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FOREWORD

The present report is one of a series of six reports, published simul-
taneously, which describe analyses and computational procedures for: 1) pre-
diction of the in-depth response of charring ablation materials, based on one-
dimensional thermal streamtubes of arbitrary cross-section and considering
general surface chemical and energy balances, and 2) nonsimilar solution of
chemically reacting laminar boundary layers, with an approximate formulation
for unequal diffusion and thermal diffusion coefficients for all species and
with a general approach to the thermochemical solution of mixed equilibrium-
nonequilibrium, homogeneous or heterogeneous systems. Part I serves as a
summary report and describes a procedure for coupling the charring ablator
and boundary layer routines., The charring ablator procedure is described in
Part II, whereas the fluid-mechanical aspects of the boundary layer and the
boundary-layer solution procedure are treated in Part III. The approximations
for multicomponent transport properties and the chemical state models are
described in Parts IV and V, respectively. Finally, in Part VI an analysis ¢
is presented for the in-depth response of charring materials taking into ac-
count char-density buildup near the surface due to coking reactions in depth.

The titles in the series are:

Part I Summary Report: An Analysis of the Coupled Chemically Reacting
Boundary Layer and Charring Ablator, by R. M. Kendall, E. P.
Bartlett, R. A. Rindal, and C. B. Mover.

Part II Finite Difference Solution for the In-depth Response of Charring
Materials Considering Surface Chemical and Energy Balances, by
C. B. Moyer and R. A. Rindal.

Part III Nonsimilar Solution of the Multicomponent Laminar Boundary Layer
by an Integral Matrix Method, by E. P. Bartlett and R. M. Kendall.

Part IV A Unified Approximation for Mixture Transport Properties for Multi-
component Boundary-Layer Applications, by E. P. Bartlett, R. M.
Kendall, and R. A. Rindal.

Part V A General Approach to the Thermochemical Solution of Mixed Equilib-
rium-Nonequilibrium, Homogeneous or Heterogeneous Systems, by
R. M. Kendall.

Part VI An Approach for Characterizing Charring Ablator Response with In-
depth Coking Reactions, by R. A. Rindal.

This effort was conducted for the Structures and Mechanics Division of
the Manned Spacecraft Center, National Aeronautics and Space Administration
under Contract No. NAS9-4599 to Vidya Division of Itek Corporation with Mr.
Donald M. Curry and Mr. George Strouhal as the NASA Technical Monitors. The
work was initiated by the present authors while at vidya and was completed
by Aerotherm Corporation under subcontract to Vidya (P.0. 8471 v9002) after
Aerotherm purchased the physical assets of the vidya Thermodynamics Depart-
ment. Dr. Robert M. Kendall of Aerotherm was the Program Manager and Prin-

cipal Investigator.
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ABSTRACT

Self-consistent approximations for binary diffusion coefficients, multi-
component thermal diffusion coefficients and mixture viscosity and thermal
conductivity are presented which greatly simplify the solution of multicom-
ponent laminar boundary-layer problems. The basic premise of the approach is
a bifurcation of binary diffusion coefficients, ﬁij = B/FiFj , where D is
a reference diffusion coefficient and F, is a diffusion factor for species
i . This expression is exact for binary or ternary systems but is approximate
for larger systems since v(v - 1)/2 ﬁij are replaced by v Fo where v is
the number of species. The Fi are determined by a least-squares correlation
of actual diffusion coefficient data. The adequacy of the correlation is

demonstrated for a number of chemical systems.

The primary utility of the bifurcation approximation in multicomponent
boundary-layer applications is that it enables explicit solution of the
Stefan-Maxwell relations for the diffusive mass fluxes, ji . Use of these
relations, in turn, permits the Shvab-Zeldovich transformation of the species
conservation equations without introduction of the concentration-dependent
multicomponent diffusion coefficients, Dij . In addition, an approximation
to the modified Stefan-Maxwell relations provides the framework for the
rationalization of a film coefficient model for diffusional heat and mass

transfer.

The approximation for multicomponent thermal diffusion coefficients is
based upon generalization of a semi-empirical equation for correlating binary
thermal diffusion data. The basic hypothesis in this generalization to multi-
component systems is that the thermal diffusion of each species behaves as if
it were in a binary mixture of that species and a species representative of
the mixture as a whole. The result is algebraically very simple and enables
consideration of multicomponent thermal diffusion and diffusion thermo in large
complex systems with negligible additional effort when done in conjunction with
the approximate formulation for unequal binary diffusion coefficients. An
evaluation of the accuracy of the thermal diffusion approximation in multi-

component systems has not been attempted to date.

Finally, approximate relations for mixture viscosity and thermal conduc-
tivity of the Sutherland-Wassilijewa type are simplified by use of the

bifurcation approximation for binary diffusion coefficients.
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A UNIFIED APPROXIMATION FOR MIXTURE TRANSPORT
PROPERTIES FOR MULTICOMPONENT BOUNDARY-LAYER APPLICATIONS

SECTION 1
INTRODUCTION

Consideration of unequal diffusion and thermal diffusion coefficients
substantially complicates the solution of multicomponent laminar boundary-
layer problems when these transport properties are based on rigorous kinetic
theory. For this reason, diffusion coefficients have often been assumed equal
and thermal diffusion has been neglected in many situations where these approx-
imations can in fact produce substantial errors. A correlation for binary
diffusion coefficients, first considered by Bird} is utilized herein which
permits consideration of unequal diffusion coefficients for all species in a
relatively precise manner with little increase in algebraic complexity and
computational time relative to assumed equal diffusion coefficients. This
correlation also provides the framework for an approximation for multicomponent
thermal diffusion coefficients which permits thermal diffusion to be conven-
iently taken into consideration. The correlation for binary diffusion coef-
ficients is also employed to simplify Sutherland-Wassiljewaz—type approximate
expressions for mixture viscosity and thermal conductivity, thus completing
a unified theory for multicomponent boundary-layer transport properties. The
correlation for binary diffusion coefficients is described in Section 2. The
approximate relations for mixture viscosity, mixture thermal conductivity,
and multicomponent thermal diffusion coefficients are developed in Sections 3

through 5, respectively.

SECTION 2

A BIFURCATION APPROXIMATION FOR BINARY
DIFFUSION COEFFICIENTS

There have been few attempts to solve the multicomponent boundary-layer
equations for chemical systems involving large numbers of chemical species
while considering unequal diffusion coefficients for all species. The primary
hindering factor has been the complex interdependence of the mass diffusion
flux, ji' upon the species concentrations and concentration gradients. ‘An
approximation for binary diffusion coefficients is introduced herein which
permits substantial simplification of the expression for ji with attendant
simplification of multicomponent boundary-layer problems.



In the past the conventional approach has been to assume equal diffusion
coefficients for all species. When this is done, the diffusion mass flux of
species 1i, ji’ is related explicitly to its mass fraction gradient by Fick's
law

3K,

- - i
Ji = " Phia gy (1)

where ﬂlz is the binary diffusion coefficient for the system, p is the
density, and K, is the mass fraction of species i. This has merit for some
problems when it can be argued, for example, that all light species are dif-
fusing in the same direction. However, in general it is a poor approximation
and is justifiable only as a convenience. When unequal diffusion coefficients
have been taken into consideration, the number of chemical species has generally
been limited to a relatively small number. For example, Scala and Gilbert3
considered a nine-component model for the problem of graphite ablation in air.
A chemical system of this size does not allow consideration of trace species
(these can be important, for example, in radiative heating and reentry com-
munication problems). Furthermore, it is generally inadequate for more com—

plicated materials such as reinforced organics.

In the absence of diffusion due to pressure gradients and external forces,
the mass diffusion fluxes are given implicitly by the Stefan-Maxwell relations.

3 4n T . T|[3 4n T
axi _ xixj ( ) Ji + Dy 3y } 2)
oy pﬁij Ky
J
where X is the mole fraction of species i, T is the temperature, ﬁij is

T is the multi-

the binary diffusion coefficient for species i and j, and D,
component thermal diffusion coefficient for species i. Utilization of these
relations in conjunction with the boundary-layer conservation equations is
awkward even in the absence of thermal diffusion effects as a result of the
implicit behavior of ji on mole fractions and their gradients. An explicit
relation for the mass diffusion flux can be obtained by employing multicompo-

nent diffusion coefficients, Dij (see Ref. 2):

3.
. T3 £n T _ ﬁ_ ]
J; + Dy dy - E j 1] dy (3)

j#i



where mi and 7 are the molecular weights of species i and of the system,
Unfortunately, each of the (v -1l)v Dij depend upon logal concentrations and
upon (v - 1}v/2 symmetric binary diffusion coefficients, where v is the
total number of species being considered. Equation (3) has generally been
used in preference to Egq. (2) for multicomponent boundary-layer problems
(e.g., Refs. 3, 4 and 5).

The reason that the Stefan-Maxwell relations (Eq. (2)) cannot be arranged

into an explicit relationship for ji without introduction of the Dij is
that the contributions of species i and j to the binary diffusion coefficient

are inseparable. According to first-order kinetic theory, binary diffusion

coefficients are expressible a52
mi + M. %
2.6280 x 107° 1°/% |
= i3 2
ﬁij = - 20(1'1)* cm® /sec (4)
ij 'ij
where
T temperature, °K
mi,mj molecular weights of species i, j
P pressure in atmospheres
o . collision cross section for "rigid sphere" molecule i

o
interacting with j, A

*
Qig'l) integral expression which depends upon the particular inter-
molecular potential function which is utilized.

In Ref. 1, Bird showed that a bifurcation of the effects of species i
and j in Eq. (4) permits explicit solution of the Stefan-Maxwell relations
for 3j. in terms of gradients and properties of species i and of the system

i
as a whole. This approximation is utilized herein in the form

_ D
'Dij - F.F (5)

where D is a reference diffusion coefficient and Fi might be termed a
diffusion factor for species i. Equation (5) is exact for a ternary system
but approximate for larger systems, since (v - 1)}v/2 diffusion coefficients,
ﬁij’
looked upon as a correlation equation for actual binary diffusion coefficient

are replaced by v diffusion factors, F,. Equation (5) should be




data. This correlation can be obtained by various means. The present ap-

proach has been to first define

T(T/mref)!.i

2 qqh,1)*
PO ef ij'

D = 2.6280 x 1073 (cm® /sec) (6)

with T in °K, P in atmospheres, and o in g. {The subscript "ref" refers
to a reference species (often 02, but conceivably fictional). D is thus the
self-diffusion coefficient of that species.) The F, are then determined by
a least-squares correlation of the ﬁij for all diffusing pairs in the chemi-
cal system of interest. With this approach the pressure dependence and the
majority of the temperature dependence of ﬁij are absorbed into the D so
that the Fi are independent of pressure and have only a secondary tempera-
ture dependence. All species have been treated on an equal basis (i.e.,
without the use of any weighting factors). This has the decided advantage
that the Fi are then independent of concentration and can be determined

a priori for a given set of chemical species. The accuracies which have been
obtained using this procedure have been surprisingly good as will be shown

later.

The development of the explicit relation for ji from the Stefan-Maxwell
relations (Eq. (2)) is presented in Appendix A. The result can be expressed

as
T
P ar | op (M2 2% (B - Ky My 1 IFy aT
Ji T 3y Hy m Jdy M 3 ilpe aT Ha| 3y
1
(7)
where
2y = My /P, = MK /Fik, (8)
My = Z X5Fy (9)
j
= (X . = K./F. 10
H2 Z My%3/F m Z 3/F (10)
3 3
= . .2 ./d
wg =), (Ky/Es?) (apg/am (11)
j



The 2, is a quantity for species i which sums to unity and lies between a
mass fraction and a mole fractioh, whereas ul, “2 and M, are properties

of the system as a whole. It will be shown that it may often be consistent
with the level of the approximation to consider the Fi independent of tem-

perature. In this case Eqg. (7) reduces to

T —
P Di ar _ _PDMp 3% (7 - Ky Ay (12)
i T 9y u17/'1 dy Hy dy

In the absence of thermal diffusion and assuming azi/ay to be large
compared to [(Zi - Ki)/uzjapz/ay, Eq. (12) simplifies to

. Pbuy 3z
i = MM, 3y

(13)

The accuracy of this approximation is assessed in Appendix B. The approxi-
mate Eq. (13) provides the basis for rationalizing a film-coefficient rela-
tion for diffusional mass transfer in the multicomponent boundary layer.
This model is described in Appendix B and represents an extension of the

model presented in Ref. 7.

The choice of Eq. (11), (12), or (13) depends upon whether or not the
additional approximations embodied in the latter two equations are satisfac-
tory for the particular chemical system under consideration and the desired
degree of accuracy. Equation (12) is recommended for boundary-layer calcu-
lations and is utilized in Ref. 6. Equation (13) is appropriate for heat
and mass transfer calculations utilizing overall convective transfer coeffi-

cients.

The accuracy of the correlation (Eq. (5)) was investigated by Birdl for
a five-component mixture of N2, 02, C02, CO, and H2 and shown to be surpris-
ingly good, the maximum error in any ﬁij being 4 percent. In order to
establish more generally the adequacy of the approximation, correlations
have been performed for several larger chemical systems. In order to inter-
pret the results of these correlations, it is pertinent to first briefly
review elementary procedures for predicting binary diffusion coefficients.



The kinetic theory relation for ﬁij was presented as Eq. (4). In the
simplest and crudest of approximations, the model of rigid spheres, the

*
Qg{'l) is unity by definition. Since T and P are thermodynamic proper-

ij
ties and the mi are known constants, the only additional information required

is Oij' For the rigid sphere model, this is given by an additive combining
law
G, + 0.
o,, = —=——d (14)
ij 2

where o, and Gj are determined empirically or estimated for each molecu-

lar species i and j individually.

There are several improved models for the intermolecular potential func-
tion with additional empirical constants. Probably the most popular is the
Q{t.2)*

i

Lennard-Jones model which has two empirical constants. The for

this model are ta‘bulated2 in terms of a reduced temperature, ng, defined as

TH = (15)

1

where € is the maximum energy of attraction of the two molecules i and

j, and k 1is the Boltzmann constant. The cij/k is the order of 100 for
(1,1)%

most simple molecules and Qij varies from 1.44 for T* = 1.0 to 0.42
for T* = 400. The Oij and €ij/k are not well known for many interactions
so they are often estimated by Eg. (14) for Oij and
%
ey = [tep ey ] (16)

The Lennard-Jones model is not always accurate, especially for nonsymmetric
molecules (such as polarized molecules or long chains) and at high tempera-
tures (where ionization and excitation occur). oOn the other hand, this model
is useful for preliminary calculations of complex chemical systems, since the
two empirical constants can, in the absence of experimental data, be estimated
by various correlation techniques, a situation not always possible with more

sophisticated models.

Results of a correlation for a 9-component (36 ﬁij) O0-N-C system, rep-
resentative of the boundary layer over graphite ablating into air, are pre-
sented in Table I. The F, were obtained by employing a least-squares fit
to ﬁij for all diffusing pairs based on the Lennard-Jones potential using



TABLE I.- CORRELATION OF BINARY DIFFUSION COEFFICIENTS FOR AN
OXYGEN-NITROGEN-CARBON SYSTEM BASED ON THE LENNARD-JONES
POTENTIAL WITH FORCE DATA FROM SVEHLA (Ref. 8).

TEMPERATURE = 12,000°R, PRESSURE = 1 ATM.

SPECIES bi4 FROM F. ﬁi' FROM PRES~ ERROR USING ERROR IF ALL
KINEPIC THEORY 1 E“% CORRELATION PRESENT Bbi+i ARE AS~
X . CORRELATION SUMED EQUAL
i 3 (ft%/sec) x 100 (ft"/sec) x 100 (PERCENT) (PERCENT)
0 02 5.6‘058 0.7399— 505575 - le6 - 16.8
0 N T.3372 75274 2.6 - 36,0
0 NZ 543995 5.3837 - 003 - 1300
0 co 5.4662 5.4379 - 0.5 - 1l4.1
0 co2 404638 4,3762 - 2.0 5.2
0 c 8.0754 8.3663 3.6 - 41.9
0 c3 5.1820 5.,0859 - 1.9 - 9.4
02 N 566566 1.0000 5.5695 - 1.5 - 16.9
02 N2 3.9611 3.9834 0.6 18.6
02 co 4.0028 4,0235 0.5 17.3
02 Co02 3.1637 3.2380 2.3 48.4
02 C 6.3129 6.1902 - 1.9 - 25.6
g2 C3 3.7100 3.7630 l.4 26.6
02 CN 3.9623 3.9731 0.3 18.4
N N2 54277 0.7383 53953 - 0.6 - 13.5
N co 50"763 5.‘0496 - 0.5 - 1402
N coz 4.5136 4.3857 - 2.8 4.0
N C T.9727 8.,3844 5.2 - 41.0
N c3 502069 50969 - 2,1 - 9.8
N CN 543784 5.,3813 0.1 - 12.7
N2 CO 3.8943 1.0323 3.8977 0.1 20.6
N2 c02 3.1114 3.1367 0.8 51.0
N2 C 6.0528 5.9967 - 0.9 = 2244
N2 C3 3.6214 3.6454 0.7 29.7
N2 CN 3.8603 3.8488 - 0.3 21.7
co co2 3.1390 1.0220 3,1683 0.9 49.7
co ¢ 6.118¢4 640570 - 1,0 - 23.2
CO CN 3.8938 3.8875 - 0.2 20.6
co2 C 449902 1.2700 4.8745 - 2.3 - 5.9
coz2 C3 2.8753 249632 3.1 63.4
C02 CN 3.1245 3,1286 0.1 50.3
c c3 5.77617 0.6643 56649 - 1.9 - 18.7
C CN 6.0033 5.9811 - 0.4 - 21.8
C3 CN 3.6276 1.0927 3.6359 0.2 29.5
CN 1.0350
AVERAGE ABSOLUTE ERROR 1.3 24,2



molecular properties suggested in Ref. 8. Utilizing these F.» diffusion
coefficients were computed from Eq. (5) and compared to the original ﬂij'

It can be seen that substantial improvement over the equal diffusion coeffi-
cient model is obtained, the average absolute error in ﬁij being reduced
by more than an order of magnitude. Even more significant, however, is the
comparison with the original ﬂij' the average absolute error being 1.3 per-
cent and the maximum error in any one single ﬁij 5.2 percent, Better accu-
racies than this are probably of academic interest in view of the uncertain-

ties in the diffusion coefficients themselves.

Although this correlation is very encouraging, it was obtained with
consistent use of a single, admittedly crude model and thus may not be a
severe test of the correlation procedure. Therefore, a 6-component (15 3ij)
hydrogen-oxygen system was investigated for two different sets of ﬁij:(lg data
based on the Lennard-Jdones model and (2) data recently compiled by Svehla
based on improved models for the intermolecular potentials for the H-O system.
The Fi factors and the resulting errors in ﬁij are presented for these
two sets of diffusion data in Table II. The more reliable set of diffusion
data (Table II(b)) is seen to correlate better than do the data where the
Lennard-Jones potential and combining rules (Eqs. (14) and (16)) are employed
consistently (Table II(a)), the average absolute error being reduced from 10.8
to 4.8 percent and the maximum error in any one diffusion coefficient being
reduced from 47.6 to 11.3 percent. The primary reason for this is that the
improved ﬁij for H - H2 (based upon the recent high-temperature calcula-
tions of Ref. 10) is higher and thus more in line with the value required for
a good least-squares fit. The correlation of Table II(b) is considered reason-

ably good in view of the molecular weight variation of 32 to 1.

Results for a l1l6-component (120 ﬁij) 0-N-C-H system, representative of
the boundary layer over graphite-phenolic ablating in air, are presented in
Table III. These ﬁij were based on the procedures suggested by Svehla.9
In this system, 98 of the 120 ﬁij are represented within 5 percent, the lar-
gest single error is 16.7 percent and the average error is 3.7 percent. Again
the correlation is deemed successful considering that 120 numbers are repre-
sented by 16 numbers and that the molecular weight variation is 44 to 1.

One set of diffusion coefficient data was considered which did not cor-
relate well, namely, the data utilized in Ref. 3 for the same 0-N-C system
studied in Table I. The results of the correlation are presented in Table IV.
In this case there is about a 25-percent improvement over assumed equal dif-
fusion coefficients rather than the usual order-of-magnitude improvement.

The explanation for the lack of correlation is as follows: the Lennard-Jones

model was used for interactions involving two polyatomic species, but the




TABLE II.- CORRELATION OF BINARY DIFFUSION COEFFICIENTS FOR A
HYDROGEN-OXYGEN SYSTEM USING PRESENT METHOD.
TEMPERATURE = 12,000°R, PRESSURE = 1 ATM.

(a) Diffusion coefficients calculated using Lennard-Jones
potential with force data from Svehla (Ref. 8)

SPECIES Bis FROM F, Bj; FROM PRES- ERROR USING ERROR IF ALL

KINETTC THEORY ENT CORRELATION PRESENT B ARE AS-
2 2 CORRELATION SUMED FOUAL

i j (£t%/sec) x 100 (£t°/sec) x 100 (PERCENT) (PERCENT)

H  H2 36.0260 0.24713 53,1613 4746 - 63,41

H  H20 25.9891 23.7639 - B.6 - 48.9

H O 2646238 24.7360 - 7.1 - 50,1

H 02 22.8038 19,7757 -13.3 - 41,7

H OH 26,4341 2443147 - 8.0 - 49,7

H2 H20 17.3862 0.3720 15.7877 - 9,2 - 23.5

H2 O 17.7166 16.4335 - 7.2 - 24.9

H2 02 15.0085 13.1381 ~-12.5 - 11.4

H2 OH 17.5759 16,1537 - 8.1 - 2444

H20 O 7.0928 0.8322 7.3461 3,6 BT ot

H20 02 5.2795 5.8730 11.2 151.6

H20 OH 6.9078 7.2210 4.5 2.4

0 02 5.6458 0.7995 6.1132 8.3 135.4

0 OH 7.2643 7.5163 3.5 8249

02 O0OH 544946 1.0000 6.0091 9.4 141.9

OH 0.8133

AVERAGE ABSOLUTE ERROR 10.8 68,6

(b) Diffusion coefficients calculated using values for collision
cross-sections suggested by Svehla (Ref. 9)

H H2 67.6000 0.2208 7444024 10.1 - 77.1
H H20 2843200 27.0030 - 47 = 4544
H 0 27.7200 30.8482 11.3 = 4443
H 02 2445500 22.5734 - 8.1 - 37.1
H OH 29.5900 2745549 - 6.9 - 47.8
H2 H20 19.5800 0.3034 19.6568 0.4 - Z71l.1
H2 C 23.6000 2244560 - 4.8 = 34.5
H2 02 17.1900 16.4323 - 4e4 - 10.1
HZ2 0OH 2041600 2040586 - 0.5 = 23.3
H20 O 8.2950 0.8360 8.1500 - 1le7 HEe 3
H20 02 5.7150 5.9638 Gl 170Ge4
H20 OH 7.1450 742799 1.9 11643
aQ 02 6.8500 0.7317 68131 - 0.5 12546
0 OH 8.6060 8.3166 - 3.4 19.6
02 (OH 5.5520 1.0000 64,0857 9.6 178.3
UH 0.8192

AVERAGE ABSULUTE ERROR 4.8 73.1



TABLE III.- CORRELATION OF BINARY DIFFUSION COEFFICIENTS FOR AN
OXYGEN-NITROGEN-CARBON-HYDROGEN SYSTEM BASED ON DATA OF SVEHLA

SPECIES

s

[eNoNoNoNoReRoNeoNoNoNoNoNoNe No]

222222222222

HCN

(Refs. 8 and 9)

bi5 From
KINETIC THEORY

.  TEMPERATURE = 12,000°R, PRESSURE

Fy

(ftz/sec) x 100

648500
Te3372
543995
544662
44638
840754
541820
543620
2747200
2346000
842950
846060
548190
448947
448625
546566
349611
440028
3,1637
643129
33,7100
349623
2445500
1741900
547150
55520
4ot 735
346310
3.5678
Set277
Sets763
445136
769727
52069
543784
2545139
17,1218
609743
Tel732
57836
449083
448645

047393

1.0000

0.7907

Biy FrOM PRES-
ENT CORRELATION

(££%/sec) x 100

600528
746554
56277
546846
4e6277
83865
53597
545958
298130
2044311
745057
Te7923
600848
560977
540401
546595
441604
442025
3e4212
642000
349624
4el1369
2240402
1541043
565489
57607
He4984
347686
367260
52620
53153
443270
Te8416
540115
52323
278700
191036
70181
742861
546895
LeT7665
47126

10

ERROR USING
PRESENT
CORRELATION
(PERCENT)

=11.6
443
4e2
440
3,7
3.9
3¢4
bols
Teb
=13,.4
- 945
= 945
406
4ol
3.7
Oel
50
5.0
8el
= 148
648
YY)
-1042
=12.1
= 249
3.8
0e6
3.8
bel
- 3,1
249
Gel
= 16
3.8
= 247
93
11e6
0e6
146
= 16
= 249
- 3,1

= 1 ATM.

ERRUR 1F ALL
ij ARE AS-

SUMED EQUAL
(PERCENT)

- 45
= 1048
21,1
1947
4645

= 1940
2662
2240
7663
T2e2
211
2440
12e4
3346
3445
1546
651
63¢4
10647
306
7643
651
- 7345
= 620
1445
178
4662
801
8343
2045
194
4449
- 1749
2546
2146

- Thel
- 6148
- 6e2
= B8
13,1
33.3
3445



TABLE III.- Continued.

SPECIES ﬁi FROM Fi ﬂi' FROM PRES~ ERROR USING ERROR IF ALL

KINET%C THEORY ENT CORRELATION PRESENT ﬁij ARE AS-

2 CORRELATION SUMED EQUAL

i 3j (ftz/sec) x 100 (ft°/sec) x 100 (PERCENT) (PERCENT)

N2 co 348943 10756 3¢9074 0e3 6840
N2 Cco2 341114 3.1809 262 11042
N2 C 640528 507645 - 4o8 8el
N2 C3 36214 346840 1e7 8046
N2 CM 348603 348463 - 0ot 694
N2 H 2143750 2064922 - 4.1 = 69¢4
N2 H2 1441671 1440435 = 049 - 53,8
N2 H20 540300 51591 2e6 3040
N2 OH 52629 503561 le8 243
N2 CH4 443182 401824 - 3,1 5le5
N2 C2H 345367 345039 = 049 8449
N2 HCN 344655 304643 = 040 8448
co co2 341390 10647 342131 2l 9942
co C 6ell94 58229 = 4e8 99
o c3 346584 347213 le7 7240
co CN 348938 348853 = 0s2 6448
co H 2146122 2046996 - 4e2 - 66469
co 42 1442296 1441856 = 043 = 5044
Co H20 541001 52113 242 2761
co OH 543305 54103 1e5 22¢3
co CH4 443595 Le2248 - 3,1 5145
co C2H 345680 345394 = 0.8 8049
co HCN 35023 344994 = 0.1 8249
co2 ¢ 449902 143079 4eT402 = 5.0 3540
co2 (C3 248753 340294 5e4 11143
c02 (CN 341245 341629 le2 10244
co2 H 18,4881 1648510 = 89 - 5944
C02 H2 1242917 1145481 = 640 = 39,1
C02 H20 401217 bLe2424 249 5847
c02 OH 44344] 404044 leé 5066
C02 CHa 345835 344393 - 440 8245
C02 C2H 248685 248813 Oets 12840
C02 HCN 247965 208488 149 133,9
C c3 57767 0e7218 504901 = 540 1342
C CN 640033 57319 = 445 849
C H 2641719 3045380 1647 = 7540
C H2 1840635 2049280 1549 - 6348
C H20 Te5630 Te6883 1e7 = 1345
C OH 749334 Te9818 Oe¢b = 1745
C CH4 643330 602328 = le6 3.3
C C2H 543831 52217 = 3,0 2165
C HCN 563406 51626 = 3,3 2265
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SPECIES
i3
3 CN

c3 H
3 H2
3 H20
ca CH
c3 CH4
<3 C2H
2 HCN
CN H
CN H2
< H20
CN OH
CN CH4
CN C2H
CN HCN
M H2
H H20
H OH
H CH4
H C2H
H HCN
H2 H20
H2 OH
H2 CH4
H2 C2H
H2 HCN
H20 OH
H20 CHé4
H20 (C2H
H20 HCN
OH CHa
OH C2H
OH HCN
CH4  (C2H
CH4 HCN
C2H HCN
HCN

5,4 FROM
KINETIC THEORY

(ft2/sec) x 100

346276
2140069
1349792

4e8271

540416

461210

343265

342583
2049403
13,8853

409948

542299

442953

345330

344626
6746000
2843200
2945900
2063467
1846611
1848560
1945800
2041600
13,7590
1245045
1245953

741450

54665

445559

405242

566987

4e7817

4e7388

349244

3.8677

31729

AVERAGE ABSOLUTE ERROR

TABLE III.- Concluded.

F

141293

140817

02030

062963

008064

07767

0e¢9948

lel874
12009

B34 FROM PRES-
ENT CORRELATION

2
(ft°/sec) x 100

346632
1945166
1343749

449135

541011

349833

33371

302994
2043763
13,9641

541300

543259

4elb588

344841

3ebbb?
7463967
2743309
2843745
2241568
1845624
1843525
1847301
1944453
1541843
127210
1245771

Telé36

55782

4e6733

466205

57912

408517

447969

3,7886

347457

3,1381

12

ERROR USING
PRESENT
CORRELATION
(PERCENT)

140
- Tel
= 4e3
le8
1e2
= 343
063
le3
- 2.7
Os6
267
1.8
= 3,2
- le&
= 0e5
10,1
= 345
- 4,1
8.9
0e5
267
4¢3
3.5
10e4
1e7
Ol
= 00
200
206
241
1e6
1e5
le2
- 3,5
3.2
=~ lel

3.7

ERROR IF ALL

ARE AS-

ﬂlg
SUMED EQUAL
(PERCENT)

8043
6849
5342
3545
2947
5847
9646
10047
6B8e8
5249
3049
2541
5243
8541
8849
9044
7649
7840
6840
6409
6543
6627
6746
52¢4
4767
4841
B8e5
1946
4346
L4446
1448
3648
3840
6647
6%l
10641

5069



TABLE IV.- CORRELATION OF BINARY DIFFUSION COEFFICIENTS FOR AN
OXYGEN-NITROGEN-CARBON SYSTEM BASED ON DATA OF SCALA AND GILBERT
(Ref. 3). TEMPERATURE = 12,000°R, PRESSURE = 1 ATM.

SPECIES ﬁij FROM Fi ﬁij FROM PRES- ERROR USING ERROR TF ALL
KINETIC THEQRY ENT CORRELATION  PRESENT B ARE AS-
2 2 CORRELATION SU&ED EQUAL
i 3 (ft"/sec) x 100 (ft"/sec) x 100  (PERCENT) (PERCENT)
n 0z 3.1562 1.0707 3.4987 10.8 8.9
0 N 4.6732 3.4962 -25,2 - 26,9
0 N2 3,0323 3.4086 12.4 12.7
0 €O 3.1813 3.5154 10.5 7.4
0 c02 2.7041 2.8691 6e1 2645
0o ¢ 4,0859 3,1361 -23,2 - 16.9
0 C3 3.0408 3.2811 7.9 17.5
0 CN 3,3160 3,663} 10.5 3.0
02 N 3,3859 1.0000 3.7433 10.6 0.9
02 N2 3.9602 3,6495 - 7.8 - 13.8
02 COo 4.,0369 3.7639 - 6.8 - 15.5
02 CO02 3.1653 3.0719 - 2.9 7.9
02 ¢ 3.0433 3.3578 10.3 1243
02 C3 3.6900 3,5130 - 4.8 - 7.5
02 CN 4,2103 3.9221 - 6.8 - 19,0
N N2 3.2441 1.0007 346469 12.4 5.3
N €O 3.4055 3.7612 10.4 0.3
N CO2 2.9097 3.0697 5.5 17.4
N C 4.3167 3.3554 -22.3 - 17.6
N C3 3.2668 3.5105 7.5 4.6
N CN 3.5468 3.9193 10.5 - 3,7
N2 CO 3.9652 1.0264 3,6670 - 7.5 - 13.9
N2 CO2 3,1396 2.9928 - 4,7 8.8
N2 C 2.9238 3,2713 11.9 16.8
N2 C3 3,6396 3.4226 - 6.0 - 6.2
N2 CN 441274 3.8211 - T4 - 17.3
CoO CO02 3,1932 0.9953 3.0866 - 3,3 7.1
co ¢ 3.0579 3,3738 10.3 11.8
cCo €3 3.,7092 3.5298 - 448 - Te9
CO CN 4.2087 3.9408 - 6.4 - 1.9
caz ¢ 2.6492 1.2194 2.7536 3.9 29,0
02 C3 2.8901 2.8809 - 3,2 1842
€02 CN 3.3357 3.2163 - 3.6 2.4
C c3 249458 1.1156 3.1490 6.9 15.9
C CN 3.,1740 3.5156 10.8 7.6
C3 CN 3.8720 1.0663 3.6782 - 5.0 - 11.8
CN 0.9551
AVERAGE ABSOLUTE ERROR 8.9 17.1
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rigid sphere model was used when one or two monatomic species were involved.
This procedure, in effect, means the use of different values of ei/k for
polyatomic species, depending upon whether they are interacting with other
polyatomic species or with monatomic species (ei/k = 2670 in the former case

in order to yield Qig'l)* = 1.0 for the temperature considered, and ei/k ~ 100
in the latter case). In order to assess the validity of this model, Table V
lists gij for the hydrogen-oxygen system utilizing the values suggested by
Svehla,” utilizing the procedure followed in Ref. 3, and using the Lennard-
Jones model. The ﬁij computed using the method of Ref. 3 can be seen to
differ by a factor of approximately two from the compilation of Svehla for

each case involving a monatomic species. Thus one can conclude that the re-

sults presented in Table IV represent an unrealistic test of the approximation
procedure and should not be considered in the evaluation of the accuracy of
the technique. It also suggests that the correlation equation (Eq. (5)) may

have some merit for assessing the authenticity of diffusion coefficient data.

In the preceding paragraphs correlations have been presented for four
chemical systems. The representation of 3ij data for these systems can prob-
ably be considered satisfactory for most purposes, in view of the uncertainties
associated with the estimation of diffusion coefficients. The question natu-
rally arises as to the general applicability of the correlation Equation (5),
Further insight into this matter can be obtained by rearranging the kinetic-~
theory expression for ﬁij (Eq. (4)) as follows

5
- TS/bninj(mi + Ws) 1 1 (17
l] o 2Q (1,1)* n miz m 2
p ij ij ii nj

] ;|

where n; can be selected arbitrarily in order to achieve a good correlation.
*
As mentioned previously, the integral Qig'l) is unity for the rigid-sphere

approximation. It is shown in Fig. 1 for the Lennard-Jones model, together
with a logarithmic curve fit which is seen to be quite accurate over the range

of Tij of interest in high-temperature boundary-layer studies

Qig'l)* ~ 1,07 (T%)7° e 4 < TH < 400 (18)

The ﬁij is thus given by

1,5 + .159x ] —.0795H% . -.0795H4
1] E
P(Ol + 03)2 niW(i n]m]

(19)
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TABLE V.- BINARY DIFFUSION COEFFICIENTS FOR A HYDROGEN-
OXYGEN SYSTEM AS PREDICTED BY THREE DIFFERENT METHODS.
TEMPERATURE = 12,000° R, PRESSURE = 1 ATM.

. Diffusion coefficient, D, .
Species 2 ij
(ft°/sec)
Lennard-Jones
Recent Potential Using | Method of
i . Compilation Force Constants Scala and
J of Svehla Gilbert
(Ref. 9) of Svehla (Ref. 3)
. (Ref. 8.) °
H H2 67.6 36.0 17.5
H H20 28.3 26.0 15.6
H 0 27.7 26.6 14.1
H 02 24.6 22.8 11.3
H OH 29.6 26.4 13.2
H2 H20 19.6 17.4 17.4
H2 0 23.6 17.7 9.6
H2 O2 17.2 15.0 15.0
H2 OH 20.2 17.6 17.6
H20 (o} 8.3 7.1 4.7
H20 O2 5.7 5.3 5.2
H20 OH 7.1 6.9 6.9
0 O2 6.8 5.6 3.1
0 OH 8.6 7.3 4.0
O2 OH 5.6 5.5 5.3

15
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where x is zero for the rigid-sphere model and unity for the Lennard-Jones

model. Equation (19) has been arranged so that the terms in brackets can

be considered like D, l/Fi, and l/Fj, respective%z. Note that all tem-
perature and pressure dependence is contained in the D if the n, are con-
strained to be constants. A successful correlation thus requires finding a

set of n; such that

L

n. (7M. + M)

6(i,3) = [n” A ] (20)
(oi + oj)

is nearly constant for all species i and j in the chemical system of interest.
It can be seen that success of this correlation cannot be predicted in general,
since the constancy of G(i,j) depends upon the specific chemical system of
interest. The closest thing to a general validity check, then, is to study a
system of species selected by a random process encompassing widely different
types and sizes of species. This has been done for a 9-component system

(36 ﬁij) utilizing the rigid-sphere model.* The species considered and the
resulting values of n;, chosen by trial and error, are shown in the follow-

ing tabulation.

i
i W& oy Firs? Second Thirq
Iteration Iteration Iteration

H2 2,016 2,915 1.0 1.01 1.006
Kr 83.8 3.61 1.0 0.86 0.820
co 28.01 3.706 1.0 1.01 1.062
CCl4 153.858 5.881 1.0 1.08 1.107
SF6 146.066 5.51 1.0 1.04 1.040
Br, 159.832 4.268 1.0 0.80 0.766
AsH3 77.934 4,06 1.0 0.94 0.928
C2H4 28.032 4,232 1.0 1.19 1.212
C2H50H 46,048 4.455 1.0 1.15 1.165

*The species were selected from a table of oy from Ref. 2, pp. 1110-1112.
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First, the ratio of (mi + mj)l/z/(oi + oj)2 was computed for each of the 36
combinations of i and j (i.e., n;, = nj = 1.0). Vvalues of n, were

then assigned to each species in an attempt to improve the correlation. The
iterative process was then repeated a second time. At this point the 36
values of ninj(77(i + sz)%/(oi + oj)2 varied from 0.1362 to 0.1816 with an
average absolute error of 6.2 percent. This correlation is considered satis-
factory considering the severity of the test. Furthermore, the accuracies
could probably be improved somewhat by use of a systematic least-squares pro-

cedure.

Equation (17) demonstrates that the F, can be considered as temperature
independent if the n, are constrained to be a set of constants for a given
chemical system. One might be able to improve correlation by allowing
the n,; and thus the Fi to be temperature dependent. In order to investi-
gate this possibility, calculations were made at several temperatures for
diffusion coefficients based on the Lennard-Jones model. The results are pre-
sented in Table VI in the form of an average F, for each species and the
percent deviation from these values. The largest single error listed in this
table in assuming F. independent of temperature is 0.7 percent. The average
absolute error is only 0.13 percent, approximately one order of magnitude
lower than the maximum errors introduced by the original approximation. Thus
it is consistent, at least when the Lennard-Jones model is employed, to con-
sider the F, as temperature independent and to absorb this additional error

into the original approximation.

As one final consideration, it can be seen from the data that have been
presented and from Eqg. (19) that the F, tend to increase as the mi is in-
creased. A correlation of the Fi obtained for the various chemical systems
considered in this report (0-H, O-N-C and 0-N-C~H) suggested the following cor-

relation between Fi and mi:

F, « (mi)°-461 (21)

This correlation is shown in Fig. 2. Such an approximation is not recommended
for general use since the F, can be accurately determined guite simply by a
least-squares correlation of diffusion coefficient data. The correlation

Eq. (21) together with Eq. (5) may be of interest, however, for crude esti-

mation of diffusion coefficients when they are unavailable.

In summary, an approximation for binary diffusion coefficients has been

introduced where (v - 1l)v/2 ﬁij are replaced by v diffusion factors Fi.

18



TABLE VI.- VARIATION WITH TEMPERATURE OF DIFFUSION FACTORS
FOR AN OXYGEN-NITROGEN-CARBON SYSTEM BASED ON LENNARD-JONES
POTENTIAL USING FORCE DATA OF SVEHLA (Ref. 8).

Temperature, °r 4000 8000 12,000 16,000
Pressure, atm 1 1 1 1
B'xloz, ft?/sec 0.6657 2.0980 4.1160 6.6462
Percent error in
F. for:
i
FO = 0.7399 -0.06 -0.05 0.04 0.05
F = 1.0000 - .07 - .05 .05 .06
0
FN = 0.7378 .04 .03 .11 - .19
F = 1.0315 .04 .03 .12 - .19
N3
FCO = 1.0217 - .04 0 .07 - .03
FCO = 1.2690 - .19 - .18 .12 .25
FC = 0.6692 .42 .35 - .70 - .06
Fo = 1.0928 - .15 - .16 .04 .27
3
FCN = 1.0343 .03 .04 .12 - .17
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Diffusion Factor,

T f
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i
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Figure 2. - Correlation of Diffusion Factors with Molecular Weight.
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The primary advantage of this approximation is that the diffusional mass flux
of species i can then be expressed explicitly in terms of gradients and prop-
erties of species i and of the system as a whole. This, in turn, permits
substantial simplification of the boundary-layer equations. The F, are
independent of pressure and are only slightly temperature dependent. Further-
more, they can be considered to be independent of concentrations. This has
the advantage that the Fi can be determined a priori for a given set of
molecular species, becoming simple input data in a numerical solution. It

was shown that the actual binary diffusion coefficients are approximated
within a few percent with the following exception. When the molecular weights
of species i and j differ by an order of magnitude, the ﬁij determined
by the least-squares curve fit can differ from the actual ﬁij by as much as
15 percent or so. It can thus be concluded that the approximation procedure
is quite accurate for the majority of diffusing pairs and is within the range
of certainty of diffusion coefficients for most if not all other species.

SECTION 3
MIXTURE VISCOSITY

The viscosity of a multicomponent mixture according to rigorous first

order kinetic theory is given by Hirschfelder, Curtiss, and Bird2 as

H H H xl

11 12 " ° 1v

Hyp Hyp - oo Hyy, %

Hlv H2v c va Xy
x1 x2 . e . Xv 0
Mpix = 7 (22)
Hll le . e . Hlv
H H H
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where X is the mole fraction of species i, v is the number of molecular

species, and the H,. and H.. are given by
ii ij

x.2 2%, X mk
i i’k RT 3
Hig ot E M, + M) BBy [1 ts 7w, Aik] (23)

k#£i

H = -—ZX—iXLTRT [1-2A*] (i # 3) (24)
i = my + 7y 5 P17

with P the pressure, T the temperature, R the universal gas constant,
and mi the molecular weight of species i. ﬁij is the binary diffusion

coefficient for pure species i and j given by Eq. (4), p; is the viscosity
of the pure species i which can be expressed in terms of the self-diffusion

coefficient 'Dii as

p B.. (25)
1i

A%¥. 1is defined as
1]

Q(z 2)*(T* )

_ iy
M5 = ga.= (T* ) (26)
ij i

p 1is the density, Tij is a reduced temperature given by Eq. (15), and

*
Q(l 1)* (T* )} and Q(i'g) (T* ) are integrals for calculating the transport
coeff1c1ents (given for several molecular potential models in Appendices to
Ref. 2, for example).

Hirschfelder, et al2 show that Eq. (22) can be expanded as

Mmix 11 54

i=l j=1
j#i
ZiTkij ik k 17 k
- .. (27)
E{: ZE: j{: 11 J]Hkk
= J=1 =
j#i k#i
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The primary contribution to the mixture viscosity is given by the first term
in this expansion which represents the diagonal terms in the determinants of
Eg. (22). 1In fact, all but the first term vanish for Aij = 5/3. With this

approximation, the expression for mixture viscosity becomes

v
xi2
Mmix = %.2 v (28)
X i RT
i=1 L 4 E: 22X, X, —————
i 21 i™j mebij
j#i

This equation does not predict mixture viscosities well because of the unrea-
listic value* assumed for Aﬁj and, consequently, the neglect of higher

terms in the expansion of Eq. (27). Buddenberg and wilkell

have shown by an
extensive analysis of experimental data that Eq. (28) describes mixture vis-
cosity if the theoretically determined constant "2" is replaced by an empiri-
cal value "1.385". Consequently, Hirschfelder et al2 recommend that a good

approximation to Eqg. (22) is given by the semi-empirical equation

v
XM,
_ ii
Mmix = RTU; Vv X. (29)
io1 | %3 + 1.385 . Y. _]_‘0“
1 j= 1]
3#i

Introducing the correlation equation for diffusion coefficients (Eg. (5))
into Eqg. (29) yields

v
X.M,
Mmix = == v (30)
RT ~iti
. Xx. + 1,385 == —== Z x.F.
i=1 i - M. J 3]
PD i j=1

Utilizing the definitions of the system properties My and Mo given by
Egs. (9) and (10), respectively, Eq. (30) becomes

*A better value for Aij is 1.1 to 1l.2.

23



X,
.= i (31)
rT FiMj
X + 1.385 —__77?_ (ul - XiFi)
PD 1

i=
The equation of state for the mixture is given by
R
= R 32
P P T (32)

where M is the molecular weight of the mixture. Substituting Egs. (32),
(25) and (5) into Eq. (31) and rearranging yields the following result for

the viscosity of the multicomponent mixture

v XMy
— F.7
- RD 1
Mpmix = Hq ZE: xiFi 6A';s_i mi (33)
i=1 1.385 + “—1- =W T 1.385

It should be noted that calculation of the mixture viscosity thus has been
reduced to a single summation involving system properties which appear

elsewhere in the boundary-layer equations

SECTION 4
MIXTURE THERMAL CONDUCTIVITY

The thermal conductivity in a polyatomic gas mixture has been shown by

Hirschfelder12 to be represented by

Xmix = Xmono—mix + Xint (34)

where A is the thermal conductivity in a mixture computed neglect-

mono-mix
ing all internal degrees of freedom and lint is the contribution to the
thermal conductivity of the mixture due to the internal degrees of freedom

of the molecules.
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The A . is given by Hirschf “der et al” as
mono-mix
Dyp Lyp - -0 Iy %y
Lop Loy - - o Lpy X5
LVl va ¢ o e I NS X v
e x e « o X 0
A o= g1 2 Y (35)
mono-mix L L
11 12 - - b1y
Lyy Lyy + « + Loy
L, Ly, - -« Ly
where
4xi2
Lis = - X;
mono
v [15 2 25 . 2 2 ]
_ 1T j{: *a kT M YT e - Bl AR g
25 p 3
o My + MDDy
k#i
16 T Xi%iM”y [55 o,
L.. = 22 _ 3p%. - 4A%, (i #3) (37
ij 25 p 2 4 1j ij
(m; + mj) b5

with Aimono the thermal conductivity of the pure species neglecting all in-
ternal degrees of freedom of the molecules

15 R
AL = === LU, (38)
1hono 4 mi 1

and B*. defined as
1]

(1,2)* (1,3)*
" _ SQij (Tij) - 4Qij (sz)
iJ - Q(l'l)*(T* )

ij ij

(39)
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Approximate expressions can be developed for thermal conductivity in a
manner analogous to the procedure for viscosity described in Section 3.
Several formulations are referenced by Hirschfelder.2 For the present pur-
pose a method suggested by Mason and Saxena13 and discussed by Brokawl is
adopted. However, the same procedures could be applied to other rela-

tions.
Mason and Saxena showed that an equation analogous to Eq. (29) was

mono-mix PY replacing the u; which appears in the numer-
and replacing the empirical coefficient 1.385 by 1.385 x

applicable for X

ator by A mono
1.065, that is,

\Y

) | —
A . = mono
mono-mix RTui (40)

vV X.
i=1|x; + 1.065 x 1.385 o Z EL
i 3 i3

=
j#i

Substituting for Ximono from Eq. (38), for My from Eq. (25) and for
ﬁij from Eq. (5) yields

v 5 15 = R *q
6a%. 4 PP M. F.2
_ 1i i "1
A . = S (41)
mono-mix RT 5 1
i= X, + 1.065 x 1.385 + —Bﬂ EAF. T E ijj
11 11 .
j=1
j#i

Using the equation of state (Eq. (32)) and the definition of My (Eq. (9))

and rearranging yields

v
A _ 15 RpD Xl/Fl
mono~-mix ~ 4 le xiFi GA{i mi
. 1.065 x 1.385 + —= == - 1.065 x 1.385
i=1 Hq 5 m

(42)

The contribution to the thermal conductivity from the internal degrees

of freedom lint is given by Hirschfelder12 as
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v
x.(hs = A, Y/5, .
\ _ i iono | il (43)
int E v X. ‘
: s
i=1 Z: B

ij

i=1

is given by Eq. (38) and xi is the true thermal conductivity
of the ith species, An expression for Ai taking into account the internal
structure of a polyatomic molecule was first given by Eucken. An improved
relation suggested by Hirschfelder et a1? has the form

[ I,
A =%’-(15—6 2 11) ¢ —(15-10—-1-E-)cV uy (44)
i Pi My i

where Py is the density, cPi the specific heat at constant pressure, and
Cvy the specific heat at constant volume for the pure species i. Utilizing

the relations

R
c = C_ - = (45)
Vi Pj mi
and
My
Py = P (46)
it follows that¥*
.,
5 R
Ay = A, = p.b-.—J-'(C -——-) (47)
i iono ii 7 P; 2 mi
Substituting into Eq. (43) and utilizing the correlation Eq. (5) yields
v
— x. M.
D i i 5 R
e = ) [, 32 o
int My F, m ( p; 2 mi)
i=1l

*This form is suggested directly by Hirschfelder as Eq. (59) of Ref. 12.
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It is shown in Ref. 6 that in addaition to My and u2, it is convenient

in multicomponent boundary—layer problems to define

v
¢ = Z.C
p ZE: i'py (49)
i=1
and
V o
“i 1
M = w = (50)
> Z Mo H2 Z
i:l i=1
where Z; is defined by Eq. (8). Substituting these into Eqg. (48) yields
A DUy (s
int T 7 (Cp ) R“3) (51)

The mixture conductivity is thus given by the sum of Egs. (42) and (51)

v X 15 R
.. - oD i 2 M
mix Wy xlF 6A% . 7.

. | 1.065 x 1.385 + == | 2L =X _ 1,065 x 1.385‘

i=1 1 5 m !

v
2 |x _5
+ 7 (cp -3 Ru3) (52)

As with mixture viscosity, the mixture conductivity can thus be computed by
a single summation involving no new system properties other than which appear

elsewhere in the boundary-layer eguations.
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SECTION 5
MULTICOMPONENT THERMAL DIFFUSION COEFFICIENT

The multicomponent thermal diffusion coefficient is given by Hirschfelder,

Curtiss, and Birdzas

00 00 0l 01
L11 . o e le L11 . o le 6]
00 00 0l 01
LVl . o . va Lvl . o va 0
10 10 11 11
S B TV E TR TR |
10 10 11 11
Lvl e o o va Lvl . . va xV
e, xléll . o o XV5V1 o . .. 0 0
D.T = = 'ST]" (53)
1 1,00 100 01 .01
11 - 1v I 1v
00 00 0l 01l
Lvl * st va Lvl ° 0t va
10 10 11 11
Ly3 -+ - b3y Ii; - - - Igy
10 10 11 11
Lvl ° va Lvl s e va
where
00
.. = 0
LJJ (54)
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00 _ 16rT|*% XXy Ty ,
ij = S5 p [ﬁjk + B j#k (55)

1734
£=1
4#3
A X.X M s c%¥ - l)
Lm_a*rZ[jzzsu :, (56)
ij .+ .
i3 5P (772J mz) ‘sz
£=1
L#3
01 8 T K (% Cyx = 1)
L, = - == X.¥ j £k (57)
ik 5p Jk(7/zj+7ﬂk)ﬁjk
10 _ M o1
Lijx = 7 Loy (58)
Lll anda Ll (3 # k) are the same as L., and L which appear in
33 jk ii ij

the equation for thermal conductivity of a mixture of monatomic gases (Egs.
(36) and (37))with a change of subscript from i to j, J to k, and
k to £, and

Q(l '2)*(T§-)
c*. = (59)
1) 1,1 *
Q (T35}

This expression could be simplified somewhat by employing the approximation
for 5;. (Eq. (5)) into Egs. (36), (37), and (55) through (57). To illus-
trate, Egq. (55) can be reduced to

v
F.
00 16 T i
L. = x.F.x, F, + x x,F (60)
3k ZSPBI:ijkk kmkmj Z zz]
£=1
L#3
Introducing Mye defined by Eq. (9), yields
00 16 T Fy Fy
: = o .F. - 61
Lix — X3P % (Fk My T + uy X M 7, (61)
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However, the calculation of multicomponent thermal diffusion coefficients
would still be algebraically quite complex. Therefore, it would be very
desirable to develop an approximate relation for the DiT, if possible. One
might expect at least fair success since the situation is somewhat analogous
to the problem of ordinary (concentration) diffusion. As in the case of the
ﬁij' the DiT is independent of the diffusive and thermal fluxes. In the
former case it was found (see Eqg. (5)) that one binary diffusion coefficient
can be used to represent unequal diffusion coefficients for all species with
the unequal diffusion effects taken into account through the diffusion fac-
tors Fi. Thus it might be possible to represent multicomponent thermal dif-
fusion by a single binary thermal diffusion coefficient Btr with the effects
of the unequal thermal diffusion coefficients taken into account through
thermal diffusion factors Gi analogous to the Fi. If one is fortunate,

in fact, it might turn out that the Gi are the same as the F, or closely
related, but this is not a priori evident nor is it necessary for a successful

approximate formulation.

On a microscopic basis, the mean thermal diffusion velocity of a statis-
tical set of molecules, ViT, must result from some characteristic of this
set as it relates to the remainder of the system. Since this set can be con-
sidered extremely small on a macroscopic basis, the "remainder of the system"
can be considered as the system as a whole. Thus one can postulate

T —_—
Vi o (Gi - G) (62)

where G represents some mean value of the property G, for the system as
a whole. The thermal diffusion coefficient represents a total mass flux of

species i, therefore

T -—
;T = pK; (6, - T) (63)

where PK, is the mass concentration of species i. It is required, however,
that

v
Z p.T = o (64)

Equations (63) and (64) lead to the requirement

U

G = K.G. 65
Z 373 (65)
j=1
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Thus the following relation is proposed as a basis for correlating thermal

diffusion data

v
T _ =T _
D, = D7 pK,|G, Z KjGj (66)
i=1
where, as mentioned earlier, DT is a property of the system as a whole and

Gi is a thermal diffusion factor for molecular species i, analogous, respec-

tively, to the D and the F, for ordinary diffusion (see Eq. (5)).

In order to evaluate the validity of this expression and, in particular,
to ascertain appropriate expressions for Gi and 'BT, recourse has been
taken to thermal diffusion data and calculations available in the literature.
As a logical first step in the verification of the proposed model, data for

binary systems have been investigated.

Thermal diffusion data for binary systems are sometimes presented (e.g.,

Ref. 2) in terms of a thermal diffusion ratio kT defined as

DT
- Vid a
kT B mamb p‘Dab 67

The quantity kT is so defined such that when kT > 0 component a moves
to the cold region, and when kT < 0 component a moves to the hot region.
Consistent with the usual convention species a is herein considered to

be the heavy species so that under normal conditions kT is usually positive.

A second and more useful form for the presentation of binary thermal dif-

fusion data is the thermal diffusion factor, %o defined by

X p T
T TR T KRR (68)
a X ¥y afpPap

This has the advantage over kT that it is much less concentration dependent.
In terms of b’ the binary thermal diffusion coefficient DaT is expressed

as

T _
Da - aapraKbbab (69)
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The ﬁab can be eliminated from this equation in favor of D and Fs by

the use of Eg. (5), which is exact for a binary gas mixture if the Fi are
properly chosen. This yields the result

K
T - a Kb (70)

Likewise, the correlation equation proposed in Eqg. (66) becomes for a binary

system
T _ =T _
D,° = D pKK (G b (71)
or from Eg. (70)
BT
Gap T = (6, - G )FF, (72)

Use will be made of these relations later. First, however, it is pertinent

to review the behavior of Cpe

There are several available theoretical approximations for Qb Mason15

suggests that the method of Kihara16
able approximations. The Kihara equation can be written in the form

be used in preference to the other avail-

X.5a = %Sy

a = (6C*,_ - 5) (73)
= T X0, om0yt 0
where
)
C oM Ve, o mo - m -
a ng 7/Za + mb a (ma + 7,&))2 ab 2 (ma + ”‘b)a
5
2D* Zﬁ%
a 8
Q = mbima + Mb) (ma + ﬁ;) ”%é t3 mambA;b + 3ﬁ%2 (75)
15(m. - 2 32m m. + )
2~ ) + 2" x4+ 8 T * D* D (76)

Q = A
B e m)? m em)® PS5 )t o2 P
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with

(3,2)%
05 em) [,V

aa aa
Qi ! *
al (Ta] ) ab

and Aij' Cij’ and Uij the same as defined previously. The relations
for Sb, Q. and Dﬁ are obtainig from the above by interchange of sub-
scripts. As pointed out by Mason, the principal contribution to the tem-
perature dependence of a,p, Ccomes from the factor (GC;b - 5), whereas the
term involving the S and Q determines the composition dependence of Qe
but depends only slightly on temperature. This is an important feature which

will be utilized later.

Mason15 presents %o computed using Eq. (73) for several binary mix-
tures of gases (primarily noble gases) as: 1) a function of concentration
(from O to 100 percent) for a constant temperature (327°K) (his Fig. 5) and
2) a function of temperature (0 to 600°K) for equivalent mole fractions (riomi-
nally 50 percent) (his Figs. 3 and 4). Typically, the following observations

can be made:

1. « increases from a finite value at O percent light gas to some

ab
higher value at 100 percent light gas in a manner which appears to

behave consistently with molecular weight ratio:;

2. At a given mole fraction, L IRN increases as the ratio ma/mb is

increased (recall that a refers to the heavy gas);

3. The %ap tends to become quite insensitive to temperature for tem-
peratures above 300 to 800°K depending upon the particular pair of
gases under consideration. This is consistent with the observation
that the primary temperature dependence of LR is contained in
the term (603b - 5), since Cgb tends to become uniform at ele-

vated temperatures.*

Oon the basis of these observations, it is seen that e as a first
approximation, can be considered to be independent of temperature for tem-
peratures above 1000°K or so, depending only on concentration and molecular
weight. In anticipation of the desirability of forming a relationship be-
tween the Gi and the Fi' correlation was attempted with the ratio Fa/Fb

*For example, _the C;b for the Lennard-Jones potential is shown by Hirsch-
felder et al? to be®0.9483 for T* of 30 to 400 {the highest value of
T* tabulated).
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rather than ma/mb since, as shown in Section 2, the diffusion factor varies

approximately with molecular weight as

F 0,481
F—a ~ (.Wé (78)
b T,
An investigation of the boundary-layer equations revealed that tremendous
simplification results if
Fa
l-F—b
“ap = C Fa (79)
l-xa 1—%,—1;

with Cp @ constant. The binary thermal diffusion calculations of Mason

are correlated with Eg. (79) in Fig. 3.

The data points correspond to molecular weight variations of 1.98 to
32.8 for the following mole fractions of the heavy species: x, - o, X, ~ 0.50,
and x, - 1.0. These were obtained in the following manner, First the asymp-
totic values of LN at high temperature for X, =~ 0.50 were estimated di-
rectly from Fig. 5 of Ref. 15. Then values of [aab(X<» 0)]T - 327°K and
[aab(x-a-l.O)]T - 327°g Were obtained from Figs. 3 and 4 of the same refer-
ence. These were then corrected in an approximate manner by multiplying by
the ratio of [aab(x s 0'50)]Asympt. to [aab(x ~ 0.50)]T - 3279+ These
calculations are summarized in Table VII.

It can be seen that the data for the absolute value of the abscissa less
than unity correlates quite well with a straight line through the origin* with
a slope of -0.5 corresponding to Cp = ~0.5. The scatter is of the same order
that experimental data shown by Mason scatters from his calculated values.

The correlation appears to begin to fail for values of (1 - Fa/Fb)/[l - xa(l -

Fa/Fb)] of unity, overpredicting ay by about 30 percent for the three

data points shown in this range. 1In 2rder to evaluate the seriousness of
the relatively poor correlation at large values of this parameter, the param-
eter is presented in Fig. 4 in terms of ma/mb and Xy Recalling that the
subscript a refers to the heavy species, it can be seen that the thermal

diffusion of a small concentration of a species with large molecular mass

*It must go through the origin as b must vanish when molecular weights
are equal,
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relative to the gas mixture (say x, < 20 percent and ma/mb > 10) or a
large concentration of a species with low molecular mass relative to the

gas mixture are not accurately represented. Fortunately, this is not a
serious shortcoming for most boundary-layer problems. The former is not a
practical problem because few boundary-layer species have molecular weights
10 times greater than the system molecular weight. The latter is unrealis-
tic, since a large mole fraction of a low molecular weight species would

not permit a large molecular weight ratio betwen that species and the system

as a whole

A study of the theoretical work of Laranjeira17 (see Appendix C) leads
to the conclusion that the Cap should behave as

[1 - %} T (80)
Tl T

-2
F
of Mason are correlated in accordance with this equation in Fig. 5.

Fa
Fy

G.ab = C

b

The %ab
The data appears to correlate better for large values of %ab but the scatter
at lower values is somewhat greater. On the basis of this cursory study,

Eq. (80) appears to offer little if any improvement in the accuracy of the
correlation. Therefore, since Eq. (79) leads to substantially greater alge-
braic simplicity, it is tentatively recommended as the correlation equation.

Further studies should be performed with additional thermal diffusion data.

Comparison of the correlation Eq. (79) with the proposed relation for
binary systems (Eq. (72)) indicates

G, = L/F, , G =1/F, (81)
e, D
=T t
D - —— (82)
X Fa + beb

A rigorous extension of these results to multicomponent systems would require
the investigation of multicomponent thermal diffusion data. Such data could
be generated by parametric solution of Eq. (53). For the present, however,

it is noted that the particular form of Egs. (8l1) and (82) suggests the fol-

lowing generalizations for multicomponent systems

83)
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and

o

C
- —t (84)

\Y
}: x.F.
{ J 3]

j=1

ol

The theoretical work of Laranjeiral7 appears to substantiate this generaliza-

tion (see Appendix C).

Substituting Egs. (83) and (84) into the proposed correlation Equation
(66) yields the result

v
5. [ - Y _K_i]
c,pDK, | F, — F.
D.T - t i i j=1 " i< (85)
i v

E: x.F
it i

j=1

Utilizing the previously defined quantity My (Eq. 9)) yields

v

c, pDK, K.

p.T = _EE__i S }: -1 (86)
1 My Fi Fj

j=1

Furthermore, using the definitions of My (Eq. (10)) and Zi (Eq. (8))
yields the ridiculously simple result

T CePDH,

iT Tagm (z; - K;) (87)

Upon substitution of Eg. (87) into the expression for diffusive flux of

the ith

of thermal diffusion (Soret effect) and diffusion thermo (Dufour effect) are

molecular species, ji’ and into the energy equation, the processes

both taken into account with surprising ease, thus allowing the inclusion of
these effects with effectively no increase in computational time compared to
their complete neglect. To illustrate, the expression for mass diffusive

flux for Fe assumed independent of temperature (Eq. (12)) simplifies to

i T T um * 3y " Sty

PDM, BZi
3y

d Ln |
. - K.) 2, . 2.4n Tﬂ (88)
1 1

This relation is developed in Ref. 6. Modification of the boundary-layer
equations to include this approximation for multicomponent thermal diffusion

coefficients is also presented in Ref. 6.
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APPENDIX A

DEVELOPMENT OF APPROXIMATE RELATION FOR
MASS DIFFUSION FLUX

Substituting the approximation for binary diffusion coefficients (Eqg.
(5)) into the Stefan-Maxwell relation (Eq. (2)) and rewriting in terms of

mass fractions yields

ox. P, J.F. J, Bl
Xl _ E K Fl Z JFJ _ FlJ:L z KlFJ (A1)
3 _ m m; - m.
J J

where, for convenience, a total diffusional mass flux has been defined as

the sum of the molecular and thermal diffusional fluxes.

- s T
Ji = 33+ Dy

3 4Ln T
3y ) (A-2)

Multiplying each side of Eg. (A-1) by mi/Fi, summing over all i, and
noting that the sum of the diffusive fluxes is zero and the sum of the mass

fractions is unity yields:

J.F. —= M. A%, - . OX.
ji: Sii . oD j{: e i R 1» j{: 7y (A-3)
: mj 7R : F, oy 7R . Fj 2y
J 1 J
Substituting Eq. (A-3) into Egq. (A-1l) results in
3%, _ K,F. j{: Zﬁ X 7 F.J; j{: K.F, -
3 3

At this point it is convenient to define several new quantities.

Z; = Myx/FiM, (A=5)
“l = Z Xij (A—6)
3

43



3

il

Ll4 Z (KJ/sz) (dFj/dT) (A-8)

3

Multiplying Eg. (A-S) by Ho and differentiating the result with respect
to y vyields

7y 8%y Myxy 3F; e L (A=)
F. dy r 2 Y H2 3y idy
i

Substituting Egs. (A-2) and (A-5) through (A-9) into Eq. (A-4) and noting
that Z:Zj = 1.0 and that the Fi are functions of temper~.ture only

]
p.T =1y, 3z (z. - K.) 3u aF
5 + i .a_T = _LQ _2_..&4._._1_1._24. _.];__J:_ .QE (A—lO)
Ji T Yy My m 3y n 3% ilpe 4aT 4] 3y
1

This is the desired explicit relation for ji in terms of gradients and

properties of species i and of the system as a whole (Eqg. (7) of report).
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APPENDIX B

A FILM-COEFFICIENT APPROXIMATION FOR
MULTICOMPONENT DIFFUSIONAL MASS TRANSFER

In this Appendix, an approximate relation for evaluating diffusional mass
transfer rates in a multicomponent gas mixture is presented, the magnitude of
the errors introduced by the approximation are assessed, and a film-coefficient
relation for extending the expression to mass transfer in a multicomponent chem-
ically reacting boundary layer is proposed. The film-coefficient approximation
is based upon arguments introduced in Ref. B-1l, and represents an extension to
the results presented therein. The approximate relation for mass diffusion
flux in a multicomponent mixture is presented in Section B.1l. A description

of the proposed film-coefficient approach is presented in Section B.2.

B.1 A MODIFIED FICK'S LAW FOR DIFFUSIONAL MASS FLUX IN A MULTICOMPONENT
MIXTURE

It was shown in Appendix A that the bifurcation approximation for binary
diffusion coefficients yields the following explicit relation for the diffu-
sional mass flux in a multicomponent gas mixture, ji’ in the absence of thermal
and pressure diffusion and if the diffusion factors, Fi' are assumed indepen-

dent of temperature:

5o - PDup 1225 (75 - X)) 3y (8-1)
i M7 | 8y My Jy

In the event that all binary diffusion coefficients, #.., are equal (ﬁij = 312),

— 43
the F. can be set equal to unity. Then Z2; = K;, D=5y, “2/“1 = 7, and
Eq. (B-1) reduces to Fick's Law:
. K
i = - Pl gy (3-2)

It is noted that the form of Fick's law provides the motivation for express-
ing the diffusional flux in terms of a film coefficient (involving the product

pﬁlz) and a driving potential, AKi.

Examination of Eq. (B-1) for multicomponent diffusional mass transfer

reveals that an equation similar to Fick's law (Eg. (B-2)) results if the
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second term in Eg. (B-1) can be ignored. The relative magnitudes of the
first and second terms in Eq. (B-1l) have been examined for several multi-
component gas mixtures and it has been found that the second term is indeed

relatively small. The accuracy checks were performed in the following manner.
The first step was to select a chemical system, mole fractions, X4 and

i
ji = 0. The mole fraction gradients, axi/ay, were then computed from

diffusion fluxes, ji, satisfying the requirements that %;x. = 1 and

the Stefan-Maxwell relations (neglecting thermal diffusion)

ox., x.x. 3. J.
5 r j{:_&_l e R (B-3)
% . pbij Kj K,
3
Recalling the definitions,
Mex
z;, = Figi (B-4)
ir2

and

i
uf”tg

enabled forming an expression for the "2" gradient in terms of the mole frac-

tion gradient.

azi _ mixi 1 Bxi 1 ﬁi dx. (8-6)
dy Fi“z Xg 3y My Fj 3y

3

The "2Z" gradient was then computed from Eq. (B-6), employing the specified

mole fractions and the mole fraction gradients computed from Eq. (B-3). The
1

F;'s were taken to be proportional to m; in these studies. Neglecting the

auz/ay term in Eg. (B-1), the diffusional mass flux is given by

pDu2 azi
i Muy ¥y

(B-7)
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The approximate ji computed by Eq. (B-7) were then compared to the spe-
cified ji to assess the accuracy of Eg. (B-7).

Several chemical systems were examined as described above. The results
of one of the more severe tests are presented in Table B-1l for the system
H2, 0, €O, and CO2 (representing a molecular weight variation of 2 to 44).
Based upon the average absolute error of 6.85 percent and maximum error of
18.37 percent, it can be concluded that Egqg. (B-7) is reasonably good for
representing diffusional mass transfer in multicomponent gas mixtures. It
is noted that when all diffusion coefficients are assumed equal, Eq. (B-7)

reduces identically to Fick's law (Eq. (B-2)).

It is emphasized that Eq. (B-1) is more accurate than Eq. (B-7) and, as
such, should be employed for detailed computation of mass transfer events.
When an approximate treatment is adequate, such as for many engineering ap-
plications, an integrated form of Eq. (B-7) may be employed for detailed
computation of mass transfer events. When an approximate treatment. is ade-
quate, such as for many engineering applications, an integrated form of Eq.
(B-7) may be employed with fair accuracy. The integrated form or "film
coefficient" representation of diffusional mass transfer processes in the

multicomponent boundary layer is considered in the next section.

B.2 A FILM-COEFFICIENT APPROACH

In this section, the approximate relation (Eq. (B-7)) developed above is
utilized to formulate a film-coefficient representation of mass transfer in
the multicomponent boundary layer. An "Ohm's Law" type expression of the
form, ji = CAP 1is desired, where C is a film-coefficient and AP 1is a
suitable driving potential for mass transfer. A form for the driving poten-
tial is rationalized in Section B.2.1 whereas an approach for evaluating

the film coefficient is presented in Section B.,2.2.

B.2.1 The Driving Potential

In order to rationalize a form for the driving potential it is appro-
priate to consider the boundary-layer conservation equation for molecular

species in the absence of thermal diffusion.

aKi aKi 3 azi
puaT-+pv— = ‘é? pﬁeff—a—i,— +¢li (B-8)
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TABLE B-1

ERRORS IN DIFFUSIONAL MASS FLUX INTRODUCED BY
NEGLECT OF auz/ay TERM IN EOQOUATION B-1

Diffusion Flux, Percentage Absolute

Species, Mole Fraction, Diffusion j;, Neglecting Error in j4i With
i X Flux, j; Duz/ﬁy Term Suz/éy Term Neglected
1, .076923 - .225000 - .234988 4.44
o .076923 -1.025000 -1.013632 1.11
co 769230 . 375000 .338282 9.80
Co, .076923 .875000 .910338 4.03
Hy .062500 - .225000 - .233771 3.89
0 .062500 -1.025000 -1.022300 0.26
Cco .625000 . 375000 .306095 18.37
co, .250000 .875000 .949976 8.56
i, .062500 - .225000 - .233236 3.66
(@] .625000 .375000 .331520 11.59
co . 250000 -1.025000 - .997998 2.63
CO2 .062500 .875000 .899714 2.82
H, .052631 - .225000 - .232314 3.25
0 .526315 .375000 .315384 15.89
co .210527 -1.025000 -1.017707 0.71
co, .210527 .875000 .934637 6.81
H2 . 250000 - .225000 - .259263 15.24
o] .625000 .375000 .360266 3.92
CcO .062500 -1.025000 -1.011923 1.27
co, .062500 .875000 .910921 4.10
H, .210527 - .225000 - .256334 13.91
¢} .526315 .375000 .322715 13.94
Cco .052631 -1.025000 -1.020750 0.41
CO2 .210527 .875000 .954369 9.07
H2 .210527 - .225000 - .254236 12.97
0 .526315 .375000 .346711 7.54
cO .210527 -1.025000 - .992857 3.14
co, .052631 .875000 .900383 2.89
H, .181818 - .225000 - .251650 11.82
o .454546 .375000 .327074 12.77
Cco .181818 ~1.025000 -1.013292 L. 14
co, .181818 .875000 .937868 7.48
Average Absolute Error % 6.85
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In this equation, diffusional transport is represented by the approximate

Equation (B-7) and an effective diffusion coefficient has been defined as

o
(B-9)

)
i
ol
=
SR

eff

The frozen, or "nonreacting”, case will be considered first, for which the

creation term, wi = 0.

It will be useful for subsequent analogy arguments to consider also the
boundary-layer species conservation equation in the absence of chemical reac-
tions and with all diffusion coefficients equal.

JdK. 3K, 3 aKi

1 1
pu 35— + pv Sy = 3y (pﬁl2 3y (B-10)

For simple Couette flow (with constant properties and no pressure dgradient),
the terms on the left-hand side vanish and Eq. (B-10) may be integrated di-
rectly to yield the species mass flux at the wall, jiw’ in terms of the

channel height, §.

3. = peueCM(Ki - K. ) (B~11)
w w e

where the simple Couette flow film coefficient for mass transfer, peuecM =
pﬁlz/h. Thus, for simple Couette flow, the mass-transfer coefficient is
related directly to the diffusion coefficient, 312. When the convective
terms on the left-hand side of Eq. (B-10) cannot be ignored, the film-coef-
ficient driving-potential Eg. (B-1l) is still appropriate for calculating
the species mass flux. The driving potential is clearly represented by the
mass fraction difference across the boundary layer (Kiw - Kie)' but the
film coefficient must now include the effect of mass transfer by both con-
vective and diffusive mechanisms. The results of a large number of experi-
mental investigations and data correlations are summarized and presented by
Spalding (Ref. B.2) where it may be noted that for boundary-layer flows the
mass~transfer coefficient depends approximately on ﬁiés if all other
things remain unchanged. The actual exponent varies between 1/2 and 3/4
for the wide range of conditions considered, the 2/3 exponent being a rep-
resentative average value. Thus for boundary-layer flows, the diffusion
events, represented by the right-hand side of Eq. (B-10), depend upon the
2/3 power of the diffusion coefficient and significant mass transfer
results from convective events, represented by the left-hand side of Eq.
(B-10) .

49



Examination of Eg. (B-8) for nonreacting multicomponent Couette flow
suggests a film-coefficient driving-potential relation for mass transfer

similar to Eq. (B-1l), but with a "2Z" rather than a "K" driving potential.

peueCM(Zi - Zi ) (B-12)
w w e

where the mass-transfer coefficient is obtained by direct integration of
Eq. (B-8) with the left-hand side set to zero.
pb

eff
peueCM = R (B-13)

Equations (B-~12) and (B-13) clearly represent a solution to the multicomponent
nonreacting species conservation equations for Couette flow. Attention will

now be directed to species conservation in the boundary layer.

Examination of Eg. (B-8) and consideration of the above discussion sug-
gests that diffusional mass transfer in a multicomponent nonreacting (wi = Q)
boundary layer may be represented by a "Z" potential and convective mass
transfer by a mass fraction potential. It would seem reasonable to expect
that the overall mass transfer resulting from both diffusional and convective
events can be represented by some kind of an average potential involving both
Z. and Ki' For example, the driving potential could be represented by
A(ZIKE_Y) where the exponent, y, would depend upon the relative significance
of diffusional transport for the particular situation. For Couette flow,

y = 1.0, whereas for boundary-layer flows, vy < 1.0. The proper value of Yy
for boundary-layer flow is not apparent and may be established with confidence
only after testing the postulated potential by correlating either experimental
data or exact numerical solutions of the boundary-layer equations. Recalling
the earlier discussion on boundary-layer mass transfer for equal diffusion
coefficients, it is postulated that the relative contribution of mass transfer
by diffusional and convective processes can be taken into account by use of a
2/3 power dependence on the diffusion coefficient. On the basis of this
observation, a Yy of 2/3 in the Z, K driving potential would take proper
account for the relative mass transfer by diffusional and convective events.
The film-coefficient equation for mass transfer in the multicomponent, non-

reacting boundary layer may then be written as follows

3 - * - * g
i = Peu Cy(ZY 2t ) (B-14)
w w e
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where

zIKli‘Y
Z* = B-15
1 ZZYKI.'Y ( )
—~ 133
J
and vy = 2/3 for boundary-layer flow. The normalizing summation is included

so that the Zi will sum to unity.

The above film-coefficient approach for the nonreacting boundary layer
may be extended to the reacting boundary layer in the following manner. By
applying the Shvab-Zeldovich transformation to Eq. (B-8) (multiplication by
the mass of element k in molecule i, Ogey v and summation over all sPeciesB-
the creation term, wi' is eliminated. As a consequence, the resulting equa-
tion for conservation of chemical elements in a reacting boundary layer takes
the same form as the molecular species conservation equation for the nonreact-

ing (frozen) boundary layer

oK, 3K, 3 3%
y

PUFs T PV3 = 3y Pbare dy (B-16)

where

*

%= Z“kiz’i‘ (B-17)

i

It follows that the film-coefficient equation for mass transfer in the multi-
component, chemically reacting boundary layer is the same as Eq. (B-14) with

the z¥ replaced by ﬁi

I = peueCM(’z]tw - zie) (B-18)

where is the mass transfer rate of chemical element X, independent of

Ix
molecular configuration.

Equation (B-18) is the desired form for a film coefficient approach to
mass transfer in the chemically reacting, multicomponent boundary layer. It
includes a driving potential that has been rationalized on a phenomenological
basis. In the next section an approach for evaluating the mass-transfer co-

efficient, peuecM, is described.
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B.2.2 The Mass-Transfer Coefficient

The mass-transfer "film-coefficient" is expressed as the product of the
boundary-layer-edge mass velocity, Peler and a Stanton number for mass trans-
fer, CM' It seems reasonable that the Stanton number for mass transfer in
the multicomponent boundary layer is related to the Stanton number for heat

transfer, C in the same manner as for a binary mixture

HI

Cy = CH(Le)3/3 (B-19)

where the Lewis number is defined in terms of the effective diffusion coef-

ficient defined earlier (Eq. (B-9))

Le = (B-20)

with a the thermal diffusivity. Since the effective diffusion coefficient
is a property of the mixture at a point, it will generally vary throughout
the boundary layer and some boundary-layer reference state should be employed
for its evaluation as is often done for the evaluation of all properties in
the compressible boundary layer. For low-speed flows, the reference state
could be taken as the arithmetic average between wall and boundary-layer

edge conditions, whereas for high-speed flows, a reference state such as

that described by EckertB-4 would seem appropriate.
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APPENDIX C

A REVIEW OF THE LARANJEIRA MODEL FOR MULTICOMPONENT
THERMAL DIFFUSION COEFFICIENTS AS IT RELATES
TO THE PRESENT MODEL

In Ref. C-1, Laranjeira presents a th=ory For thermal diffusion factors
based on free path concepts. On the basis of his physical model, he then
postulates a first-order approximation to his theory which bears a striking

T developed in the present re-

resemblance to the approximate model for D,
port. A thorough evaluation of the rather complex dissertation of Laran-
jeira has yet to be accomplished. However, at the present time it can be
said that the Laranjeira model tends to substantiate th= major assumptions
which were made in the development of the present model, namely: 1) the
proposed equation for DiT (Eg. (66)), and 2) the generalization of Egs.
(81) and (82) for a binary system to Egs. (83) and (84) for a multicomponent
systém. His results suggest that a physically more sound correlation for
thermal diffusion data might be G; = l/(Fi);5 rather than G; = l/Fi' How-
ever, until further data correlation reveals that the former is indeed more
accurate, the latter is currently favored since it leads to substantially
simpler results.

The free path theory of Laranjeirac_l is an extension of the earlier
work of Frankel$™? Furryc_3 FartnS~? and Whalley and winter$™° It is
based on two mean free paths: one, zi, being the mean distance over which
the molecules of kind i should carry the attribute of the number density;
and the other, zi, being the mean distance to carry the attribute of the
root-mean square of the thermal velocities. He postulates that these are
related by

L= (1 + ai) Ly (C~1)

where a; would be expected to depend upon the force laws acting between
colliding molecules. Specifically, he points out that a; can be thought
of as depending upon the "hardness" of molecular interactions. He investi-
gated a rather extensive set of binary thermal diffusion data for the rare
gases and found that a; usually fell between 0.10 and 0.40.

Although free path theory is mathematically inexact (see Ref. 6, p. 106},
the equation for diffusion velocities is shown for binary mixtures to be
formally identical to that given by the exact Chapman-Enskog theory when
expressed in terms of the coefficients for concentration diffusion, thermal
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Aiffusion, and pressure diffusion. The inexactness enters from the fact
that these coefficients are expressed in terms of mean free paths and lthus
are not identical with the exact form obtained by evaluation of the velocity
distribution function. He does, however, use a highly refined form for the
mean free path (nearly equivalent to Maxwell's mean free path corrected for
persistence of velocities after collision, see Ref. 6, Chap. 5). Larenjeira
points out that this form has been satisfactory when comparing experiments

with Chapman-Enskog's theory.

At this point, his equation offers little if any simplification to rigor-
ous theory for multicomponent thermal diffusion. However, he then employs a

first-order approximation to the zi

£, = m.4/UiK (C~2)

where K 1is a constant for a gas mixture

1.16 m 2 4
K « —t—n N/ Cc-3
2 - XJ ij ( )
J

and

where nj is the number density of species j. Substituting into his more

rigorous equations, he obtains the following result for binary mixtures.

_ [ [
PNJPEELNE EL
avbly XaAa + XbAb
where
ay = (aa + ab)/2 (c-6)
Y

Aa « ma 94 (c-7)

1- =
al = 7o ™y A (c-8)
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a T T-a_, % (=9

13
a
a
TIf the a, =g, =a, is presumed to be constant and ¢, is defined as

Cp = (1 - aa)/2 (C-10)

Equation (C-5) reduces to

1 ]

mbnob N mauoa
1 Xama 0a + Xbmb Ob
. L
Noting that Aa behaves very much like Faz,
F - F
[a ab] 2 Ct b% a jg (C—12)
1 XaFa + Xbe

This should be compared to the empirical correlation Eq. (79) developed in
the present report

Fy, = Fa

o = ¢ (Cc-13)

ab t XaFa + beb

Laranjeira shows that Eq. (C-5) reduces to his own more refined theory at the

asymptotic limits
(1) ma-» mb and oa-» AN
(i) m/m —= and o fo — =

At intermediate conditions, he shows that the effect of the approximation of

zi is such as to yield a somewhat different concentration dependence.

Laranjeira then extends his elementary theory to multicomponent mixtures,
developing general expressions in terms of Zk and ay (again using Eq.
(C-1)). Following the same procedure as for binary mixtures, he obtained

the result
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i_ £ 3 (c-14)

A,
7

X 2
= ¥k

If the a; are again considered as a universal constant, Eq. (C-14) becomes,
with the aid of Egs. (C~10) and (C-11)

[aij]l ~ ctij;_p_%i_ (c-15)

The Eaij] is related to K; , a multicomponent thermal diffusion ratio which
he defined by *

KT. = E: XX 0y (C-16)

T has not been studied

The relation between his multicomponent KTi and D,
at this time. It is significant to note, however, that the form of Eg. (C-15)
is such that it does tend to corroborate the generalization from Eq. (82) to

(84) which, although logical, was done without physical justification.

Laranjeira generated thermal diffusion data for several isotopic ternary
mixtures. He used this data in an attempt to substantiate his multicomponent
theory with moderate success. To quote his general conclusions, "In spite of
the elementary character of our treatment and the approximations which have
been introduced in order to obtain simple equations, the most important fea-
tures of thermal and pressure diffusion are satisfactorily explained and the
agreement with experiments is reasonable." Further study of his correlations

is required in order to assess the meaning of the word "reasonable."
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