BIOLOGY DIVISION
QUARTERLY PROGRESS REPORT
TO THE
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
APRIL 1 - JUNE 30, 1967

NOTICE This document contains information of a preliminary nature and was prepared primarily for internal use at the Oak Ridge National Laboratory. It is subject to revision or correction and therefore does not represent a final report.
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.
As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.
QUARTERLY PROGRESS REPORT
TO THE
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Title of Project: Mutagenic Effectiveness of Known Doses of Gamma Radiation in Combination with Weightlessness on Habrobracon

For the Period: April 1 - June 30, 1967

Principal Investigator:
R. C. von Borstel

Co-investigators:
Roger H. Smith
Anna R. Whiting
Robert L. Amy
Department of Biology
Southwestern University
Memphis, Tennessee

Sohei Kondo
Faculty of Medicine
Osaka University
Osaka, Japan

D. S. Grosch (supported by NASA Research Grant No. NSG678)
Department of Genetics
North Carolina State University
Raleigh, North Carolina

Technical Staff:
Katherine T. Cain
Margaret L. Haye
Martha S. Jones
Joan W. Reel
Judy A. Winchester
Consultants:

M. B. Baird
Department of Biology
University of Delaware
Newark, Delaware

Mary Lou Pardue
Department of Biology
Yale University
New Haven, Connecticut

Diana B. Smith
Biometrics and Statistics
Oak Ridge National Laboratory
Oak Ridge, Tennessee

L. R. Valcovic
Department of Genetics
North Carolina State University
Raleigh, North Carolina

Name of Institution:

Biology Division
Oak Ridge National Laboratory

Address:

P. O. Box Y
Oak Ridge, Tennessee 37830

Interagency Agreement:

Purchase Order R-104 Task No. 8

Experiment Proposal No.:

P-1079

Supported by:

Research jointly sponsored by the National Aeronautics and Space Administration and the U. S. Atomic Energy Commission under contract with the Union Carbide Corporation.
CONTENTS

I. Introduction .. 1

II. Recessive Lethality and Inherited Partial Sterility Induced in Sperm in the Ground-Based Control for Biosatellite I ... 3

III. Induction of Mutations in Habrobracon with Mitomycin C 6

V
I. INTRODUCTION

R. C. von Borstel Roger H. Smith

The data from the second-generation males in the ground-based control of the Biosatellite are presented in detail in this report. Included are a summary of the different types of recessive lethal mutations and a listing of the actual numbers and frequencies of inherited partial sterility effects that were found. The inherited partial sterility is adjudged for the most part to comprise chromosomal translocations.

An old phenomenon discovered in Habrobracon by P. W. Whiting (1932) and independently developed by Horowitz and Leupold (1951) has been revived to provide information on the molecular nature of mutations (Edgar and Lielausis, 1964). The techniques have now been employed in Drosophila (Suzuki, et al., 1967). We decided to explore this area to see if it could be used as a suitable technique to enlarge the scope of the Habrobracon experiment in the Biosatellite. For this reason these "temperature-sensitive mutations" were sought in pilot experiments with the chemical mutagen mitomycin C. They were found, and the method of their detection can be easily used as an additional analytical procedure in the Biosatellite experiment.

Literature Cited

II. RECESSIVE LETHALITY AND INHERITED PARTIAL STERILITY INDUCED IN SPERM IN THE GROUND-BASED CONTROL FOR BIOSATELLITE I

R. C. von Borstel Joan W. Reel
Roger H. Smith Martha S. Jones
Anna R. Whiting Margaret J. Lane
Katherine T. Cain

Habrobracon males were irradiated in the ground-based control set-up of the Biosatellite I experiment of 14-17 December 1966. These were mated to females of different sex allele constitution and the dominant lethal mutation frequencies were determined (von Borstel, Smith, Whiting, Valcovic, Baird, Cain, Reel, Jones, and Lane, 1967). Virgin females were collected from among the survivors of the dominant lethality experiment. From these, the recessive lethality and inherited partial sterility frequencies could be determined.

Materials and Methods

The males used in the ground-based control part of the experiment were from the lemon stock. These were mated to females of the Raleigh wild-type strain. Surviving virgins of this cross were bred unmated. Those with low hatchability were mated to males of the lum G wild-type strain, and hatchability and adult survival again were determined. The sex alleles of these strains have been described previously (von Borstel, Smith, and Whiting, 1967), as has the rationale for these matings (von Borstel and Smith, 1967).

The males were placed in modules in the 4000-R, 2000-R, 1000-R, 500-R, and 0-R nominal exposure positions. The exposures received by the males do not correspond to these exposures (von Borstel, Hewitt, Cain, Badger, and Smith, 1967), and since the actual exposures have not yet been determined with accuracy, they are omitted from the tables.
Some of the males in the O-R nominal exposure position had been X-irradiated with an acute exposure of 2000-R before being placed in the ground-based control set-up. A second control, designated as Control III, followed the temperature pattern of the spacecraft.

Results

The reduced data for each of the packages are presented in Tables 1-8. The inherited partial sterility data are listed as translocations since it is believed that all or most of them belong to this class of chromosomal arrangement. The data for the recessive lethal mutation frequencies are computed from the class of females lacking translocations (Table 9). The frequencies of the embryo recessive lethal mutations associated with translocations are computed separately since there appears to be a disproportionately high frequency of these at every dose.

Discussion

As expected, recessive lethal mutations and translocations increase in frequency with the intensity of the exposure to protracted radiation over a 65-hr period. Several features stand out from the data: (1) with protracted exposures of radiation, larval recessive lethal mutations are more frequent than embryo recessive lethals which in turn are more frequent than the pupal recessive lethals; (2) this does not appear to be the case after single, brief exposures to radiation, either in this experiment or in an earlier, more extensive experiment (Smith, et al., 1967) where embryo recessive lethals are more frequent than the larval recessive lethals; (3) certain of the translocations appear to be associated with embryo recessive lethals; presumably, these are comparable to the "position effect" lethals described in Drosophila.

As mentioned in the Materials and Methods, the absolute dosimetry is as yet too uncertain to permit dose-action analyses of the data.
Translocation frequencies and recessive lethal mutation frequencies for protracted radiation have been obtained for the different nominal exposure positions in the ground-based control part of the Biosatellite I Experiment.

Summary

Literature Cited

II. INDUCTION OF MUTATIONS IN HABROBRACON WITH MITOMYCIN C

Roger H. Smith

Mitomycin C, a streptomyces-derived antibiotic, disrupts DNA metabolism, (Shika, et al., 1959) but does not interfere with RNA and protein synthesis (Reich and Franklin, 1961). Biologically inactive in its natural state, this antibiotic becomes a mono- and bifunctional alkylating agent upon chemical or enzymatic reduction. Iyer and Szybalski (1964) showed that mitomycin C inhibits synthesis by cross-linking the complementary strands of DNA, and that a high content of guanine and cytosine promotes cross-linking. Mitomycin C mimics the effects of X-radiation when dominant lethal mutations are used as criterion (Smith, 1965); metaphase I oocytes are approximately twenty times more sensitive than prophase I oocytes to both of these mutagenic agents.

In the present experiments Habrobracon males and females were injected with solutions of mitomycin C to study the pattern of induced dominant and recessive lethal mutations in sperm and oocytes, with special attention being given to possible temperature-sensitive lethal mutations.

Materials and Methods

Habrobracon females of the Raleigh (R) strain were isolated as virgins and pretested for spontaneous mutations. The procedure of Whiting (1945) was used to obtain females containing a maximum number of oocytes in first meiotic metaphase. These females were injected with 0, 0.01, 0.05, and 0.1 mg/ml of mitomycin C in insect saline. Each female was provided with an Ephestia larva 3 hr after injection. Oviposition was divided into five periods: 4, 2, and 2 hr; overnight (~12 hr), and 6 hr. The eggs laid during the first three periods were in first meiotic metaphase, and possibly diakinesis, at the time of injection; the eggs laid during the overnight period
were a mixture of metaphase I, diakinesis, and prophase I oocytes. The eggs laid during the last period were in first meiotic prophase at the time of injection. Approximately one-half of the females from each injected group were mated to males of the Lumberton D strain (lum D) to obtain female offspring.

Males of the lum D strain were injected with 0, 0.1, 0.5, and 1.0 mg/ml mitomycin C. They were kept at 30°C for 24 hr before each male was mated to two R females. These males were mated again on 2 successive days so that there were three broods (days 1, 2, and 3) with Habrobracon sperm. All R females used for these matings were pretested for heterozygosity for recessive lethal mutations. Egg counts, hatchability, stages of death, and adult survival were recorded for all mated females in each experimental group according to the procedure of von Borstel and Rekemeyer (1959). Virgin female progeny were collected to test for heterozygosity for recessive lethal mutations and translocations (as determined by inherited partial sterility patterns, von Borstel and Rekemeyer, 1959). Eggs from these virgin females were placed at high (35°C) and low (30°C) temperatures to check for temperature-sensitive lethal mutations which act during development.

Injections were accomplished with an 'Agla' micrometer-syringe equipped with a needle made from capillary tubing. The needle was inserted into the second or third dorsal conjunctivae to deliver the mutagen close to the gonads. Each one received approximately 0.3 µl of solution.

Results

The data for the induction of dominant lethal mutations in first meiotic oocytes are presented in Table 10. Metaphase I oocytes were about 20 times more sensitive to treatments of mitomycin C than prophase I oocytes (Fig. 1). Recessive lethal mutations were induced in both metaphase I and prophase I oocytes (Table 11). Samples were small or missing for the different dose-levels so it is difficult to compare recessive lethal mutation frequencies between metaphase I and prophase I. Nevertheless, the results suggest that the mutational responses were not very different between these two stages.
The data collected from females mated to males which were injected with mitomycin C are presented in Table 12. Dominant lethal mutations were induced in sperm, and the effect was greater in subsequent matings (Table 12 and Fig. 2). Most of the deaths occurred before the blastula formed. These were classified as type I deaths (von Borstel and Rekemeyer, 1959), which indicates that death occurs during the karyokinesis stages, presumably by gross inhibition of mitosis.

Brood patterns for recessive lethal mutations induced with 1.0 mg/ml dose level are shown in Table 13. There appears to be only a small increase, if any, in recessive lethal frequency from day 1 to day 3, even though dominant lethal frequency increased significantly over the same time period. One female from day 1 and one from day 2 were heterozygous for a translocation. None of the 264 control females were heterozygous for translocations. Three temperature-sensitive recessive lethal mutations were found in the day 1 brood, and two were found in the day 2 brood.

Discussion

The pattern of dominant lethal mutations induced in oocytes with mitomycin C is similar to that induced by X-radiation (Whiting, 1945) and the two chemical mutagens, nitrogen mustard and ethyl methanesulfonate (Löbbecke and von Borstel, 1962). However, there appears to be little difference in recessive lethal mutation frequency between metaphase I and prophase I oocytes after treatment with mitomycin C. This response is similar to the effect found by Löbbecke and von Borstel (1962) for ethyl methanesulfonate, a monofunctional alkylating agent. X-radiation induces approximately 16 times as many recessive lethals in metaphase I oocytes than in prophase I oocytes, and nitrogen mustard induces about five times as many.

Injections of mitomycin C induced dominant lethal mutations in sperm, and the effect increased over the three daily broods. This effect had not been observed previously with other mutagenic agents used on Habrobracon. X-irradiated males mated daily for several days showed no change in the pattern of dominant lethality (von Borstel,
unpublished data). Therefore, it had been assumed that a homogeneous population of cells had been exposed. Also, results from an experiment in which males were exposed to nitrogen mustard suggested a similar conclusion (Whiting and von Borstel, 1954). The results of the present experiment can be interpreted in two ways; (1) the mitomycin C was affecting a non-homogeneous population of cells (sperm, spermatids, etc.); or (2) some of the mitomycin C remains reactive for as long as 72 hr. Mitomycin C must be reduced before it is active, and therefore it may have been continuously activated over a long period of time (producing an increased dominant lethal response).

The frequency of recessive lethal mutations increased, but not significantly, over the three-day period. These results suggest that the mechanisms of mutation may be different for recessive lethality and dominant lethality.

The temperature-sensitive mutations found in this experiment suggest that mitomycin C can induce base-pair substitutions. Similar results were found in studies on Drosophila by Suzuki and his collaborators (1967).

Summary

Metaphase I oocytes of Habrobracon are approximately 20 times as sensitive to mitomycin C as prophase I oocytes when dominant lethality is the criterion. When recessive lethality is the criterion, metaphase I and prophase I are essentially the same in sensitivity. Injected males were mated on three successive days. The dominant lethal frequency increases progressively from brood to brood, but the recessive lethal frequency remains essentially unchanged. Temperature-sensitive recessive lethal mutations are induced by mitomycin C in sperm.
Literature Cited

Table 1

Number of translocations and recessive lethal mutations obtained in the ground-based control I of the Biosatellite I Experiment
(Nominal exposure 4000 R)*

<table>
<thead>
<tr>
<th>Position</th>
<th>Total Wasp Tested</th>
<th>No. of Lethals or Trans.</th>
<th>T</th>
<th>TT</th>
<th>Te</th>
<th>Tr</th>
<th>Tr_p</th>
<th>TTT</th>
<th>T+_other</th>
<th>TT+_other</th>
<th>r_e</th>
<th>r_T</th>
<th>r_e r_e</th>
<th>r_r r_e</th>
<th>r_r r_e</th>
<th>r_r e_e</th>
<th>r_r e_a_1</th>
<th>r_r r_p</th>
<th>r_r f_1</th>
<th>r_r f_p</th>
<th>r_p</th>
<th>r_r p_p</th>
<th>r_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>UL</td>
<td>61</td>
<td>24</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>3(e^p f_p)</td>
<td>1(e f_1)</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR</td>
<td>54</td>
<td>23</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>(f_1)</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>115</td>
<td>47</td>
<td>5</td>
<td>6</td>
<td>14</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>11</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UL

<table>
<thead>
<tr>
<th>T = 27</th>
<th>e** = 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>T = 20</td>
<td>f_1** = 9</td>
</tr>
<tr>
<td>(1 or more)</td>
<td></td>
</tr>
<tr>
<td>Te = 12</td>
<td>r_p** = 5</td>
</tr>
<tr>
<td>Tr = 13</td>
<td>Tr = 11</td>
</tr>
</tbody>
</table>

LR

<table>
<thead>
<tr>
<th>T = 22</th>
<th>e** = 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>T = 17</td>
<td>f_1** = 11</td>
</tr>
<tr>
<td>(1 or more)</td>
<td></td>
</tr>
<tr>
<td>Te = 6</td>
<td>r_p** = 1</td>
</tr>
<tr>
<td>Tr = 18</td>
<td>Tr = 24</td>
</tr>
</tbody>
</table>

Σ

<table>
<thead>
<tr>
<th>T = 49</th>
<th>e** = 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>T = 37</td>
<td>f_1** = 20</td>
</tr>
<tr>
<td>(1 or more)</td>
<td></td>
</tr>
<tr>
<td>Te = 18</td>
<td>r_p** = 6</td>
</tr>
</tbody>
</table>

* Symbols used:
 - UL: The module in which the Habrobracon males were placed on each bracket. UL signifies upper left position of the package (bracket plus modules) as determined by the direction that the package is seen by the 85Sr-radiation source; Te, F_1 female is heterozygous for translocation; e, F_1 female is heterozygous for embryo recessive lethal mutation; f_1, F_1 female is heterozygous for larval recessive lethal mutation; r_p, F_1 female is heterozygous for pupal recessive lethal mutation; v, F_1 female is heterozygous for a mutation visible, for altered morphology either viable (adult) or inviable (pupal).
 - **e** and r_p do not include recessive lethal mutations associated with translocations.

e
<table>
<thead>
<tr>
<th>Position</th>
<th>Total Wasps Tested</th>
<th>No. of Lethals or Trans.</th>
<th>T</th>
<th>TT</th>
<th>Tr₂</th>
<th>Tr₃</th>
<th>Tr₅</th>
<th>TTT</th>
<th>rₖ<sup>+</sup> other</th>
<th>TT<sup>+</sup> other</th>
<th>r<sub>e</sub></th>
<th>r<sub>e</sub>r<sub>e</sub></th>
<th>r<sub>e</sub>r<sub>e</sub>r<sub>e</sub></th>
<th>r<sub>e</sub>r<sub>p</sub></th>
<th>r<sub>e</sub>r<sub>p</sub>r<sub>e</sub></th>
<th>r<sub>p</sub></th>
<th>r<sub>p</sub>r<sub>e</sub></th>
<th>r<sub>p</sub>r<sub>p</sub></th>
<th>r<sub>p</sub>r<sub>p</sub>r<sub>e</sub></th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>UL</td>
<td>102</td>
<td>68</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td>2(r₁)</td>
<td>2(r₁)</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR</td>
<td>105</td>
<td>65</td>
<td>7</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td>1(r₁)</td>
<td>5</td>
<td>1</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>207</td>
<td>133</td>
<td>10</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>18</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UL<sup>*</sup></td>
<td></td>
</tr>
<tr>
<td>T = 15</td>
<td>r<sub>e</sub><sup>**</sup> = 8</td>
<td></td>
</tr>
<tr>
<td>T = 13</td>
<td>r₁<sup>**</sup> = 9</td>
<td></td>
</tr>
<tr>
<td>(1 or more)</td>
<td></td>
</tr>
<tr>
<td>Tr<sub>e</sub><sup>***</sup> = 7</td>
<td>r<sub>p</sub><sup>**</sup> = 5</td>
<td></td>
</tr>
<tr>
<td>Tr = 10</td>
<td>Tr<sup>**</sup> = 7</td>
<td></td>
</tr>
</tbody>
</table>

Symbols used:
- The module in which the Habrobracon males were placed on each bracket UL signifies upper left position of the package (bracket plus modules) as determined by the direction that the package is seen by the ⁸⁵Sr-radiation source; T_e F₁ female is heterozygous for translocation; r_e F₁ female is heterozygous for embryo recessive lethal mutation; r₁ F₁ female is heterozygous for larval recessive lethal mutation; r_p F₁ female is heterozygous for pupal recessive lethal mutation; v F₁ female is heterozygous for a mutation visible, for altered morphology either viable (adult) or inviable (pupal).
- r_e, r₁, and r_p do not include recessive lethal mutations associated with translocations.
- Includes 2 r_e associated with one translocation which were counted as separate lethals.

Nominal exposure 2000 R
Table 3

Number of translocations and recessive lethal mutations obtained in the ground-based control I of the Biosatellite I Experiment
(Nominal exposure 1000 R)*

| Position | Total Waps Tested | No. of Lethals or Trans. | T | TT | *e | *l | TTT | TTT other | TT other | r_e | r_e e | r_e e e | r_e e e e | r_e l | r_l | r_l e | r_l e l | r_l e e | r_l e e e | r_l e e e e | r_l | r_l l | r_l l e | r_l l e l | r_l l e e | r_l l e e e | r_l l e e e e | r_l | r_l l | r_l l e | r_l l e l | r_l l e e | r_l l e e e | r_l l e e e e | r_l | r_l l | r_l l e | r_l l e l | r_l l e e | r_l l e e e | r_l l e e e e | r_l | r_l l | r_l l e | r_l l e l | r_l l e e | r_l l e e e | r_l l e e e e | r_l | r_l l | r_l l e | r_l l e l | r_l l e e | r_l l e e e | r_l l e e e e |
|----------|--------------------|--------------------------|---|----|----|----|------|----------|----------|-----|------|-------|--------|------|-----|------|-------|-------|--------|--------|-------|------|-------|--------|------|-------|--------|-------|-------|--------|--------|-------|--------|--------|-------|-------|--------|-------|-------|--------|-------|-------|--------|-------|-------|--------|
| UL | 123 | 104 | 1 | 1 | | | | | | 8 | | | | | 7 | | | | | | | 2 | | | | | | | | | | | | | | | | | | | | | | |
| LR | 121 | 96 | 2 | 1 | 1 | 2 | 1 | 1(r_l) | 4 | 1 | 7 | 4 | 2 | | | 14 | | | | | | | 6 | 2 | | | | | | | | | | | | | | | | | | | | | | | | | |
| Σ | 244 | 200 | 3 | 2 | 1 | 2 | 1 | 12 | 1 | 1 | 14 | 6 | 2 | | | | | | | | | |

UL

- T = 3
 - r_e = 8
- T = 2
 - r_l = 7
- (1 or more)
 - Tr_e + 0
 - r_p = 2
 - Tr_l = 0
 - Tr = 4

LR

- T = 9
 - r_e = 5
- T = 7
 - r_l = 8
- (1 or more)
 - Tr_e = 1
 - r_p = 4
 - Tr = 4

Σ

- T = 12
 - r_e = 13
- T = 9
 - r_l = 15

Symbols used:

- Position: The module in which the Habrobrason males were placed on each bracket UL signifies upper left position of the package (bracket plus modules) as determined by the direction that the package is seen by the 85Sr-radiation source: T, F1 female is heterozygous for translocation; r_e, F1 female is heterozygous for embryo recessive lethal mutation; r_l, F1 female is heterozygous for larval recessive lethal mutation; r_p, F1 female is heterozygous for pupal recessive lethal mutation; v, F1 female is heterozygous for a mutation visible, for altered morphology either viable (adult) or inviable (pupal).

r_e, r_l, and r_p do not include recessive lethal mutations associated with translocations.
Table 4
Number of translocations and recessive lethal mutations obtained in the ground-based control I of the Biosatellite I Experiment
(Nominal exposure 500 R)*

<table>
<thead>
<tr>
<th>Position</th>
<th>Total Wasp Tested</th>
<th>No. of Lethals or Trans.</th>
<th>T</th>
<th>TT</th>
<th>Tr_e</th>
<th>Tr_1</th>
<th>Tr_p</th>
<th>TIT</th>
<th>T*other</th>
<th>TT*other</th>
<th>r_e</th>
<th>r_e e</th>
<th>r_e e e</th>
<th>r_e e e e</th>
<th>r_e e e e e</th>
<th>r_e e e e e e</th>
<th>r_e e e e e e e</th>
<th>r_e p</th>
<th>r_p</th>
<th>r_p r</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>UL</td>
<td>140</td>
<td>121</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LR</td>
<td>138</td>
<td>132</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>278</td>
<td>253</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Symbols used:
Position: The module in which the Habrobracon males were placed on each bracket UL signifies upper left position of the package (bracket plus modules) as determined by the direction that the package is seen by the 85Sr radiation source; T, F_1 female is heterozygous for translocation; r_e, F_1 female is heterozygous for embryo recessive lethal mutation; r_1, F_1 female is heterozygous for larval recessive lethal mutation; r_p, F_1 female is heterozygous for pupal recessive lethal mutation; v, F_1 female is heterozygous for a mutation visible, for altered morphology either viable (adult) or inviable (pupal).**

r_e, r_1, and r_p do not include recessive lethal mutations associated with translocations.
<table>
<thead>
<tr>
<th>Position</th>
<th>Total Wraps Tested</th>
<th>No. of Lethals or Trans.</th>
<th>T_T</th>
<th>T_T^e</th>
<th>T_T^{f1}</th>
<th>T_T^{p}</th>
<th>T_T other</th>
<th>TT other</th>
<th>r_e</th>
<th>r_ee</th>
<th>r_ee^{f1}</th>
<th>r_ee^{p}</th>
<th>r_1</th>
<th>r_1^{f1}</th>
<th>r_1^{p}</th>
<th>r_p</th>
<th>r_pp</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>UL-outer</td>
<td>181</td>
<td>177</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>UL-middle</td>
<td>150</td>
<td>149</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>IUL</td>
<td>331</td>
<td>326</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>LR-outer</td>
<td>162</td>
<td>156</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>LR-middle</td>
<td>166</td>
<td>165</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>ΣL</td>
<td>328</td>
<td>321</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>$\Sigma \Sigma$</td>
<td>659</td>
<td>647</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\text{UL} & : T = 0, \ r_e = 0, \ r_{ee} = 0, \ r_{ee}^{f1} = 0, \ r_{ee}^{p} = 0, \ r_1 = 1, \ r_1^{f1} = 1, \ r_1^{p} = 1, \ v = 1 \\
\text{UL} & : T = 0, \ r_{ee} = 2, \ r_{ee}^{f1} = 1, \ r_{ee}^{p} = 1, \ r_1 = 1, \ r_1^{f1} = 1, \ r_1^{p} = 1, \ v = 1 \\
\text{UL} & : T = 0, \ r_1 = 3, \ r_1^{f1} = 3, \ r_1^{p} = 3, \ v = 3 \\
\text{UL} & : T = 0, \ r_p = 4, \ r_p^{f1} = 4, \ r_p^{p} = 4, \ v = 4 \\
\text{UL} & : T = 0, \ r_1 = 7, \ r_1^{f1} = 7, \ r_1^{p} = 7, \ v = 7 \\
\end{align*}
\]

Symbols used:
- *Position*: The module in which the Habrobecos males were placed on each bracket UL signifies upper left position of the package (bracket plus module) as determined by the direction that the package is seen by the 35S-radiation source; T_T, F_1 female is heterozygous for translocation; r_e^{f1}, r_e^{p}, F_1 female is heterozygous for embryo recessive lethal mutation; r_1^{f1}, r_1^{p}, F_1 female is heterozygous for larval recessive lethal mutation; r_p^{f1}, r_p^{p}, F_1 female is heterozygous for pupal recessive lethal mutation; v, F_1 female is heterozygous for a mutation visible, for altered morphology either viable (adult) or inviable (pupal).
Table 6
Number of translocations and recessive lethal mutations obtained in the ground-based control I of the Biosatellite I Experiment
(pre-irradiated with 2000 R)

<table>
<thead>
<tr>
<th>Position</th>
<th>Total Waps Tested</th>
<th>No. of Lethals or Trans.</th>
<th>T</th>
<th>TT</th>
<th>Tr_e</th>
<th>Tr_r</th>
<th>Tr_p</th>
<th>TTT</th>
<th>Tr_r other</th>
<th>TT other</th>
<th>r_e</th>
<th>r_e r_e</th>
<th>r_r</th>
<th>r_r r_e</th>
<th>r_r r_p</th>
<th>r_p</th>
<th>r_r r_p</th>
<th>r_p</th>
<th>r_p r_p</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>UL-Inner</td>
<td>33</td>
<td>23</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>LR-Inner</td>
<td>34</td>
<td>28</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>(r_e)</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Σ</td>
<td>67</td>
<td>51</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

UL																				
T = 5		r_e ** = 5																		
T = 3		r_r ** = 2																		
(1 or more)		(1 or more)																		

LR																				
T = 8		r_e ** = 0																		
T = 5		r_r ** = 0																		
(1 or more)		(1 or more)																		

- UL: upper left, LR: lower right
- r_e, r_r, r_p: recessive lethal mutations
- r_r e, r_r r_e, r_r r_p: translocations
- r_r r_r, r_r r_p, r_r r_p r_p: other

Symbols used:
- Position: The module in which the Habrobracon males were placed on each bracket UL signifies upper left position of the package (bracket plus modules) as determined by the direction that the package is seen by the 85Sr-radiation source; T, F_1 female is heterozygous for translocation; r_r, F_1 female is heterozygous for embryo recessive lethal mutation; r_r, F_1 female is heterozygous for larval recessive lethal mutation; r_p, F_1 female is heterozygous for pupal recessive lethal mutation; v, F_1 female is heterozygous for a mutation visible, for altered morphology either viable (adult) or inviable (pupal).

r_r e, r_r r_r, and r_r do not include recessive lethal mutations associated with translocation.
Table 7
Number of translocations and recessive lethal mutations obtained in the ground-based control III of the Biosatellite I Experiment
(Nominal exposure 0 R)∗

<table>
<thead>
<tr>
<th>Position</th>
<th>Total Wasps Tested</th>
<th>No. of Lethals or Trans.</th>
<th>T</th>
<th>TT</th>
<th>Tr<sub>e</sub></th>
<th>Tr<sub>1</sub></th>
<th>Tr<sub>p</sub></th>
<th>TIT</th>
<th>TIT<sup>+</sup> other</th>
<th>TIT<sup>+</sup> other</th>
<th>r<sub>e</sub></th>
<th>r<sub>1</sub></th>
<th>r<sub>p</sub></th>
<th>r<sub>1</sub></th>
<th>r<sub>1</sub><sup>p</sup></th>
<th>r<sub>1</sub><sup>p</sup></th>
<th>r<sub>p</sub></th>
<th>r<sub>p</sub></th>
<th>r<sub>p</sub><sup>p</sup></th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR</td>
<td>204</td>
<td>198</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LL</td>
<td>42</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>246</td>
<td>240</td>
<td></td>
</tr>
</tbody>
</table>

∑

T = 0 \quad r_e = 1
T = 0 \quad r₁ = 2
(1 or more)
Tr_e = 0 \quad r_p = 2
Tr_p = 0

∗Symbols used:
Position: The module in which the Habrobracon males were placed on each bracket UL signifies upper left position of the package (bracket plus modules) as determined by the direction that the package is seen by the 65Sr-radiation source; T_e F₁ female is heterozygous for translocation; r_e F₁ female is heterozygous for embryo recessive lethal mutation; r₁ F₁ female is heterozygous for larval recessive lethal mutation; r_p F₁ female is heterozygous for pupal recessive lethal mutation; v F₁ female is heterozygous for a mutation visible, for altered morphology either visible (adult) or inviable (pupal).
Table 8
Number of translocations and recessive lethal mutations obtained on the ground-based control III of the Biosatellite I Experiment
(pre-irradiated with 2000 R)*

Position	Total Wasp Tested	No. of Lethals or Trans.	T	TT	T_e	T_r	T_p	TTT	T^p other	T^p other	r_e	r^e	r_e	r_e	r^e	r^e	r_p	r_p	r_p	r_p	v	
----------	-------------------	--------------------------	---	----	-----	-----	-----	-----	-------	-------	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----		
UL	69	43	7	1	1	2	1	1	1(r_p)	4	1	1	2	1	2	1	1	1	2	1	1	
UL																						
T = 19		r_e** = 7																				
T = 16		r_p** = 5																				
(1 or more)																						
T_r = 4		r_e** = 4																				
T_r = 7																						

*Symbols used:

Position: The module in which the Habrobracon males were placed on each bracket UL signifies upper left position of the package (bracket plus modules) as determined by the direction that the package is seen by the 65Sr-radiation source; T, F_1 female is heterozygous for translocation; r_e, F_1 female is heterozygous for embryo recessive lethal mutation; r_f, F_1 female is heterozygous for larval recessive lethal mutation; r_p, F_1 female is heterozygous for pupal recessive lethal mutation; v, F_1 female is heterozygous for a mutation visible for altered morphology either viable (adult) or inviable (pupal).

**r_e, r_f, and r_p do not include recessive lethal mutations associated with translocations.
Table 9

Frequencies of translocations and recessive lethal mutations obtained in the ground-based control of the Biosatellite I experiment*

<table>
<thead>
<tr>
<th>Control Exposure</th>
<th>T/n</th>
<th>T'/n</th>
<th>r_0/n-T'</th>
<th>r_1/n-T'</th>
<th>r_p/n-T'</th>
<th>r/n-T'</th>
<th>Tr_0/n</th>
<th>Tr_1/T'</th>
</tr>
</thead>
<tbody>
<tr>
<td>I 4000</td>
<td>49/115 = 0.426</td>
<td>39/115 = 0.339</td>
<td>18/78 = 0.231</td>
<td>20/78 = 0.256</td>
<td>6/78 = 0.0782</td>
<td>44/78 = 0.564</td>
<td>24/115 = 0.209</td>
<td>24/37 = 0.649</td>
</tr>
<tr>
<td>I 2000</td>
<td>35/207 = 0.169</td>
<td>30/207 = 0.145</td>
<td>14/177 = 0.079</td>
<td>23/177 = 0.130</td>
<td>9/177 = 0.0508</td>
<td>46/177 = 0.230</td>
<td>12/207 = 0.0580</td>
<td>12/30 = 0.400</td>
</tr>
<tr>
<td>I 1000</td>
<td>12/244 = 0.0492</td>
<td>9/244 = 0.037</td>
<td>13/235 = 0.0533</td>
<td>15/235 = 0.0638</td>
<td>6/235 = 0.0255</td>
<td>34/235 = 0.145</td>
<td>1/244 = 0.00409</td>
<td>1/9 = 0.111</td>
</tr>
<tr>
<td>I 500</td>
<td>3/278 = 0.0108</td>
<td>3/278 = 0.011</td>
<td>7/275 = 0.0255</td>
<td>8/275 = 0.0291</td>
<td>1/275 = 0.00363</td>
<td>16/275 = 0.0582</td>
<td>1/278 = 0.00359</td>
<td>1/3 = 0.333</td>
</tr>
<tr>
<td>I pre-2000**</td>
<td>13/67 = 0.194</td>
<td>8/67 = 0.119</td>
<td>5/59 = 0.0847</td>
<td>2/59 = 0.0339</td>
<td>3/59 = 0.0508</td>
<td>10/59 = 0.169</td>
<td>3/67 = 0.0448</td>
<td>3/8 = 0.375</td>
</tr>
<tr>
<td>III 0</td>
<td>0/246 = 0.000406</td>
<td>0/246 = 0.000406</td>
<td>1/246 = 0.00132</td>
<td>1/246 = 0.00813</td>
<td>2/246 = 0.00813</td>
<td>5/246 = 0.00203</td>
<td>0/246 = 0.000406</td>
<td>0/1 < 1.0</td>
</tr>
<tr>
<td>III pre-2000**</td>
<td>19/69 = 0.275</td>
<td>16/69 = 0.232</td>
<td>7/53 = 0.132</td>
<td>5/53 = 0.0943</td>
<td>4/53 = 0.0754</td>
<td>16/53 = 0.302</td>
<td>4/69 = 0.0580</td>
<td>4/16 = 0.250</td>
</tr>
</tbody>
</table>

*Symbols used: T, total number of translocations; T', number of females containing one or more translocations; n, number of F1 females; r, recessive lethal mutations; r_0, embryo recessive lethal mutations; r_1, larval recessive lethal mutations; r_p, pupal recessive lethal mutations; Tr_0, translocation-associated embryo recessive lethal mutations.

**pre-2000 = males exposed to 2000 R of X-radiation before being placed in O-dose region of ground-based control set-up.
Table 10
Hatchabilities after the injection of Mitomycin C into females

<table>
<thead>
<tr>
<th>MC Conc.</th>
<th>MI oocytes</th>
<th></th>
<th></th>
<th>PI oocytes</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Virgins</td>
<td>Percent</td>
<td>Mated</td>
<td>Percent</td>
<td>Virgins</td>
<td>Percent</td>
</tr>
<tr>
<td>0</td>
<td>178</td>
<td>91.6</td>
<td>154</td>
<td>96.1</td>
<td>84</td>
<td>96.4</td>
</tr>
<tr>
<td>0.01</td>
<td>114</td>
<td>46.5</td>
<td>134</td>
<td>50.7</td>
<td>35</td>
<td>94.3</td>
</tr>
<tr>
<td>0.05</td>
<td>135</td>
<td>0.7</td>
<td>135</td>
<td>0</td>
<td>43</td>
<td>88.4</td>
</tr>
<tr>
<td>0.10</td>
<td>173</td>
<td>0</td>
<td>160</td>
<td>0</td>
<td>48</td>
<td>77.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mitomycin C (mg/ml)</th>
<th>Recessive lethals/ooctyes tested</th>
<th>%</th>
<th>Prophase 1</th>
<th>Recessive lethals/ooctyes tested</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0/110</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
<td>3.8</td>
</tr>
<tr>
<td>0.01</td>
<td>3/35</td>
<td>8.6</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.10</td>
<td>0/10</td>
<td>-</td>
<td>0.01</td>
<td>1/26</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/20</td>
<td></td>
</tr>
</tbody>
</table>
Table 12
Survival of diploid embryos after treatment of Habrobracon sperm by injections of Mitomycin C

<table>
<thead>
<tr>
<th>Days after injection (Brood)</th>
<th>Conc. mitomycin C (mg/ml)</th>
<th>Total no. eggs</th>
<th>% Survival to blastula</th>
<th>% Survival to larvae</th>
<th>% Survival to adult females</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>615</td>
<td>98.7</td>
<td>98.3</td>
<td>62.9</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>709</td>
<td>99.4</td>
<td>97.8</td>
<td>67.1</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>820</td>
<td>91.7</td>
<td>86.8</td>
<td>61.4</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>838</td>
<td>83.5</td>
<td>81.8</td>
<td>61.0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>432</td>
<td>97.8</td>
<td>93.8</td>
<td>62.9</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>602</td>
<td>88.9</td>
<td>85.6</td>
<td>62.0</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>774</td>
<td>64.2</td>
<td>59.7</td>
<td>39.8</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>585</td>
<td>49.2</td>
<td>45.4</td>
<td>29.0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>518</td>
<td>99.5</td>
<td>97.1</td>
<td>59.6</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>790</td>
<td>77.8</td>
<td>72.6</td>
<td>52.8</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>858</td>
<td>57.8</td>
<td>56.6</td>
<td>38.1</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>432</td>
<td>41.3</td>
<td>39.6</td>
<td>19.5</td>
</tr>
</tbody>
</table>
Table 13
Brood pattern of recessive lethal mutations induced in sperm after an injection of 1.0 mg/ml Mitomycin C

<table>
<thead>
<tr>
<th>Days after injection of Mitomycin C</th>
<th>No. ♀♀ carrying a recessive lethal</th>
<th>% Carrying recessive lethal mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8*/206</td>
<td>3.9</td>
</tr>
<tr>
<td>2</td>
<td>4**/99</td>
<td>4.0</td>
</tr>
<tr>
<td>3</td>
<td>3/44</td>
<td>6.8</td>
</tr>
<tr>
<td>Control</td>
<td>1/264</td>
<td>0.4</td>
</tr>
</tbody>
</table>

* Three were temperature sensitive mutants.

** Two were temperature sensitive mutants.
Figure 1. The hatchability of eggs from females injected with mitomycin C. ○, metaphase I; △, prophase I.

Figure 2. Survival curves for diploid embryos from females mated to males injected with mitomycin C. ○, males mated on day 1; △, day 2; and □, day 3.
INTERNAL DISTRIBUTION

1. M. A Bender
2. S. F. Carson
3-22. F. J. de Serres
23. W. H. Jordan
24. R. F. Kimball
25. C. E. Larson
26-35. J. L. Liverman
36. A. J. Miller
37. K. Z. Morgan
38. R. A. McNees
39. H. G. MacPherson
40-41. R. B. Parker
42. Diana B. Smith
43-52. Roger H. Smith
53-152. R. C. von Borstel
153. B. B. Webber
154. Anna R. Whiting
155. A. M. Weinberg
156-166. Biology Division Editorial Office
167. Biology Library
168-169. Central Research Library
170. ORNL—Y-12 Technical Library
171-175. Laboratory Records Department
176. Laboratory Records, ORNL RC
177. ORNL Patent Office

EXTERNAL DISTRIBUTION

178. Dr. R. L. Amy, Department of Biology, Southwestern University, Memphis, Tennessee
179. Mr. M. B. Baird, Department of Biology, University of Delaware, Newark, Delaware
180-185. Dr. N. Barr, Division of Research, U. S. Atomic Energy Commission, Washington, D.C.
186. Dr. A. M. Clark, Department of Biology, University of Delaware, Newark, Delaware
187. Dr. John R. Totter, Director, Division of Biology and Medicine, U. S. Atomic Energy Commission, Washington, D.C.
188. Dr. C. W. Edington, Chief, Biology Branch, Division of Biology and Medicine, U. S. Atomic Energy Commission, Washington, D.C.
189. Dr. D. S. Grasch, Department of Genetics, North Carolina State University, Raleigh, North Carolina
190. Dr. John E. Hewitt, Ames Research Center, Moffett Field, California
192. Dr. W. Keller, Space Vehicle Research and Technology, Office of Advanced Research and Technology, NASA, Washington, D.C.
193. Dr. K. Kojima, Department of Zoology, University of Texas, Austin, Texas
194. Dr. Sohei Kondo, Faculty of Medicine, Osaka University, Osaka, Japan
195. Dr. L. E. LaChance, Metabolism and Radiation Research Laboratory, USDA State University Station, Fargo, North Dakota

221. Miss Mary Lou Pardue, Department of Biology, Yale University, New Haven, Connecticut

222-246. Mr. T. Smull, Director, Grants and Research Contracts, Office of Space Sciences, NASA, Washington, D.C.

247. Dr. John W. Tremor, Ames Research Center, Maffett Field, California

248. Mr. L. R. Valcovic, Department of Genetics, North Carolina State University, Raleigh, North Carolina

251-253. Director, Bio-Science Programs, Office of Space Sciences, NASA, Washington, D.C.

254-268. Division of Technical Information Extension

269. Laboratory and University Division, AEC, ORO

270. Dr. Thomas J. Mizianty, Department of Biology, Wilkes College, Wilkes-Barre, Pennsylvania