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Linear stability criteria are presented for the panel flutter of

hin plates and thin-walled cylinders. These structures are exposed to

fluid flow passing parallel to an outer ourface . The expression for

fluid pressure is simplified in order to emphasize the dynamic proper.

ties of the systems. The pressures are derived from steady flow rela-

tions (frequency effects are ignored). An arbitrary spatial phase angle

is included in the pressure expression. As this phase angle is varied,

in a continuous manner, the fluid flow passes from "subsonic" character

to supersonic character. The results are useful in classifying several

types of instability and discussing several pathological cases which

are usually treated separately.

The analysis is intended to serve as an aid to understanding the

mechanism of panel flutter; however, it can be applied directly to

several problems. it is accurate for the static divergence and "coupled

mode" flutter of flat panels in supersonic flow, and also for divergence

problems wherever experimental measurements can supply the values for

the necessary aerodynamic parameters. One result is to point out the

1

'i	 y ,	 y



SIV

I	 I

importance of static instability for flat panels in a transonic viscous

flow. A second result is to illustrate that the asymmetric divergence

of cylindrical shells is very sensitive to snall changes in the pres-

sure distribution.
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A p A	 Aerodynamic pressure parameter; 	 ?,-=.

3	 2	 ^— a. ID	 Irk-1^D
D	 Eh /12(1 - v )

F	 Airy stress function

h	 Panel thickness

Km	 Aerodynamic pressure constant, Eq. (5)

L	 Length of panel

M	 Mach number

M	 Axial wave number

N	 Number of triodes

N	 Axial stress resultant due to initial load
x

N
o
	 Circumferential stress resultant due to initial load

p(x,t)	 Aerodynamic load

q	 Integer

R	 Radius of cylinder

t	 Time

U	 Flow velocity

w	 Pan-e1 displacement in transverse direction

x	 Spatial coordinate, flow direction

z	 Spatial coordinate

8	 Kronecker delta
qm

E	 Amplitude constant

8	 Angular coordinate

%	 Eigenvalue

A
.%	 Eigenvalue
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p s 	Panel density

ox 	Axial stress in cylindrical shell due to shell motion

*M	 spatial phase shift

CU	 Frequenoy, rad/sec
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Fig. 1. Typical panel flutter problems.

Fig. 2. Flow over an infinitely song, stationary, two-dimensional
wavy wall.

Fig 3. Flow over a two-dimensional flat panel.

Fig. 4. Stability boundaries for a flat plate.

Fig 5. Stability boundaries for a cylinder.
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1. INTRODUCTION

IV

The elastic instability of thin panels exposed to fluid flow is

under intensive study at the present time. Typical problems involve

thin-walled structural elements with one surface exposed to fluid flow

essentially parallel to the surface. Figure 1 illustrates the flow

situation for a'flat plate and a cylinder. The usual question of in-

terest is whether the elastic panels incur divergence (static instability)

a
	 or flutter (dynamic instability) at some value of flow velocity.

The fluid pressures exerted on oscillating panels are difficult to

derive in many cases. The role of fluid viscosity, frequency of oscil-

lation, and panel geometry have complicated panel flutter studies to the

point where the results are often difficult to understand.

The present study is based on an intuitive simplification of the

pressure distribution on the panel,. It illustrates the effect of the

I	 spatial distribution of pressures. The pressures are taken from steady
r..

flow results and are hence independent of the frequency of oscillation.

The results are valid only for instabilities occurring; at relatively

low frequencies.

An approximate solution is required because of the nature of the

assumptions on the pressures. These assumptions are equivalent to a

specification of the generalized forces on a discrete system. Galerkln' s

method is used to pose the eigenvalue problem in matrix form.

R
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2 . FLUID PRWSURES

The pressure expression used in this study is motivated by the so-

lution for flow over an infinitely long, two-dimen.ional stationary wavy
Y

Y

wall (Fig. 2). For the case of inviscid, isentropic flow, one finds

I

that a deflection

w(x) = e sin 
21tx	

(1)

yields a pressure of the form

p(x) = e	 U2	 27t cos (LIX +-V 11 ,e	 2

where * takes the value 0 for a supersonic flow and v/2 for subsonic

flow. The solution is not valid near Mach 1.

The pressure expression given in Eq. (2) is "exact" within the

framework of linearized potential flow for the stationary wall under

-	 consideration. We will view this expression, however, as an approxima-

tion which has been provided to describe a given physical situation:

a panel of finite length with viscous flow effects, real gas effects,

etc. As an example, for transonic flow, McClure[l] measured pressures

of the form

2
p(x) -	 _I__ ^ 2n K cos 2nx +	 (3)^i-: 1. ^	 ^

for a stationary wavy wall. The constants K and * are functions of

Mach number, fluid properties and wavelength. McClure found the ampli-

tude constant D. to be near unity. Hio measured values of * ranged from
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20 to 45 0 . We hence see that values of * lying between 0 and 90°

have physical significance in practical cases.

Let us consider the pressure expression, Eq. (3) as sufficient for

our purposes. We will generalize this expression slightly by using sub-

scripts to show the dependence of the constants K and * upon the wave.

length. For a given deflection of a wall

w(x,t) = eiWt
N

mElam sin m^x

one then has a pressure expression of the form

2	 N
P(X,t)	

eiwt AU	
am ^
	 cos 

'Z+ 'gymm Z

(5)

Note that each term in Eq. (4) represents a wave with length L

In the following examples, it will be assumed that the constants

Km and *m are known. (This i s equivalent to assuming that the gt-,neralized

forces are known for the discrete system.) For example, if slender

wing (,Ackeret) theory were used for supersonic flow over a finite ;panel,

Eq. (5) would result with Km = 1 and *m = 0 for all m.

3. FLAT PANEL OF FINITE LENGTH

Consider the case of a two-dimensional flat panel exposed to

fluid flow over one surface Fig. 3. The plate is of uniform thickness,

length L and simply supported at both ends. The aerodynamic expression

of Eq. (5) will be used to provide fluid pressures above the panel.
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The fluid below the panel is at rest and at the same static pressure

as the upper flow.

The equation of motion for small deflections of the plate is

64w	
NX "' + Psh ^2w + p( X, t ) ^ 067

and the boundary conditions are

w( o,t)	 w(L,t)	 2w (0, t) mw a2w ( LO t)	 0
bX	 d

The solution is assumed to be of the form

w(X, t) 
= eiWt N

E am s it. MX
M l

i

I

f

f:

Galerkin' s method yields a set; of coupled, linear algebraic equations

of motion

N	 4 
NX12	

2

M 1	
(mot) + D (mg) - =AKm s in firm - ^ smq

	 (7)

+ AKm cos *m ^mq am 	0	 (q	 1 0 2 0 ...N)

where

4mq
m - q

U20	 ^mq

^D	 LO
and Smq is the Kronecker delta.

This is a linear eigenvalue problem in the eigenvalue X. It is

non-Hermitian and hence in general we may have complex eigenvalues

9
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The characteristic polynomial is solved for the eigenvalue as a function

NYI2
of Aana

To interpret the stability of the system, we must remember that

the frequency of oscillation varies as the square root of the eigenvalue:

W at %1/?

and hence

w(x$ t) % e il 1l2 t

The square root must be considered a molt vC.ued eunction of the com-

plex variable %. If all eigenvalues % are real end positive, then neutral

stability results. If % is real and negative, static divergence occurs.

If X is complex, then flutter occurs.

Results have been calculated for the stability of a panel with no

membrane tension (Nx = 0). Extensive experience with Gale,rkin's method

as applied to fourth order differential equations has shown excellent

convergence when four modes are used. Two-mode, four-mode, and eight.

mode calculations were used here; the results ',,ere a r,und to converge

adequ^j,tely.

The stability boundaries shown in Fig. 4 are from a four-mode

analysis. For this special case, the amplitude constants and the spatial

phase shift have been set equal for all modes:

Kl -	
1: ̂ '_'

-	 K3 -	 K4	 -	 K

*1 -	 *2 -	 *3	 - *4	 -

10
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As a result, the amplitude constant is easily incorporated into the

ordinate. The figure hence emphasizes the role played by *.

The panel is stable for sufficiently low values of,' A, regardless

of the value for If. As A increases, however, the panel becomes unstable

at some critical value of A. This can be either divergence or flutter,

depending on the value of *.

It is interesting that for	 0 (" supersonic" flow) only flutter

is possible. (Experimental evidence indicates that this theoretical

solution is correct for = 0.) Also, for y = 90° (" subsonic" flow)

only divergence is possible. These limiting cases are well known. On

the other hand, for phase angles * between 25 0 and 90 0 , one encounters

divergence first and then flutter.

The results for small values of *, say from 0° to 40° are important.

In transonic flow, for instance, * depends upon boundary layer thickness,

fluid viscosity, etc. If a given test were carried out for varying

boundary layer properties, the type of instability might well change

from a dynamic type to a static type because of this spatial phase shift.

(It must be remembered that the present analysis cannot predict the single-

degree-of-freedomtyp e of flutter which often typifies transonic flow.

On the other hand, this analysis is "exact"' for simply supported plates

which diverge and hence is sufficient to predict static instability.)

For phase angles * near 900 , one finds that increasing dynamic

pressure causes first a static divergence, followed by dynamic instability

and finally a static divergence. This might be a confusing factor in

r
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some subsonic experimental work, where spatial phase angles might be

near, but not exactly, 90*.

4. ASYMMETRIC FLUTTER OF A CYLIMER OF FIP?ITE LENGTH

The stabi' + .,y of a finite elastic cylinder Fig. J. will be investi-

gated in the same spirit as the flat panel. The shell is of uniform

thickness and unstiffened. Conventional cylindrical coordinates x,

r, A will be used, Donnell's cylinder equations are adequate to describe

the deflections of interest here:

Da4w - N X a2w	 62w + 1 62F + Ash a= + P(Xo t) = 0 (8)
ax2 R2 6g2 ]R
	

6t 

v F - Lh a2w = 0R 
C X2

The boundary conditions are taken to be the freely-supported case:

2
V = w- 6 

2 = QX = 0	 (at x	 0, L)1 3x

Again, for a deflection of the form

j
w(x,A,t) = e iWt cos n:A sin nWx

the fluid forces will be taken as

2
P( x , 9 , t ) =	

U	 e"t ( cos n@- )Km -^- cos (mnx + 'Vm)
1	 -1I

If one again applies Galerkin' s method to the equations of motion

^.}	 (8) and (9), one obtai=) a system of linear algebraic equations

If

.

(9)
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E
am 	 2 + n2 2 + 12 (1.-v2)oo2 

MLR [(MMTI) 
2 + n2 2+ N R2 (MR)2

m 	 L	 LM=l 	 L

2
+ NOR	 2n - - AKm mmr R s in *m	 g^	 a
^ Z

+ cR cos	 0	 = 1 2 ...N
rk	 ^m qm	 q	 s , )

L L

where

fto	 PshW2R4

ow	 OU- '+ D

and r qm is defined as for the plate.

These equations can be solved for the eigertvalues T as a function

of the fluid dynamic pressure ratio X and the phase shift *. We will

consider numerical results for a case corresponding to wind tunnel

tests carried out by Olson [2].

NX = 0

Ng = 0

R = 8.00 inch

h = 0.004 inch

i	 = 15 .4 inch

V	 = 0.35

n	 28

We will again choose

*l = *2 - ... *n =

Kl = K2 = ... Kn	 K

{
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The results for a. four mode solution are given in Fig. 5. Mere

it is seen, as for a, flat plate, that for * = 0 only flutter can occur.

For values of * between 60° and 120% there is an unexpected result.

The case of static divergence does indeed occur, but at relatively large

values of W. In this case, if * is not exactly 90% then flutter can

occur at much lower values of A.

This analysis shows the danger inherent in using an aerodynamic

theory which predicts that * = 9p° exactly. Resulting calculations

might not reveal a flutter situation which occur at a much lower dynamic

pressure ratio.

Note that the flutter boundary is very insensitive to changes in

* from -30° to W. This means that the details of the pressure distribu-

tion on the cylinder are not of much importance in the stability analysis.

This explains why one of the simplest aerodynamic theories, Ackeret

theory, can be used with success to predict cylinder flutter which occurs

at low frequencies [3).

5. CONCLUSIONS

The appearance of a spatial phase shift as a free parameter in the

fluid pressure expression results in some new observations. It il-

lustrates the change, in a continuous manner, from subsonic (or slender

body) flow character to supersonic character. The intermediate values

of the phase angle have physical application to the cases of viscous

transonic flow over flat plates end supersonic flow over cylindrical

shells.

14



The analysis is .limited to two types of elastic instability:

coupled mode flutter and divergence. The study cannot predict single

degree-of-freedom flutter because of the use of steady flow relations

for the fluid forces.

Several examples were studied in which the pressure amplitudes Km

were identical in all modes and the phase angles *m were identical in

all modes. This case was chosen because of its simplicity. Conclusions

for the flat plate and the cylinder will be discussed separately.

The flat plate exhibits both divergence and flutter.

one range of the spatial phase angle * (-90° to -W), the plate is

stable nor all dynamic pressures. For a second range of * (-60 0 to 250),

only flutter is possible. Finally, for a third range of * (25 0 to 900),

divergence is the critical form of instability, occurring at a much lower

dynamic pressure than flutter. The stability diagram indicates that

experiments carried out for certain phase angles might be confusing in

the sense that different regions of stability and instability could be

observed in turn as the dynamic pressure is raised.

Divergence occurs for flat plates at a relatively low value of

dynamic pressure ratio. As a result, divergence may be a distinct

pi-oblem for the case of viscous transonic flow, where previous pressure

measurements indicate that the necessary phase shift does occur [1].

The cylinder example studied was for a particular cylinder geometry,

chosen to match the only successful experiments to date. The cylinder

exhibits coupled mode flutter over the entire phase angle range of

physical interest. This flutter boundary is surprisingly insensitive



to the value of	 This is fortunate from a practical standpoint. Itf

y

means that coupled mode flutter calculations can be carried out for such

iry
y	 a shell with less attention paid to the details of the spatial pressure

distribution.

The occurrence of divergence for the cylinder is not a simple phe-

nomenon, In the past, divergence has been predicted for some types of

'	 cylinders in supersonic flow (where axial wavelengths are long compared

to circumferential wavelengths). For the cylinder studied here the

-1	 divergence would be of little practical interest. Very small phase

;a shifts from = 90° cause flutter to occur at much lower dynamic pres-

sures than divergence.

It is not prudent to extend the results of this simple analysis

too far. On the other hand, it can serve as a qualitative aid to investi-

gators in panel flutter. There are times when the methods of analysis

are so cumbersome that one restricts his techniques (or his interest)

j'	 to only divergence or to flutter. It is apparent that one must be
y'
Y

easeful to not overlook one of the possible instabilities.
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Fig. 1. Typical panel flutter prbblems.
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Fig. 2. Flow over an infinitely long ) stationary,
two-dimensional wavy wall.
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Fig. 3. Flow over a two-dimensional flat panel.
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