg 

i n i t i a l  entry angle, deg 

afterbody angle, deg 

dis tance along the afterbody, em 
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p correlat ion coef f ic ien t ,  
Rj,j( 1 at T = O  

.IR i ( T ) R j ( T )  

where 
m 

and 
,T 

R i j ( 7 )  = $1’p i ( t ) p . ( t  + T)dt i,j = 1,2,3,4,5J 
0 

T delay time, sec 

rad 
W angular frequency, 7 

APPARATUS AND PROCEDURE 

Models 

Figure 1 shows t h e  f i v e  models tes ted .  One nose configuration w a s  a 
spherical ly  blunted right c i r cu la r  cone and the  other  a spherical  segment. 
The afterbodies w e r e  frustums of r igh t  c i r c u l a r  cones with half  angles of 30°, 
60°, and 80°. A shor t  cy l indr ica l  sec t ion  formed t h e  t r ans i t i on  from t h e  nose 
t o  t h e  afterbody sect ion.  The models w e r e  mounted on a s t ing  7.5 cm i n  diam­
e t e r  and 100 em long which, i n  turn,  w a s  mounted i n  an adapter 10 cm i n  diam­
e t e r  and 75 cm long. Figure 2 i s  a photograph of model B mounted i n  t h e  
11-Foot Transonic Wind Tunnel. 

Instrumentation 

Flush-mounted pressure transducers 1/8 inch i n  diameter were used t o  
measure the  f luc tua t ing  pressures.  A semiconductor s t r a i n  element, which 
responds t o  def lect ion of t he  transducer diaphragm, is connected i n  a bridge 
c i r c u i t .  The other  legs  of t h e  bridge are an inact ive temperature compensat­
ing element within t h e  transducer and two matching resistances i n  a tempera­
ture compensating module located at t h e  instrumentation console. Each 
transducer w a s  referenced t o  an adjacent s t a t i c  pressure o r i f i c e  through s m a l l  
tubing of su f f i c i en t  length t o  damp out f luc tua t ions  i n  t h e  reference pressure.  
Figure 3 shows t h e  loca-bion of t h e  pressure transducers i n  t h e  three  after-
bodies. In  f igu re  4, t h e  f i v e  transducers can be seen mounted i n  t h e  
afterbody of model B. 

The s t a t i c  ca l ibra t ion  and frequency response of a typ ica l  transducer a r e  
shown i n  f igure  5. S t a t i c  ca l ibra t ions  of t h e  transducers were l i n e a r  and 
highly repeatable beyond the  7 .0x103 N/m2 (1.0 p s i )  required i n  these tests.  
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Dynamic ca l ibra t ions  against  a standard microphone i n  a progressive wave tube 
showed t h a t  t h e  frequency responses of t h e  pressure transducers were f la t  I 

, 

within +1/2 dB from 60 to 5,000 HZ . 
The pr inc ipa l  components of t h e  instrumentation used i n  recording the  

f luc tua t ing  pressure da ta  are shown i n  the  block diagram of figure 6. After 
passing through the  temperature compensating module, the f luc tua t ing  s igna l  
from the  transducer is amplified by a d i f f e r e n t i a l  amplifier. The output of 
the  amplif ier  i s  f i l t e r e d  t o  remove any D.C. bias and is  then recorded on 
magnetic tape.  The recorded da ta  were analyzed on analog equipment t o  obtain 1 
t h e  integrated root mean square of t h e  pressure f luctuat ions over the  full 
length of each record, t h e  power spec t ra l  density,  and t h e  s p a t i a l  cor re la t ion  
along t h e s f l a c e  of t he  models. The frequency response of t he  complete 
recording c i r c u i t  is  shown by t h e  dashed curve i n  f igu re  7. The so l id  curve 
shows the  combined frequency response f o r  t h e  recording c i r c u i t  and t h e  analog 
computer used f o r  t he  root-mean-square measurements. Before and after each 
tes t  t h e  s t a t i c  ca l ibra t ion  of each transducer w a s  checked a t  the  output of 
t he  d i f f e r e n t i a l  amplif ier ,  and a prec ise  1V rms s i n e  wave w a s  recorded on 
each tape t rack  t o  provide a ca l ibra ted  reference f o r  t h e  data  analysis .  
Before each data  point w a s  recorded, t h e  output of t h e  transducers w a s  moni­
tored on an oscil loscope and a true rms meter s o  t h a t  t h e  l e v e l  could be 
adjusted by ca l ibra ted  gain changes t o  match t h e  dynamic range of the  tape 
recorder. All of t h e  data  samples were 21 seconds long. 

T e s t s  

The tests were conducted i n  t h e  Ames 11- by 11-foot (3.333.35 m )  
transonic,  9- by 7-foot (2.74X2.13 m)  supersonic, and 8- by 7-foot 
(2 .44~2.13m )  supersonic wind tunnels.  The Mach number w a s  varied from 0.60 
to 1.38 i n  the  transonic wind tunnel and from 1.55 t o  3.50 i n  t h e  supersonic 
wind tunnels.  The model angle of a t tack  ranged from +14O to - 1 4 O  except i n  
the  8- by 7 - f O O t  wind tunnel where -13' w a s  t he  m a x i m u m  negative angle obtain­
able .  Mach number and Reynolds number conditions of t he  tests a re  shown i n  
f igure  8. 

RESULTS AND DISCUSSION 

S t a t i c  Pressures 

The var ia t ion  of t h e  s t a t i c  pressure coef f ic ien t  with Mach number a t  
three points on the  afterbodies of models A and B is shown i n  f igure  9.  These 
data a re  t n i c a l  of a l l  the  s t a t i c  pressure data measured i n  the tests. A s  
would be expected f o r  separated flow, t h e  e f f e c t  of a ,  S ,  and E is rela­
t i v e l y  s m a l l .  Above M = 1.20, Cp var ies  approximately as l /m2  showing t h e  
afterbody s t a t i c  pressure to be nearly a constant percentage of t he  free-
stream s t a t i c  pressure.  
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Fluctuating Pressures 

The root mean square of t h e  f luc tua t ing  pressure level  obtained from t h e  
analog computer w a s  reduced t o  a f luc tua t ing  pressure coeff ic ient ,  A$-, 
which is  p lo t ted  against  angle of a t tack  i n  f igures  10 t o  14 f o r  a l l  of t he  
configurations and tes t  conditions. Note t h a t  each page contains t h e  da ta  f o r  
only one transducer which is located as shown on t h e  included sketch. The 
e f f e c t  of angle of a t t ack  on %rms was s m a l l  and w a s  p rac t i ca l ly  iden t i ca l  

for a l l  of t h e  transducers on a given configuration a t  a given Mach number. 
There w a s  no s ign i f i can t  change i n  % due t o  t h e  changes i n  configura­

rms 
t i on ,  and i n  most cases, t h e  results w e r e  i den t i ca l  f o r  t h e  high and low 
Reynolds numbers. 

The e f fec t  of Mach number on t h e  pressure f luc tua t ions  is shown i n  f ig ­
ure 15 f o r  a = 4 O  ( t h e  maximum 

A%lns 
general ly  occurred at  t h a t  angle ] . 

Subsonically the pressure f luc tua t ions  are approximately a constant percentage 
of t h e  dynamic pressure.  Between M = 1.00 and M = 2.00 there  is  a t r ans i t i on  
region irrwhich % drops rapidly with increasing Mach number while f o r  

lllzs 
M > 2.00, nCp is again near ly  constant. 

MllS 

Ekpressed as a percentage of free-stream s t a t i c  pressure the  f luctuat ions 
are more nearly constant over t h i s  Mach number range. There i s  a maximum at 
abou t .  M = 1.00 followed by a t r ans i t i on  region t o  M = 2.00. Above M = 2.00, 

Apms/pm rises slowly again and a t  M = 3.5 it is  about t h e  same l eve l  as at  
M = 1.00. 

The random nature of the pressure f luc tua t ions  requires t h a t  they be 
analyzed s t a t i s t i c a l l y  f o r  use i n  calculat ing t h e  response of vehicle s t ruc­
tures. Analysis of random data  i s  t rea ted  extensively i n  reference 3 and the  
response of s t ruc tures  t o  random loading is discussed i n  references 4, 5 ,  and 
6.  	 Representative samples of t he  present da ta  w e r e  analyzed f o r  power 
spec t r a l  density and f o r  cross correlat ion between transducers. The spectra  
f o r  models A and B a t  CL = 4' shown i n  f igures  16 and 17 have a shape charac­
t e r i s t i c  of bandwidth-limited random noise. The frequency f o r  l/2 power is  
a measure of t he  bandwidth of such spectra .  Approximate values of t h i s  
frequency are shown i n  the  following t ab le .  

FREQUENCY AT 1/2 POWER 

M 

6 = 80' 

6 = 30' 
k = 0.194 k = 0.091 k = 0.466 k = 0.563 

._ . 
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It is  evident t h a t  only very low s t ruc tu ra l  frequencies would be excited 
subsonically while a broader range of s t r u c t u r a l  modes would be af fec ted  at 
supersonic Mach numbers. 

The concentration of energy a t  very low frequencies f o r  M = 0.60 and 
1.00 indicates  t h a t  t h e  q- data  f o r  t h e  subsonic Mach numbers are prob­
ably somewhat below t h e  t r u e  values due t o  the low-frequency at tenuat ion i n  
t h e  recording and analysis  instrumentation. Comparison of t he  root-mean­
square voltages from t h e  analog computer with those read during t h e  test  from 
a true rms meter showed t h a t  t h e  addi t ional  l o s s  i n  t h e  analog computer w a s  
between 5 and 10 percent f o r  t he  Mach nwnbers below 1.00. 

From the  power spec t ra  an estimate can be made of t he  s t a t i s t i c a l  accu­
racy of t h e  data samples recorded i n  t h e  t e s t s .  Using t h e  narrowest bandwidth 
of 13 Hz, f rom t h e  t ab le ,  and t h e  sample length of 20 seconds gives a BT pro­
duct of 300. The corresponding normalized standard error  (as defined i n  
r e f .  3 ,  pp. 182-210) f o r  mean square values is o .06. 

Both autocorrelat ion and cross-correlation functions were computed f o r  
several  t e s t  conditions using an analog cor re la t ion  computer. I n  general, t he  
cross-correlation functions were a m a x i m u m  a t  T = 0 and decayed exponentially 
with increasing T a t  about the  same rate as t h e  autocorrelation functions,  
indicat ing t h a t  t h e  cross spectra  are of e s sen t i a l ly  t h e  same shape as t h e  
spec t ra  f o r  the individual transducers.  Therefore, t h e  cor re la t ion  coeff i ­
c ien t ,  a measure of t h e  s p a t i a l  correlat ion,  and t h e  measured qrmsshould 
give a good estimate of t h e  overa l l  random loading on t h e  af terbodies .  The 
var ia t ion  of t h e  correlation-function coef f ic ien t  p with distance along t h e  
afterbody is shown i n  figures 18 and 19 f o r  model A and i n  f igures  20 and 21 
f o r  iiiodel B. For both configurations there  is a high degree of cor re la t ion  at  
t h e  lower Mach numbers and angles of a t tack  of 0' and 4'. A t  the l a rge r  
angles of a t tack  and at  supersonic Mach numbers, t h e  rate of decrease i n  p 
along the  afterbodies is  much greater .  

To invest igate  t h e  FPL t h a t  might be experienced during entry t o  t h e  Mars 
atmosphere, t he  l e v e l  a t  P.T. 3 on model B w a s  computed f o r  several  s e t s  of 
entry conditions using the  values of &$ shown f o r  a = 4'. The two 

ITlS 

cases i n  f igu re  22 represent t h e  extremes of FPL obtained from t h e  calcula­
t ions .  In both cases, the  entry w a s  from a 244 bn o r b i t  a t  an i n i t i a l  veloc­
i t y  of 3.65 km/s i n to  t h e  VM 3 atmosphere ( t h e  charac te r i s t ics  of which a re  
tabulated i n  r e f .  7)  with an L/D of 0.23. The dashed portions of t h e  FPL 
curves were computed from extrapolations of the  da ta .  It w a s  assumed t h a t  

remained constant at  the  value f o r  M = 3.50 f o r  Mach numbers g rea t e r  
a c ~ r m s
than 3.50, and &+ f o r  M = 0.60 w a s  used t o  extend t h e  FPL curve t o  

TDlS 

lower Mach numbers. 

For the  case shown i n  f igu re  22(a), t h e  m a x i m u m  dynamic pressure occurred 
at  M = 9.00 and an a l t i t u d e  of 84 Inn. However, t h e  FPL at  qmm w a s  only 
92 dB compared t o  t h e  m a x i m u m  FPL of lo7 dB which would occur a t  M = 1.00 
and h = 40 km. 
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With a heavier vehicle ,  f i gu re  22(b),  a much higher m a x i m u m  dynamic 
pressure w a s  obtained a t  an a l t i t u d e  of 40 km and M = 9.00. This pressure 
resul ted i n  a FPL of about 115 dB which w a s  reached again when the  vehicle had 
decelerated t o  t h e  terminal Mach number, 0.60. Although the  overa l l  l e v e l  is 
the  same a t  M = 0.60 and 9.00, because of t he  narrower bandwidth a t  subsonic 
Mach numbers a s t r u c t u r a l  mode t h a t  fa l l s  within the M = 0.60 band would be 
subject  t o  a l a rge r  input than would any mode a t  M = 9.00. Also, t h e  higher 
correlat ion a t  t h e  lower Mach numbers, as shown i n  f igure  21, would make the 
input more e f fec t ive  a t  M = 0.60. However, i f  t h e  pressure f luctuat ions Tal­
low the  usual sca l ing  assumption t h a t  t he  overa l l  FPL remains constant-and t h e  
frequency var ies  inversely with the  r a t i o  fu l l - s ca l e  length/model length, t he  
input frequencies would be very low ( B  < 5 Hz f o r  a sca le  f a c t o r  of 10) a t  
subsonic Mach numbers. It should be possible t o  design even a f r a g i l e  s t ruc­
tu re  s o  t h a t  i t s  modes would f a l l  above such l o w  input frequencies and respond 
only -t;o t he  l e s s  severe loading a t  the  higher Mach numbers. 

CONCLUDING REMARKS 

Pressure f luc tua t ions  measured on the  afterbodies of f i v e  blunt entry 
configurations showed l i t t l e  e f f ec t  due t o  changes i n  afterbody angle from 
30° t o  800. A t  subsonic Mach numbers t h e  Strouhal number of t he  f luctuat ions 
w a s  less than  0.30 but increased with Mach number t o  about 0.74 a t  M = 3.00. 
There w a s  a high degree of s p a t i a l  cor re la t ion  along the  afterbodies a t  sub­
sonic Mach numbers and s m a l l  angles of a t tack .  Correlation decreased with 
increasing Mach number and angle of a t tack .  

Estimates were made of t h e  f luc tua t ing  pressure l eve l  t ha t  might be 
encountered i n  entering t h e  VM3 Mars atmosphere f r o m  a 244 km o r b i t .  They
indicated t h a t  t h e  m a x i m u m  l eve l  would be about 115 dB f o r  M/C$ = 62 kg/m . 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  C a l i f . ,  94035, Feb. 29, 1968 
124-08-04-04-00-21 
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Figure 1.-Model configuration. 
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A-36468 
Figure 2.- Model B in the 11-by 11-foot wind tunnel. 
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Figure 3.- Location of the  pressure transducers and the  corresponding s t a t i c  
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A-30472 
Figure 4.-Pressure transducers mounted in the 30' aTterbody. 
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Figure 6.-Instrumentation used in measuring the pressure fluctuations. 
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Figure 11.-Pressure fluctuations on model B. 
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Figure 13.- Pressure fluctuations on model D. 
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Figure 14.-Pressure fluctuations on model E. 
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Figure 17.-Power spectral  density of the pressure fluctuations a t  P.T. 3 on model B f o r  CL = 4'. 
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Figure 20.- Correlation of the pressure fluctuations along the afterbody of model B a t  M = 0.6 f o r  
four angles of attack. 
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