
By Richard J. Waeicko 

Headquarters 
~atlonsl Aeronautica and Space Adminiatretion 

Washington, DX,, U.9.A 

Presented to the Flight Mechanics Panel 
of the Advisory Group for Aerospace 

Beearch and Detnctlopnent 

GPO PRICE $ 

CFSTI PRICE(S) $ 

- Hard copy (HC) 

Microfiche (MF). - 
ff 653 July65 

Cambridge, England . 

Sept. 20-23, 1966 

jc 

N A l l  0 HAL A t  10 N AUTICS and WACE ADMl N I STRATI 0 N. 



SUMMARY 

Several factors  associated w i t h  the five jet  upsets involving 
swept-wing jet transports .which occurred i n  the United States  are 
presented, and the  elements of an intercenter NASA research program on 
the rough air control problem are reviewed, 
quantitative data on several factors which appear t o  contribute t o  the 
upsets and the  pi lot ing techniques which could cause fl ight path 
control d i f f i c u l t i e s  
handLing qualities, flexible vehicle cockpit acceleration envir 
eznd i ts  e f f ec t  on p i l o t  performance, simulator studies of a i r c r a f t  
control i n  turbulence and f l i g h t  tests of upset-recovery maneuvers. 
It is shown that  both the osc i l la tory  and pure divergent i n i t i a l  
phases of jet upsets similar t o  those experienced9in a i r l i n e  operations 
could be achieved i n  the simulator. 
revealed tha t  eupplemntal recovery control i n  addition t o  the 
maximum elevator deflections available was required for rapid upset 
recovery if the stabilizer remained mistrimmed during the upset. 

Described are  some 

Aspects discussed are swept-wing jet trausport  

Flight tests of ofte transport 
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HASA RESEABCH EXPERIENCE ON JZT A I R C m  
CONTROL PROBLEMS I N  SEVEXE TURBULENCE 

Richard J. Wasick0.W 

1. INTROWCTION 

I n  1963 and ear ly  1964, after being in commercial air operations 
for  four years, swept-wing jet traneports i n  the United States  
experienced a series of accidents and incidents which were characterized 
by a period of uncontrolled f l i g h t  with an attendant large a l t i t ude  
loss.  For the  majority of cases, the loss of control occurred during or 
soon after the penetration of a region of severe turbulence. These 
8CCident8. have become known 8s "jet upsets," and the  p i lo t ing  d i f f icu l ty  
has been termed "the rough air control problem. 

* The five j e t  upsets which occurred i n  the  United States  are 
usually ident i f ied  by the location of the accident, these being M i a m i ,  
Florida; 0 ' N e i l l ,  Nebraska; Dulles Airport, Virginia; Houston, Texas; 
and New Orleans, Louisiana. A br ie f  summary of several factors  related 
t o  the five upsets is t h a t  two a i r c r a f t  types were involved, and each 
experienced a fatal crash; three upsets occurred a t  night and two during 
the day; adverse weathel' exis ted in  all five cases, although only two 
airplanes w e r e  i n  an extensive cloud formation before t h e  occurrence; 
a l l  five airplanes were attempting t o  climb; a l t i t udes  a t  which t h e  
upse ts  began ranged from 4,000 t 6  approximately 38,000 feet; the  
a l t i t ude  losses  i n  the  fatal Crashes were approximately 6,000 and 
19,000 feet, although successful recoveries were made i n  t h e  other cases 
after a l t i t ude  losses of about 2,600, 13,000, and 25,000 feet; and, 
f ina l ly ,  good f l i g h t  recorder data were obtained i n  three cases, one 
of which was fatal. I n  addition t o  these f ive  upsets, there are 
indications that  at least three non-U.S. ca r r i e r  fatal accidents 
involving similar a i r c r a f t  were due t o  upset loss of control i n  turbulence. 

The partial or complete loss af f l igh t  path control which occurred 
'in the je t  upsets was of considerable concern t o  the a i r l i nes ,  airplane 
manufacturers and government agencies involved, and several  programs 
were i n i t i a t e d  t o  examine possible Qontributing factors. 
investigations w e  re 8 tudie s of a t t i t ude  -instrument de f iciene ie8, 
turbulence penetration speeds, instrument f l i gh t  procedures in severe 
turbulence and acceleration stress and disorientation effects on the 
crew (Ref. 1-5). 
States  ( R e f .  6,7)n 

, 
h n g  the 

The problem was aleo studied outside the United 

* National Aeronautics and Space Adminlstwtion, Headquarters, 
Washington, D.C., U.S.A 
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The purpose of t h i s  paper is  t o  br ief ly  summarize t h e  MASA research 
e f fo r t  on the  je t  transport  upset and recovery problem and t o  present 
some of t h e  more s igni f icant  results. More complete reporting on the 
program is contained i n  Refs. 8 t o  12. 

2. B S C R I S T I O N  OF THE RESEARCH PWXRAM 

!he NASA intercenter  program on the jet upset and recovery problem 
was i n i t i a t e d  i n  December 1963 and, as 

of t h r e e  current je t  transports wqre reviewed, and the flaxiblft vehiclegs 
norm1 and lateral acceleration response at  various fuselage s ta t ions 
due t o  turbulence and control inputs were established f o r  two aircraft. 
Wind tunnel tests concentrated on establishing s t a t i c  and dynamic 
s t a b i l i t y  derivatives at  high Mach numbers and high angles of  attack. 
addition t o  obtaining s t a b i l i t y  and control and handling qualities data and 
evaluating upset recovery character is t ics ,  the f l i g h t  phase was used t o  
measure the  f lex ib le  airplane's response i n  turbulence and t o  provide large 
jet  transport  a i rplane control experience fo r  NASA pi lo ts .  
program studied t h e  e f f ec t  of turbulence on airplane responses and the 
influence of the  cockpit acceleration environment on p i l o t  performance as 
well as evaluating handling qua l i t i es  and p i lo t ing  techn3ques i n  
turbulence penetrations, 
freedom motion simulator as a t ra ining device. 

ief ly  outlined in  Fi 
d a i  Sour a c t i v i t i e s ,  In the yais phaeb, tha 

In  

The simulation 

It a lso  evaluated t h e  use of a one-degree-of- 

3. RESULTS AND DISCUSSION 

The research program did not reveal any singular cause f o r  the je t  
transport  upsets, However, quantitative data were obtained on several 
factors which appear t o  contribute t o  t h e  je t  upsets, and pi lot ing 
techniques which could cause path control d i f f i c u l t i e s  were determined. 
Those aspects which seem30 be more d i rec t ly  related t o  the  flight-experienced 
problem and which w i l l  be discussed in  some detail are swept-wing j e t  
transport  handling qualities, the flexible vehicle cockpit acceleration 
environment, p i lo t ing  techniques and upset-recovery maneuvers. 

3.1 Handling Q u a l i t i e s  Analysis and Flight Test Data 

Based on wind tunnel ernd estima2;ed s tab i l i ty  and control data, the 
handling qualities of three jet transports were reviewed and compared 
w i t h  ex is t ing  and proposed criteria and other kiandling qualities data, auch 
as thosa in Refs. 13 t o  18. Included in  t h i s  review were the aynamic 
responae characteristics for small perturbation disturbsncee from 
steady-state f l ight ,  The major observations were as followla: the, 
longltud3nal short-period appeared t o  have aat iefactory levels of damgiag 



and natural  frequency, although the frequency tended t o  be lower than 
desired (!luring the low s p e d  cruise and holding f l i g h t  conditions; 
t h e  phugold was stable with apparent acceptable clamping except f o r  the 
maximum a p e d  condition fo r  two airplanes at which the divergent tuck 
mode'had tiaes-to-double amplitude from 7 t o  31 secona;  the Dutch-roll 
damping with the  yaw r inoperative w a s  ly low, appeared 
margina3. when colngase semral proposed c md exhibited a f a i r l y  
large difference between airplanes; the ban o equivalent side 
velocity r a t i o  for the  Dutch-roll mode was of nrodaet magnitude, although 
f l i g h t  tests indicated higher WLues than e s t l m t a d  for one airplane; and 
the y a w  resgonse due t o  ai leron wae small. 

I n  addition t o  subsonic and transonic w i n d  tunnel tests of a 
representative airplane model, control effectiveness and hinge moment data 
were obtained f o r  a f u l l  scale stabil izer-elevator-tab combination of one 
of the jet  transports which experienced a fatal accident. These were used 
i n  the analysia of longitudinal control force s t a t i c  maneuvering s t a b i l i t y ,  
The results indicated a nonlinear variation of control force with normal 
acceleration with a slope reversal  occurring at a modest negative load 
factor  wi th  the stabilizer at f u l l  nose-down t r i m  and at a small negative 
load factor  with t h e  normal climb stabilizer t r i m  set t ing.  Although dsta 
at negative g's were not obtained during the  f l i gh t  test program of the 
same jet transport ,  the measured elevator st ick force grad&?nt wi th  
norm1 acceleration approached zero at  very low posit ive load factors. 
Figure 2 presents the longitudinal maneuvering character is t ics  of t h i s  
airplane at  an a l t i t ude  of 34,500 feet and a Mach nuniber of 0.84. The 
wheel-force data' are fo r  two configurations of the elevator balance system 
which are described in Ref. 8. 

The handling'quali t ies analysis e f fo r t ,  supported by portions of the 
f l i g h t  test data, indicated that within the normal operating boundaries 
there  were no unusuaL o r  dangerous character is t ics  although t h e  low 
Dutch-roll &amping would increase the  p i l o t s '  work load, especially in 
rough air f l i gh t ,  gnd hence detract  from the longitudinal control task. 
Potent ia l ly  more serious was the reduced s t i c k  force per g a t  low load 
factors,  which could ampliQ an incipient upset. 

3.2 Cockpit Acceleration Environmnt 

e f f o r t  was directed toward de2;erminhg the f lex ib le  airplane response 
character is t ics  to turbulence, w i t h  emphmis on the normal accelerations at 
the p i lo t s '  s ta t ion,  and evaluating the e f fec ts  of t h i s  enviornment on 
crew stress, tolerance, and perfonnancle. 
acceleration power spc t ra  o b t a h d  from a thunderetom penetration with 
an instrumented J e t  transport  l a  shown i n  Figure 3 together with the power 
spectra of the acceleration at the  airplslac's center-of-gravity and at (1l1 
aft Puselage citation. These data Fncludh the flexible slrplane'e response 

A considerable portion of the analysis, f l igh t  test, and simulation 

The p i lo t s '  s t a t ion  normal 
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t o  both turbulence and p i l o t  control inputs. A F a k  i n  the power spec tm 
of the cockpit acceleration I s  clearly evident at  about 4.5 cps and is 
presumably associated with 
since a similar predominant vibration ex i s t s  a t  the aft: fuselage s t a t ion  
but n o t a t  the center-of-gravity. I n  addition, moving simulator tests, 
the results of which are shown i n  Figure 4, indicated that i n  the  
frequency r a g e  of f'rom 2.5 t o  almost 5 cps and with a conventional seat 
cushion the acceleration at the  p i lo t ' s  head was amplified by a fac tor  
of two o r  more with respect t o  t h e  acceleration at the f l ight  deck. With 
no seat ctlbih%on the aoceleration amplification is slightly Lower in 
t h i s  frequency ran , crnd the attenuating csffectcr of the cushlon &o not 
occur u n t i l  frequencies above 5 cps are reached, 
bending frequencies of the current jet transports &re i n  the region where 
the  acceleration at the  p i l o t  I s  head is amplified and human tolerance to 
vibrations I s  inversely related t o  head accelerations, It is apparent that 
the present seat cushions are ineffect ive in reducing the stress 
environment durihg f l i gh t  through turbulence, 

the first fuselage bending structural mock 

Since the  fiselage 

The predominant cockpit vibration at  about 4.5 cps is near the 
frequency at which hurosn subjective tolerance t o  osc i l la tory  accelerations 
is most severely reduced. This is shown in  Figure 5, where the range of 
root-mean-square acceberations at sarious fuselage s ta t ions  of a jet 
transport  measured during 8 thunderstom penetration is compared with 
the data of Ref. 19. Comments From the crew on t h i s  f l ight  generally 
support the conclusion based on the R e f .  19 d a t a  tha t  the osc i l la tory  
accelerations would be considered mildly t o  extremely annoying. 
fuselage vibration is a l so  in  the frequency region where there is a 
signif icant  increase i n  the occurrences of large instrument reading er rors  
when relative osc i l la tory  motion ex is t s  between a subject and an instrument 
dial, as shown by the dtlta of Ref. 20 presented in Figure 6. 

The 4.5 cps 

3.3 Slmdation of Aircraft Control i n  Turbulence 

It was considered important t o  produce the cockpit. acceleration 
environment in the simulation program which assessed the  relative importance 
of various factors on the f ly ing  task  i n  turbulence. 
Ames Research Center's height control simulator, shown i n  Figure 7;was used. 
The simulator cab, which is mounted on a ver t ica l  t rack and driven by 
high performance electrical .  8 e m  motors thr0ugh.a cable system, can 
traverse 100 feet. 
frequency cockpit normal. acceleration due t o  r ig id  airplane response t o  
turbulence and control inputs and the higher frequency vibration due t o  
f l ex ib i l i t y .  Figure 8 shows the s h u l a t o r  cockpit which enrIpLoye& basic 
controls and f l i g h t  displays similar t o  those installed In jet  transport 
airplanes. 
inetrumasnt il2mnlnfbtlon, As can be seen in the photograph, 8 two-color 
attitude indioator was.uaed in  the sinaulation program, 

Consequently, the 

This device allows the pczrtial simulation. of the low 

The cockpit is single place and utilirtRd white light for 
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The aerrodynmlc and control system charac te r i s t ics  which were 
Pro 
jet transport  at mid-cruise loa8tng. An operating envelope extending 
from 25,000 t o  45,000 feet in a1titud.e and up t o  a Hseh nuniber of 1.0 
i n  speed was provided, and although most of the  s t a b i l i t y  and control 
derivativeer WCIm constant and invariant wi th  Mach number, nonlinear 
representations of the  lift, drag, p i t chhg-mmnt ,  and Longitudinal 
control gradiente were used. In addition, the following character is t ics  
were provided i n  a qbrplified,  qual i ta t ive manner: 
wi th  a l t i tude ;  &mmmwl longitubiaal control power at high indicated 
airspeed8 and Mach number6; a reduction i n  longitudinal s t a t i c  s t a b i l i t y  
at the stall; speed ins t ab i l i t y ,  o r  a tuck mode, at  high Mach 
numbers, together with a simulated Mach trim compensator; and increased 
cockpit vibrations at both the stall and high Mach numbers. 

portion of the simulator program in which research p i lo t s  evaluated the 
rough air  f l i g h t  task with a l l  displays operative, even under the most 
severe l e W l 8  of turbulence. 
of Figure 9, s .large fl ight-path osc i l la t ion  was induced by a research 
p i l o t  when he intent ional ly  deprived himself of pi tch-s t t i tude infonnation 
and over-concentrated on t i gh t  airspeed control. 
p i l o t t @  cormnents after t h i s  simulator run is as follows: 
two cycles, large variations In a t t i t ude ,  airspeed, and rate-of-climb 
could be observed, but concentration was maintained In -king the control 
inputs based on airspeed information alone, 
diverge, resulting i n  a i r c r a f t  buffet  during the posi t ive g pull-out from 
the higher speed'portions of the osci l la t ion.  
of prilling and pushing with s ignif icant  force t o  control the airplane,  but 
t h i s  did not 6%em unnatural considering the variation6 in airspeed that 
were occurring," Shown in  the lorer part of Figure 9 is the  portion of 
the night recorder dsta j u s t  p r ior  t o  au actual je t  upset dive i n  which 
25,000 *et of a l t i t ude  were l o s t  before recovery. 
i n  the a l t i t u d e  and airspeed osc i l la t ions  are apparent. 

d on the computer were generalized t o  be typical  of a swept-wing 

a performance reduction 

There were no indications of severe control. d i f f i c u l t i e s  during t h e  

However, as indicated in the upper portion 

A portion of the 
"After one or  

The osc i l la t ions  continued t o  

The p i l o t  was conscious 

The similar t rends 

I 

Simulator runs were a lso  made w i t h  different  p i lo t ing  techniques 
when the a t t i t u d e  infbrnation was not wed, Over-concentration on 
airspeed cdhtrol but including a l t i t ude  and rate-of-climb information In a 
reasonable scan pat tern did not norm&lly induce f l ight  path control 
difficulties. 
in which an unknown out-of-trim condition was imposed inrmediately upon 
entering heavy turbulence are quite interest ing,  He stated, "I believe 
that b r i n g  t h i s  run a &liberate attempt was nrarcle t o  over-concentrate on 
a i r s p e d  in order t o  induce BO- deviation i n  airspeed and altitude. In 
any w e ,  during 86311~ of thqlong-geriod osci;llations which occurmd, a 
diestinct feeling of pan&c occurred w n t a r i l y  when a cr08s cbr.ck of the 
inatnmsants ravSaJ.et!l that while I ww holaing forward pressure on the 

However, the research p i lo t ' s  comnrents on a simulator run 
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yoke t o  arrest a decreasing airpseed condition, the a l t i t ude  could 
be observed rapidly increasing. 
between airspeed and a l t i t u d e  information. 
f e l t  e i g n i f i c m t  and eouEd eas i ly  cause a sense of panic in  m y  p i l o t  
who observes it. 
I could then re ly  on. 
t h e  ra te-of-clbb needle being pegged, it m a  natura l  t o  make the 
choice of airspeed. 
even though it was osc i l l a t ing  due t o  the? rough air, it s t i l l  was 
moving in ia stamly, or more ratioma. manner. It is well larown f b L  
p i lo t s  reeJpond t o  control force as a cue. 
t o  realize that, t o  a p i lo t ,  holding strong forward pressure on 
the  yoke WSLB an indication tha t  1 was applying t h e  proper correction; 
however, due to  the nose-up m i s t r i m  condition, my correction was not 
enough t o  s ign i f icant ly  a f f ec t  airplane a t t i t u b  and f l i g h t  p8th rapidly 
and start the airspeed t o  decreaslng again. 
arrestingvthe dscelerating airspeed was I n  d i r ec t  contrast  t o  w h a t  
occurred during the high speed portion o f  t hk  osc i l la t ion .  When.the 
airspeed buildup was recognized and the s t i c k  force w a s  relaxed, 
preparatory t o  pulling the nose-up, the out-of-trim condition automatically 
put in recovery control and pi tch a t t i t u d e  probably overshot i n  a 
nose-up direction before any indication of decreasing airspeed could 
be noted." 

This gave an immediate sense of conflict 

The immediate question i n  my mind we8 which information 
h e  t o  t h e  rapidly rotat ing a l t i t u d e  needle and 

I believe t h i s  would be a natural  choice by p i l o t s  

This type of confl ic t  i s  

Therefore, it i e  not d i f f i c u l t  

This sluggish response In 

It was fel t  that the simulation, although only involving a 
one-degree-of -freedom motion device, accurately reproduced the essential. 
elements of the jet  upset problem, and consequently it WBS used i n  a 
demonstration program for  p i l o t s  from the a i r l i n e  industry. Each p i l o t  
spent about one hour becoming familiar with the character is t ics  of the 
simulated a i r c r a f t ,  including its .stall response and f l i g h t  behavior 
at speeds above a Mach number of 0.9. Then approximately one hour was ' 

devoted t o  simulated thunderstorm penetrations and demonstrations 
per t inent  t o  rough air pi lot ing techniques. 
each p i l o t  was introduced during h i s  t h i rd  turbulence encounter. 
While requested t o  descend 5,000 feet and change heading simultaneously, 
his  p i t ch . t r im  coqensato5 was rendered inoperative so that an unstable 
longitudinal trim change would 8ccompsny any p p e d  increase beyond 8 
mch number of 0.84. 
t s sk  experienced some form of f l ight  rupth control d i f f icu l ty .  

The most c r i t i c a l  task given 

Five of  the  fourteen pilots who were given th i s  

Figure LO i l l u s t r a t e s  the performance which was typical  for  m e t  of 
the p i lo t s .  The a l t i t u d e  and ch number t races  show that the pilot 
maintained a reasorutbly steady rate of descent and good ainspeed control. 
The normal acceleration environmdtnt at  the p i lo t ' s  s ta t ion  is f a i r l y  
severe, with occasional load factor  excureions greater than 2 g and less 
than zero g. The p i l o t  i n  t h i s  run used re l a t ive ly  law control forces 
during the simutated turbulence penetration. 
run In which the p i l o t  experienced flight path con$rol d i f f i c u l t i e s  is 
shown in p"igure 1%. Although the airplane did not seaalerate  beyond 

An example of s simulator 
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0,84 Mach nu&er and in to  the tuck region, two momentary stalls were 
induced when the p i l o t  attempted t o  arrest undesirably high rates of 
descent and s tab i l ize  at an a l t i t ude  of 33,000 feet. 
the results i n  Figure 10, f a i r l y  large control column forces were used 
by the p i l o t  during the f l ight  path osc i l la t ions ,  

Shown i n  Figure 12 are the tine h is tor ies  from a simulator run i n  
which initial divergences in speed and a l t i t ude  occurred due t o  a low 
frequency downward gust. 

the divergence , 
column gul l  force of only about 15 pound.8. 
counter8cting t h e  eeriousness~ of the  s i tua t ion  allowed the aircraf't t o  
accelerate in to  t h e  transonic speed region where elevator control 
effectiveness was reduced. 
response which could be considkred the i n i t i a l  ph86e of a large a l t i t ude  
loss upset. 

In comparison wi th  

The p i l o t  first allowed the  speed t o  increase 
ch naumber 0.84 where the tuck mode au 

n ibiled to arraut a further 
The delay i n  recognizing and 

This simulator run produced a f l i g h t  path 

3.4 n i g h t  Teats of Upset-Recovery Maneuvers 

Since the siunilation program demonstrated tha t  it was possible t o  
achieve both the osc i l la tory  and pure divergent Initial phases of j e t  
upsets slmilar t o  those experienced in airline operatione, one of the 
primary bbjectives of the NASA fl ight tests was t o  evaluate upset recovery 
techniques. 
accidents revealed that the s t ab i l i ze r  waa et o r  near the a i r c r a f t  nose 
down limit at impact, a s ignif icant  part of t h e  f l ight  program was 
devoted t o  invest igat ing the longitudinal control character is t ics  with 
t h i s  trim setting and the  p i lo t s '  a b i l i t y  t o  recover from an upset using 
elevator alone, elevator plus stabilizer r e t r M g ,  and elevator plus 
deploymrtnt of spoi lers  , , 

Because,the lnveetigstions of several turbulence-associated 

Figure 13 shows t h e  h i s to r i e s  of pertinent parameters during a 
controlled upset i n i t i a t e d  by a stabilizer runaway t o  the full a i r c r a f t  nose 
down posit ion and a recovery using elevator and s t ab i l i ze r  retrim. 
indicated by'the normal acceleration trace, the airplane went from leve l  
f l ight t o  approximately -0.2g when the s t ab i l i ze r  reached i ts  l i m i t .  
t h ro t t l e s  were reduced t o  idle at overspeed warning, and recovery with 
elevator only was initiated one second l a t e r ,  
recovery elevator deflection available was obtained and a normal 
acceleration of l.3g existed,  
between 18 an8 20 seconds indicate a loss in elevator effectiveness as the  
Mach nurnber increases in t h i s  time lncreolent, since the elevator remained 
eeaentially eonstant while the acceleratlon decreased from approximately 
l.3g t o  1.Og. Although there is no apparent reduction in the rate of 
descent while the  elevator only recovery w8e attempted, after the 
stabilizer MPI returned t o  its original tr im position, the normal 
acceleration increased rapidly and 8 level-f l ight  condition was Boon 
achieved 

As 

The 

A t  time 18 seconds the  fuLl 

The elevator and acceleration traces 
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A similar maneuver is shown in  Figure 14, but i n  t h i s  case the final 
recovery WBs accomplished by deflecting the spoi le rs  with t he  stabilizer 
remaining i n  i t s  f u l l  nose down position. Again i$ can be seen that the 
elevator effectiveness was reduced a t  the higher Mach numbers, i n  t h i s  
case i n  the t ime period between 15 and 19.5 seconds when the load factor  
decreased from 1.Sg t o  1,lg with constant elevator deflection, Although 
the spoi le r  handU was moved t o  the f u l l  600 position, only  360 of spoiler 
deflection were obtained because of' t he  blowdown air loads at  high aynSmic 
pressure. However, t h i s  much spoi ler ,  i n  congunction with the elevator,  
was adequate t o  achievrs conplat 

There were no problems i n  recoveries wi th  e levator  only when t h e  
s t ab i l i ze r  remained i n  the level f3ight trim s e t t i n g  during the  f l i g h t  
upset maneuvers, 
airplane supplemental recovery control i n  addition t o  the current maximum 
elevator deflections availrable is needed fo r  rapid upsec recover%s i f  the 
stabilizer remains mistrimrmed &wing the upset. 

I$ is apparent, however, that f o r  t h i s  par t icular  

4. coNcLusIoI?s 
The NASA intercenter research program showed t h a t  the following 

considerations could contribute t o  the je t  t ranspart  upset and recovery 
problem: the low Dutch-roll damping with yaw damper inoperative could 
increase the p i l o t s '  work load in turbulence and detract  from the 
longitudinal control task, which is aggravated by reduced s t i c k  force 
per g gradients a t  low and high load factors t o  the extent of possibly 
amplifying an incipient upset; the  f lexible  airplane's response t o  
turbulence produces increase3 cockpit accelerations i n  the 4 t o  5 cps 
region which ere further amplified at t he  p i l o t s '  head when a conventional 
seat cushion i s  use&, thus presenting an environment detrimental t o  crew 
tolerance and instrument reading performance; inadequate use of pi tch 
a t t i t ude  displayed information and over-concentration on airspeed control 
can induce large f l ight  path osc i l la t ions  in severe turbulence, and a 
mistrim condition in conjunction with delay in rapidly counteracting 
airspeed buildup w i t h  the Mach trim compensator inoperative can produce the 
i n i t i a l  divergence of  an upset; and finally, reduced elevator control 
power at higher Mach nunibera can retard elemtor-only upset recoveries 
with a c r i t i c a l l y  dstrSmmad fjttAbil.izer* 
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Fig. 8 View of cockpit in te r ior  
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