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ABSTRACT

Since Newton, the stumbling block in celestial mechan-
ics has been the three-body problem. Only restricted cases
have yielded solutions. This paper describes a device, the
"Lie-Series," that first appearedinLie's work on analytical
transformations; Gr6bner has shown that they can be used
to solve systems of differential equations by applying dif-
ferential operators to known functions or to invert systems
of analytical functions. The series are applied to Kepler's
problem of an undisturbed planet round the sun (two-body
problem), to the study of perturbations, and to the process
of obtaining the characteristics for any general dynamical
problem.
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ON THE APPLICATION OF LIE-SERIES
TO THE PROBLEMS OF CELESTIAL MECHANICS*

by
Karl Stumpif
Goddard Space Flight Center

DEFINITION AND PROPERTIES OF LIE-SERIES

The main problem of celestial mechanics is the study of the motions in space of n mass
points that attract one another according to Newton's law of gravitation. This problem can be
solved for n =2, but for n > 3 no general solutions exist that are valid for any values of the
masses, initial conditions, and range of time. Since Newton, many attempts have been made to
construct solutions for special cases, for instance, the solar system or the sun, earth, and moon
system. The difficulty of solving the n-body problem justifies introducing any new mathematical
method that gives deeper insight and facilitates solution.

Recently, a new method has been proposed by Wolfgang Griobner (Reference 1). He uses the
"Lie-Series'" in solving a restricted class of differential equations. It is not yet clear that this
new method is better than others; it has not been sufficiently used. But it is worthwhile to give a
summary of the technique. The Lie-Series were originated by the celebrated Norwegian mathema-
tician Sophus Lie, but they appear only incidentally in his works on analytical transformations.
Their usefulness in solving problems like those of celestial mechanics was ascertained by Profes-

sor Grobner.

Suppose that
(:"(z) = 5‘i (ZI’ 22,...,zn)

are n functions of the n complex variables z,, and are holomorphic (i.e., can be developed into
regular and convergent power series) within a certain neighborhood G around the position

*This paper originates from lectures given at the Goddard Space Flight Center, Laboratory for Theoretical Studies, in February and
March, 1967.



Define the operator D as

R E N H PR I )
D = (2) By, *9y(2) Ty b T T (D) Ty

This operator can be applied to any function f(z) that is holomorphic in G. Applying this operator
repeatedly on f(z) gives

[

D2f = D(Df). D3f = D(D2f) .

and so on. Define a Lie-Series as

L(z,t) -~ Z %!‘D”f(z) = [1 T tD+%‘D2 + ] f(z) , (2)

v=0

and write it symbolically

L = e'lif(2)

This series is holomorphic in the region G and converges for all values of |t¢| smaller than a
certain positive number T. The proof is left to the mathematicians. We shall assume that there
is always a positive radius of convergence, no matter how small.

The fundamental properties of the Lie-Series can be derived from the algebraic behavior of
the operator D. It is enough to write down the principal aspects of the algebra. The following rules
can easily be demonstrated:

D[f, (z) * f,(z)] = Df, (z) % Df,(z) ,
D[c f (2)] = ¢Df(z) ,
Dc = 0.

D[f(z) - £, (2)] f,Df,(2) + f,Df, (2) .

Doff, (2)" f,(2)} = Z(Q)D“ f,(2) D"7% f, (2)
2=0

From these, rules for the Lie-Series can be generated, for instance:
e‘D[clfl(z) SRR cnfn(z)] = cle‘D f(z)s - +c ePf (2)

e'Pf (2) - f,(2) o0 f(2) = [e®f,(2)] « [ePfy(2)] - [ePF (2)]



These two relations illustrate the following remarkable theorem:

"The Lie-Series of a sum or a product of different functions is equal to the sum or the
product of the Lie-Series of the components."

This statement generalizes to the important rule
e‘DP(fl, fo, v fn) = P(ethl. etD fa, .0 etP fn) ,

i.e. the Lie-Series of a polynomial P is equal to the polynomial of the Lie-Series. This law is also
valid for any analytical function of the 2z, . If we let z stand for z,, z,, ..., z, and F(z) for
F(zy, 23 «-., 2,), We may write

etDF(z) = F(etDz) or e‘DF[f(z)] = F[e':D f(z)] H (3)

i.e., the symbol e *® and the function symbol F can be interchanged. This '"rule of interchanging’
is one of the most useful features of Lie-Series. The proof follows from the assumed uniform
convergence of the Lie-Series within the region of their validity. Consider the simple exampie
where z is a single complex variable (the operator D = d/dz). Then

Dz = 1, Dz = 0 for n = 2, 3, ...

and

etPz = (1 +th)z = z +t

The rule of interchanging gives
F(etD z) = e'DF(z)

or
@
t!l
F(z +t) = E STF*) (z)
v=0

i.e., the well known Taylor series, which may be considered as a special Lie-Series. It is easy to
extend these considerations to functions of several variables,

The above simple application of the rule of interchanging shows that Lie-Series can demonstrate
certain analytical properties in a very direct manner. This is still true when solving systems of
first-order differential equations.

Consider the equations

i =1, 2,...,n ,
dz; 1

e O T TR




The functions ¢,(z) are holomorphic in a certain region G, and do not explicitly contain the
independent variable t. Such a system is called "autonomous." (Non-autonomous systems can
easily be reduced to autonomous ones, so that restriction to autonomous systems is not essential.)
To solve the system in Equation (4) let the differential operator D be

e _9_ 9
D = el(g)agl + ez(g)acz 4oeee 4 Hn(é)agn ,

where

@ = (L L - L)

is a position in the region G that provisionally may be considered as variable but independent

of the time. Then

z, = ¢, (L, t) = e'Py, (i = 1,2, ..., n)

1

are n holomorphic functions of time t and of position { which, for t = 0, take the values
(Zi)t=0 = ¢, (L, 0) = ¢,

Differentiating =z, with respect to time gives

according to the rule of interchanging. But because

DC; = Ql(é) 5
therefore,
dzi
dt T o) = () = 6,(2) |
i.e. the functions
z; = ePY (5)

are solutions of Equations 4, with the initial conditions z,(0) = {,. The {, are to be considered
as variables during the application of the operator D, but after having performed all partial



differentiations connected with this application they must be replaced by the constant values ¢,
prescribed by the initial conditions of the problem.

I the system of differential equations is not autonomous, then

dzi
dt - fi(z.t)

where the functions 6, are holomorphic in a certain region G of the complex variables z,, Zyseens
z_, t. Now introduce, only by a change of notation, the new variable z, = t, which is the solution
of the equation dz,/dt = 1, with the initial condition (zo)t=6: 0 . This allows the nonautonomous
system of n equations to be replaced by the autonomous system of n+1 equations

dz.

1

& = 6,(z) . (i.= 0, 1,2 ..., n)

with 6,(z) = 1. This system can be solved using the differential operator
2 . 2
D = ago + ? (91({,) agi
i=1

in the same manner as before.

The Lie-Series is applied here to a simple problem. Let A be the time, or another independent
variable replacing the time, and let z(\) be a real or complex function of A. Then, if o2 is a
positive constant,

" 2. - , - dz
z" + a%z = 0, z = an (6)

is the differential equation of a harmonic oscillation with the period 2r/a. This problem can be
solved directly by classical methods; however, we shall here use Lie-Series. The second-order
differential equation is replaced by a system of two first-order differential equations:

dz _ _
an ~ Yy T 6;(z,¥) .

dy
dn

n
N

-a‘z = 52 (z,y)




We let (I, ) be a certain position in the (z, y)-space, and use the operator

Solving Equation 6, with the initial conditions
Wy = 1. v = (B < a
for » = 0, gives
z = ey = {1 +>\D+%D2 + ] z

It is easy to apply the operator on {, as in this case D has a simple linear form. Indeed, we get

ft

D¢ 7
D% = Dnp = -a?(,
D3§, = _a2Dg = _(1277 ,
and generally
D2n§ = ("1)" a2n§ , D2n+1 C = (..1)n a2n_r)
Therefore, the solution z is given by
A2 A3 A4
z = [ +An-ora¥ -3ram+graetl o+ o
A2a2? Aia? A3a? ASat
) !(1 “Tar tTar o ) +77( T3t TEr O )
or
_ n .
z = lcosaX +Zsinak (7)
with the initial conditions’
dz
z(0) = ¢, <_d_}‘->o = 7 . (8)

This is the well-known general solution of Equation 6,

- 6



Suppose that the general solution of a system of differential equations

dz.

1

& T 4 (@)

. 2
D = Zl el(g) Béi

and

the {, Dbeing the coordinates of a certain point of the region G, in which the functions 6,(z) are
holomorphic. Then every analytical function F(z) of the solutions z, is holomorphic in G, and
may be written as a Lie-Series

F(z) = e'PF(y) = Z z_!D”[F(Q)]

v=0

This means that we can formally write down the development of any function F(z) without having
explicitly calculated the solutions z, . Among these functions F, there are some for which

DF({) = 0 .

These are called '"characteristics’ or "integrals' of the problem. Indeed, if F is a characteristic,
then

F(z) = e'®F({) = F()
i.e., F(z) is constant on every trajectory z = z(t) which solves the problem. The last section of

this paper discusses methods of constructing all the characteristics of a given system of differential
equations.

APPLICATION TO KEPLER'S PROBLEM

The preceding section presented symbolically the general solution of a system of first-order
differential equations with the aid of Lie-Series. Suppose that the equations are of the form

dt - Bi(z) = Hi(zl. z2,...,zn) , i =1, 2, ..., n ,




the z; being complex or real coordinates, and the 6, being functions that are holomorphic within
a neighborhood G around a certain position ({) = (51 s Loseoes gn). The solutions of this system
can be expressed by the Lie-Series

where

) 9
D = 6,03t 6D B

is an operator, and z, (t,) = {, are the initial conditions. All operations refer to [ as a variable,
but afterwards { must be replaced by its constant value (= z(t,).

We may use this method to solve Kepler's problem of the undisturbed motion of a planet
around the sun. The heliocentric rectangular coordinates of the planet being x,, x,, x,, the
differential equations of the problem are

®

if the units are canonic, i.e., if they are determined so that the gravitational constant k¥ = 1, and

the sum of the masses Mtm = 1. These equations may be written as a system of the first-order

equations:
X, = u, ,
X
= - . 10
4, . (10)
If the initial conditions for t = t, are
(xi)o = &> (We = ™
the differential operator will be
= s i s € 2 ~ >
b = 7 Bgl ,03 3771 ) L = zfl )



Carrying out the partial differentiations involved in the first of these formulas (the second is not

P T s — e [ I . T

absolutely needed) gives the well-known development of the undisturbed planetary coordinates in
a power series of intermediate time 7 = t - t,. Unfortunately, this development is useful only
for small intermediate times. For large 7, higher-order terms in the series are needed, the
expressions for the coefficients of v become complicated for large n, and the convergence of
the series is poor. However, if we introduce independent variable A, where

a1 (11)

dr r

the operator D becomes linear. The resulting solutions converge for all values of \ and may be
written in closed form. Indeed, with pseudo-time A as independent parameter (x’' = dx/d\),
Equations 9 change into linear ones, x," + a?x, = 8, = const., a? = 1/a = const., a being the
major semiaxis of a conic section; and, instead of Equation 10,

X, T ou;, o,

' = - .2
u, a“x, + B,

Another interesting method (Reference 2) of solving this problem makes use of the Levi-Civita
transformation of the plane (xl , xz) -coordinates,

X, = £2-&7 X, T 216, o
which leads to the equations
§'i’ +cu2§.l = 0, w? = 4a =~ const.
that are identical with Equation 6, and have the general solutions given in Equation 7,

i
& = L cos wh t T sina\

w

with the initial conditions of Equation 8:

f,(o) = Ci ! é:(o) = 7)1




Kepler's problem of the undisturbed motion of two bodies in a heliocentric system requires
six integrals. The integral constants are the six elements of the orbit

a, e, T; 1, Q, w .

The first three of these are independent of the choice of coordinate system; the last three
are not. The first three are essential, as they determine the shape and the spatial extension of
the orbit and its relation to the current of time. The last three, however, are merely directions
for imbedding the orbit into an arbitrary given system of reference. Therefore to solve Kepler's
problem it is sufficient to reduce the system of differential equations to one of the third order,
using only variables that are independent of the system of coordinates. For instance, we may
solve equation given on page 201 of Reference 3:

tr
r

T
T+ 3 +—=5 = 0
r

for the radius vector r, provided that for = = t-t, = 0 the initial conditions r(0), i(0), 7(0) are
given. When the pseudo-time A is introduced, the differential equation takes the linear form

w 2_1¢ - -
r + a‘r = 0, a = . = 3 = const.

which has the well-known solution

r = a+bcosalh + ¢ sinaA , (12)

a, b, c being constants depending on r,, #,, ¥,. To obtain this solution by using Lie-Series,
replace the one third-order differential equation by first-order equations. For instance, by the

system
' = @(r, )
¢' = Y(r. b Y)
' = -ad?e




where r,, ¢, ¢, 7, are the values of r, ¢, ¢, 7 for A=0, gives the general solutions

r = e}\Dro , ¢ = e}\.Dqso , \l’ = e>\'Dlllo s T = e)\DTo

It is sufficient here to consider the first and the last of these formulas. Considering the first, we
have

-
I

A2
(1 +>\D+7!'D2 + ) Ty

Dry = &y = rg
Dz"o = Dby T gy T oty
D3r0 = Dy, = —a2<f>0 = -a?r ,
and generally, for n > 1,
D2n ry = (_a)n'l rg , p2n-1 r, = (_a>n‘1 1‘6 . (13)
Therefore,
A2 A3 A4
r = g+ Arg tgrrg —gra’ry mgratrg +oe
A A8 NS ST S
T org trg\M 3T @’ tgra’ - cro) g\ pT mgTe’ tgrat Tt
or
ry ry
r T 1y t— sinak +a._2 (1 - cosalr) ,

which is Equation 12 in another form. If we introduce the c -functions

B _ sinaA _ 1 - cosal aA-sinalX
cy = cos al , c, T T ax c, = 4——(0.)\)2 ,- cy ——(ak)e' s e

we may write the solution for r in the elegant form

] " 2
r = rgtrgce A trgcyA




In a similar way, we derive the connection between time + and pseudo-time X by solving the
differential equation

dr
a. - r
by the Lie-Series
T = eXDTo
As 7, = 0,
Dry = rq4 D2'ro = Dry, ..., D7y = D""lr0 ,

Using Equation 13 for the operation of D> on r gives

T T rgh 4 r,i,c,z}\2 + rgc3>\3 ,

the "main equation" of Kepler's problem, which is equivalent to Kepler's equation

n(t-T) = E-esinE

Trying to solve Kepler's equation has fascinated generations of astronomers and mathemati-

cians. Countless methods have been used, especially to overcome the difficulties when orbit
eccentricity e approaches 1 (the parabolic case.) Today, interest in this problem has notably
decreased because the main equation (the regularized form of Kepler's equation) avoids these
difficulties and is applicable to orbits of all eccentricities without singularities.

Solving either Kepler's equation or the main equation may be considered an example of
inverting analytical functions. We have equations of the form

® = t-T = f(E) (Kepler’'s equation) ,

T T t -ty = g(A) (Main equation) ,

and the problem is to find the reverse relations

E = F(®), A= G(T)




This inversion is possible under the following general conditions. Given a system of analytical
functions

¥ = ¢i(x) = 451()(1, x2,'...,xn) »

where the functions ¢, are holomorphic in the environment of a position

M T b)) T B (€4, e E)

and the Jacobian matrix

P - () - ()

is different from zero at the position ¢, then the system of functions is reversible; i.e., there
exists the solution

x; = (I)i(y) = ¢i(ylv'Y27 e yn) »

with the inverse Jacobian matrix

JTU o= (e,,) = <2§k)

The Lie-Series are helpful in solving this problem. Indeed, the x, as functions of the y; must
satisfy the system of partial differential equations

Bxi
e P (%)
with the initial conditions
X5 = §1 for Y = 771 !

and it can easily be shown that it is possible to write the solution of this problem in the form of
Lie-Series.

For simplicity and with special attention to the problem of solving Kepler's equation, we shall
consider here only the case of one function i

y = f(x); y = nm for x = £




We can solve for the inverted function

x = Hy) .
provided that 3y/ox 7 0 for x = £. In this case, we can write
dy

I - fx) T ()

as a common differential equation, the non-singular inverse is

dx  _ 1
dy - f'(x) -
provided £'(¢) # 0.
Then by Lie-Series, with
1 d
D = f'(f)d_’ x = e<y_77)D§

is the solution of Equation 14 with the prescribed initial conditions.

Apply this rule to Kepler's equation

y = x - esinx

Then y’' = 1 - e cosx is different from zero for x = 0 and e < 1, and

_ 1 d
D = T=¢cos¢ dg -
... Applying this operator repeatedly to ¢, we obtain
R S
Df = T -¢ cos £
_ esiné ,
DX = - (1-e cosé)3
D3 = - ecosé& . 3e?sin? £

(1-e cos &)* (1-e cos &£)S

(14)

Tl



Therefore,

1 1
X = £+ (y-m)DE +51(y-m)?D% + 3T (y - )3 D¢ +

and, for ¢ = g

1
(=4
~

e

_ y
(-t "’

3
X T T-e 737

e

This is indeed one of the simplest special series solving Kepler's equation.

It is interesting to apply this method to the main equation

T T roh f récz)\2+rgc3)\3.
If
p - L2 13
’7'6 L Ty OX,
denotes the solving operator, then
72
A= e, =11+ 7D +—2—!—D2+ el A,
and
g = O
_ 1
Dy = 1
1 1 r ’ r 1
0 0
D2>\. = p— = —/— |- — = -
0 To Ty < ro2> 1.03 ’
3 Ty 1{ro" 3"’02
Drg = =Dl = “F,l73 -~ =)
To 1} Ty Ty
Therefore,
’ u 3’2
NSy LA
T, 21! "03 3! l_04, ro5 ’




and multiplying A by r,/r gives
L= ,1_0' 1 _0 ?ﬁ\ .
z 1 21! r, 2 3! \r r04/ +

When these considerations are extended to systems of several functions of several variables,
the process of inversion is complicated as we are dealing with partial differential equations.
Without going into details, note that this problem requires, not one operator D but n operators,
such that

. a . —
E Bija—fi—, i = L2 ..., n
i=1

and these operators must fulfill the conditions of reversibility

which correspbnd to the conditions of compatibility,

32x, 32x,
1 1

3y, dy, Oy, dy; °

between second-order partial derivatives.

APPLICATION TO THE PROBLEM OF PERTURBATIONS

Lie-Series are helpful in symbolically representing the solution of any system of first-order
d1fferent1a.l.equat10ns. A theorem of Lagrange, applied to a more complicated problem, demon-
strates the- usefulness of Lie-Series.

Suppose that three bodies (for instance, the sun and two planets) are moving according to
Newton's law of gravitation. Let the masses be m;, m;, my, and let q,, q;, q; be the vectors
leading from m; to m;, mg; to m,;, m, to m; respectively, and

=l
o



N
5\

be the corresponding velocity vectors. This system of relative motions requires 12 integrals of
motion. Between the q's there exist the vector relations

q, *dz*+ds = 0, G, tdg t+dg = 0.

Therefore, only four independent vectors need be solved for, e.g., 4,, d,, d;, d,. Lagrange states
that this three-body problem is solved if we know, as functions of time, nine independent functions
of the q, that are invariant under coordinate transformations. This solution being achieved, the
remaining three integrals can be obtained directly or by simple quadratures. The problem of
finding the nine first integrals is called the ""reduced problem of three bodies" (see Reference 4,

or Chapter XII of Reference 5), If

Pix ~ (ai : ak) T oxx vy tziz

(the scalar products between any two of the six vectors g, inclusive of the cases i - k), it is
sufficient to solve for the nine independent quantities

Pi11> P33r Psss P12 P3as Psgs Paar Pagr Pgs (15)

as functions of the time. These quantities may be called "fundamental invariants" of the problem,
as they are independent of the system of coordinates and of one another, and form a symmetrically
builtup system. These nine quantities are solutions of the differential equations

1 1
- = = = -372
2Py T Piz2o rF‘l : 3 P11 '
1
Pia = Pay T HyPyp t Mpy with < Py T #yPyy t H3Py3 t KPPy (16)
1. _ -
2 P2 T T HPip t MPy P2 7 #1P21 t #3Pas T HgPas

and six others are obtained by cyclic permutation of the indices 1, 3, 5,and 2, 4;:6; respectively.
The invariants p, and p, (likewise p, and p,, ps, and p,) on the right=hand sides can be expressed
as functions of the fundamental invariants by a number of easily constructed relations between the
Py, (€.8., Py; * P13 * Pys = 0, P3yy * P3s t Py - 0, ete.). We could supplement this system of

nine differential equations by those for all the other possible p,, invariants. The total number

of different invariants is 21 (for N bodies there are N - (2N+1) p's). The system

dp;,

de T gik(pll' Pga» -+ Pse> Pee) = (P




may be solved by Lie-Series, if we use the operator

9

D = %4,, apik

the sum containing 21 expressions. The solutions can be written

= t—t D
Piy e o) ik

where 7, are the values of the p;,, for t = t,. In discussing Lagrange's theorem it is enough to
write down these developments for nine of the fundamental invariants (Equation 15) or for nine
independent functions of these invariants. The procedure may be improved by introducing a
pseudo-time s instead of t.

This method of developing the solutions of the reduced three-body problem does not seem to
have been attempted. Perhaps it is as intricate and cumbersome as any of the classical methods,
but the short and elegant symbolic form of the solution may be more tractable for computer pro-
gramming, as the right-hand sides of the differential equations are finite algebraic expressions of
the invariants themselves.

Another interesting, possible use for Lie~Series is in the case of slightly perturbed planetary
orbits. Then, as in classical celestial mechanics, we may divide the motion of a planet into two
parts: an intermediate orbit, (for instance, a Keplerian ellipse easily calculable with simple sub-
routines) and a perturbation term proportional to the small perturbing mass. The differential
operator that solves the problem may be written as the sum of two parts,

These two operators must fulfill some necessary conditions:

1. D, must be constituted so that the solutions

e("'t 0)D

L, ()

afe:-fsimplezand;well. known functions. This is always the case if D, represents the linear part of

D, for instance if D, is the operator of a Kepler motion osculating the true orbit, and if a linearizing

pseudo-time is used as independent variable.

2. D, must be small compared with D; i.e., the coefficients 6, of D, must be noticeably
smaller than those of D,, at least within a certain range of time. If these conditions are satisfied,




the problem can be solved by the Lie-Series

f(r) = LTI gy

2,
3
o
'h

When D=D, +D, i dered as variable, and set equal to f(t,) only after
all differentiations have been performed However, this exponentlal expression developed into a

power series of r = t-t, gives

s the

=)
pmds
:ﬂ
"4

onsi

. .
f| = r‘:‘l + T('D1 +'D2\ + (“1 +D2)2 + ] f"to‘) ;
and
(D1 + D2)2 expands to D12 + Db, + DD, + D22 , etc.

because, generally, D,D, # D,D,, i.e., the operators D, and D, do not commute, except under very
special conditions. Let us digress and consider briefly the commutation relations for the D's.

It can be shown that in the reduced three-body problem D, and D, do not commute. Write the
solutions of the three differential equations for p,,, p,,;, p,,, using the differential operator
D =D, + D, with

9 9 3
= — - -1/2) =2 _ -3/2
D, 2Py, p,, T (pzz P11 ) p,, 2py 2Py o9p,,
_ 3 2]
D, = m|py 3p, , +2p, 9Py, |

supposing that p,, p, are functions of p,;, p,,, Py, and known functions of the time (i.e., supposing
that the motion of the perturbing mass m, is known). Then, for instance,

Dipyy T 2Py, D,(Dpy,) = Dy(0) = 0,

Dppyy = O, DZ(Dlpll) = 2D,py, T 2mypy

therefore D,D, # D,D,

It is easy to derive the commutation conditions for any two operators D, and D,. Suppose there
are two operators

1 118z1+6123z2+”" b, = ¢




Then

The product of the two operators consists of two terms, one containing first-order partials and the
other containing only second-order partials. A simple calculation shows that, for the operator

the sum of the second-order terms is zero. Therefore (D,, D)) is a linear operator like D, and D,.

This operator has the symmetric form

(Dl’ DZ) = Z G)i
it1

2
Bzi >

where
. G,y b4
8, = 2 91k oz, = O 52k .

D, and D, commute only if (DpDz) , the "Jacobi bracket"”, is zero. The Jacobi brackets behave

like the bracket expressions of Lagrange and Poisson, which are well known in celestial mechanics.
The Jacobi brackets obey the rule

e Which is also valid for the brackets of Lagrange and Poisson.

Let us:return to the problem of perturbed motions. Let z = (z,,..., z,) be an n ~dimensional
vector descfibi;ylgzthe position of a system of bodies as a function of the time, and let { = ({;,...,,)
be the position att = 0. Then




b

will be the solution of the system of differential equations belonging to this problem. Developin
the exponential, we may write
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On the right side z must be replaced by ¢ when all operations are performed. The first sum,

contains all terms that depend on D, only and symbolize the intermediary orbit. The second term
contains D, only once and at the end. The third sum has p, at the last position but one, and in
certain terms at the last one too, and so on. This series is not in a convenient form, as the
perturbations of different order are not separated. On the contrary, there are parts of the per-
turbations of the first order in all sums except the first, and there are parts of the second~order
perturbations in all sums but the first and the second. The perturbations of different orders can
be obtained separately only by our totally changing the sequence of the terms; this is possible if
the series converges absolutely.

For simplicity, consider only the first-order perturbations. Select from each sum the terms
that contain D, only once; i.e., from the sum beginning with » = o take the partial sum

v

t
_ vea a=1
»1 D7D, Dy z

Then the perturbation terms of the first order are completely collected in the double sum

wen - 5 S - 5 S G seare - an

Each term of this expression contains D, only once, but in every possible position amongaiﬁ; _'""' :

factors D, . Similar considerations lead to the expressions f _(t,z) for the perturbatmns" g er
order. . 4,.{'# . erdll
i
o 21



Grobner proposes another method which gives the solutions

z(t) = [fo(t, z) + f,(¢r, z) + -] et

in the form of an integral equation of the Volterra type. We can rewrite the complete partial sum
of Equation 17:

o 2]
. t” Z t”** D’D,D*7! ¢
L - -1 = 172
2! Dlv aD2 Da' z - (V+a)!
v=0

by making use of the identity
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which can easily be proved by repeated integration by parts, in the form

@
‘ (t -7)*"t ¥ a1
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0

v=0

This is the partial sum with index «. Summing up all these expressions and changing the index «
into a« + 1 gives the total expression for the solution z(t),

t
2(t) = f(t,z),., = fo(t.z),., +J’ (t'” <Z;D D, D* z> dr .
0

z={

- Now we may write in the inner sum,
2 v
T TD
2 DI !
v=0

and, according to the rule of interchanging,
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Therefore,
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and finally

t
zZ(t) = fo(t, Z)z=L + J. D,f(t -7, Z)z:fo dv
0

This integral equation can be solved by iteration; this process will rapidly converge if D, is small
enough, The first steps of the iteration will be

_ £ _ [
zg % 0(t,z)z=§ = e Zo,=1,

t
z, fo t Jﬂ Dyf (t -7, z),-, dr
0 0

and one can easily prove that the integral on the right side of the second equation is identical with
the double sum in Equation 18 derived for the first-order perturbations.

APPLICATION TO THE CONSTRUCTION OF THE CHARACTERISTICS OF
DYNAMICAL PROCESSES

Three previous sections applied Lie-Series to some problems of celestial mechanics: the
two-body problem, the reduced three-body problem, and the special problem of computing general
perturbations.

Is this new method of solving dynamical problems an improvement? That depends on our point
of view. The development of solutions in terms of power series is scarcely changed by the innova-
tion. But the Lie-Series give short, pregnant solutions for any dynamical process—an obvious
advantage. The Lie operators have a universal form that encompasses nearly all the types of
linear operators used in former theories. The very interesting properties of the Lie-Series,
especially the important rule of interchanging (Equation 3), allow the expressions for the solutions
of dynamical problems to be reduced to simple and most lucid forms. This is helpful, especially
in developing series for computer programming.

This section discusses a method to obtaiin the integrals of motion of a dynamical process.
Consider a concrete case: the reduced problem of two bodies. This involves three integrals—in
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other words, three independent constant functions, which may or may not contain the time explicitly.
In the reduced problems, the integrals are invariants with respect to coordinate transformations.

If x,, v, and z, are the heliocentric coordinates of a planet, and x, = x,, y, = y,, z, = z,
the coordinates of the velocity, then the reduced problem of two bodies will be solved when three
fundamental invariants are found (as functions of time):

- 2 5,2 . 2 - 2

P11 X TY T r

Pia = Xy%Xy Ty vy, v z;z, = r1Vcos .
- 2 2 2 - 2

Paa = X5 tyy tozy v

where r is the distance from sun to planet, v is the magnitude of the relative velocity, and ¢ is
the angle between the vectors of position and velocity. These invariants are the solutions of
Equations 16 (with », = p, 73/2, and m, = o):

bxl = 24, .

. _ -1 2
Pia = Paz 7 Py

. - ~3°2
Paz T T 2p,py,

The integrals of this problem are

1

= - ?.p”—1 2 - P,, (the integral of energy) .,

a(l-e?) = p,;p,,~P,5 (the integral of areas)

T = t-ad 2(E-csinE) = f(t, a. e)(Kepler's equation).

These integrals provide three arbitrary constants a, e, and T. The {first two integrals describe
the geometrical form of the heliocentric orbit of the planet; the last integral describes the planet's
motion in this orbit. The first two integrals show that certain functions of the variables p,, are
true time-independent constants, denoted as "'characteristics' of the problem. In the reduced two-~
body problem the characteristics are finite algebraic functions of the variables. The third integral
behaves quite differently. This constant expression contains the time explicitly and involves the
time-dependent function £, usually denoted as the "eccentric anomaly". This is a very simple
case, showing that among the three integrals of the problem there are two characteristic functions.
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Generally we can prove that among the n integrals of an n-order problem there are exactly n-1
independent characteristics, i.e., n-1 independent functions of the variables that are constant along
each special solution of the problem and do not contain time explicitly.

The proof that an n-order problem has n-1 characteristics at most, is easy. Let
_ d 3
D= 0(2) %z 7t O g

be the Lie-operator of the problem, and let F(z) be a characteristic function; then DF(z) = 0.
HFi(z),...,F (2) are r different characteristics, each analytic function G(Fl’ Fpy.eey F) isa
characteristic also, as

-6 e 6 _
DG = oF DF, + --- +3F DF. = 0

As each characteristic F,(z) is a function of the n variables z,, z,,..., z_of the problem, it is
clear that no more than n independent characteristics exist. Indeed, if there were n+1 functions
F, of the n variables z,, there would exist a relation G(F1 s Foy eaes Fnﬂ) = 0. Actually, there
are no more than n-1 independent characteristics. Assume that there are n characteristic
functions

w

. - F‘(z) v, W T F“(z)

If these functions are independent, the Jacobian matrix
Bwi
J = sz

must be regular. Therefore, it must be possible to invert the equations and obtain

z, = Pw) ..,z T (W)
But the functions ¢, (w,, ... ,wn) are characteristics, as shown above, and therefore
Dz, = ¢ (z) = O

i.e., the problem restricts itself to the trivial case

which can be excluded.
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Finally, we must prove that n-1 independent characteristics really exist. Let us assume that
the solutions of a system of n differential equations

z; = n(2)
are
z, -~ (e‘DZ.)ft oE(E D)

Then, eliminating + from any two of these equations gives a characteristic. The inverse function
of any analytic function

y = Hx)

in the environment of a position » = ¢(£), where ¢'(x) # 0, may be expressed by the Lie-Series
i _ (y=7m)D
x - (G x) x=&

if

_ 1 d
b - (%) dx

is an operator that is regular in the neighborhood of x = . If we apply this rule to any two solu-

tions of our problem

we obtain the reversal expressions

¢ - (O(Z,"-,)D;t> ¢ - (e(zk_!fk)nk t>:=7 ) (19)

t=7 °

with the operators

b = 7 ac- D I dt

which are regular in any region around t = = where the derivatives of # and £, do not vanish. The
difference between these two expressions for t gives an equation
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problem, as it is valid along each solution. Combining thus the first solution with the other n-1
solutions gives n-1 independent characteristics

Yy (210 25 ) = O, k = 2, 3,...,n . (20)

Besides the n-1 characteristics in Equation 20, there exists one independent relation (Equation 19)
that gives t as a function of the particular z;. ;. e.g.,

¢ = (e(z]_;l)Dl t)

t=T

This equation, t = f(z1 5 Lys «e» 5 L), plays the same role in the general problem as Kepler's
equation does in the two-body problem. In this case, z, takes a favored position but can obviously

be replaced by any other of the z_.

The above device for constructing the characteristics of a dynamical problem does not quite
satisfy our expectations, as each of the cases of Equation 20 contains only two of the n variables
z, and more or less of the constants {;. (Pertinent to this question there is an unpublished remark
made in 1950 by K. Stumpff.)

Let ¢, ... {_ = [ be the position of a vector z, ...z = z(t) at t = t,. Then, 7=t - tg,

where z, and its derivatives are taken at time t,. If z, is different from zero,

z, =L, B iTz z. .3 B
ii = T .1—2 +_ii 6 "~ = ¢.‘(’T, zl,..‘,zn)

i T

as the derivatives z, (°’ are functions of the z themselves, and may be derived from the differential
equations z, = 0,(z). Reversing these equations gives, as before, n equations

T = f (Z’ éi)
Suppose that one of the ¢, (fpr instance () is zero. Then

T = f.(2)

is a function of the variables z only. Substituting f for + the equations for f,, f,, ..., f _,
gives n-1 equations

fi(z, Li) = f (z) ,




from which

&, T ¢,(z) = const. , i = 1,2, ..., n-1 ,

i

by inversion, provided that the position ¢ is so chosen that in a certain surrounding region G the

z , are not zero. These equations, which can easily be expressed by Lie~Series, are the charac-
teristics in a convenient form, and they describe the geometrical feature of the trajectories. These
n-1 constants are supplemented by the main equation - = f .(z), which expresses the connection
between the variables z and the time,
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