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A STUDY OF THE TRANSIENT FLOW FIELD AHEAD OF A SPHERE
WHICH HAS BEEN STRUCK BY A NORMAL SHOCK WAVE
By Richard W. Barnwell

NASA Taengley Research Center
ABSTRACT

When a normal shock wave moves into a still gas and strikes a blunt
obstacle, the wave is diffracted, and a shock layer is formed on the upstream
side of the obstacle. This shock layer adjusts with time until steady flow is
established.

This paper presents numerical results for the norﬁal-shcdkawave-—sphere
interaction problem for perfect- and real-gas flow fields.

A finite difference method is used to solve the governing flow equations.
The differencing technique which is employed is a modification to the technique
which P. D. Lax developed for treating inviscid, unsteady one-dimensional-flow
fields containing embedded shock waves.

Results are presented for the unsteady behavior of the shock detachment
distance and the stagnation-point pressure. The cases which are treated cover
wide ranges of the ratio of specific heats and the incident shock Mach number.
The results show that the growth of the shock-layer thickness is much slower

than the adjustment of the stagnation-point pressure to its steady value.
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A STUDY OF THE TRANSIENT FLOW FIELD AHEAD OF A SPHERE
WHICH HAS BEEN STRUCK BY A NORMAL SHOCK WAVE
By Richard W. Barnwell

NASA Langley Research Center
INTRODUCTION

The transient flow which occurs when a normal shock wave moves into a
still gas and strikes a sphere is to be investigated. This type of flow occurs
in a shock tube which is being used as & supersonic wind tunnel during the
period when steady flow about the model is being established. The flow field
is assumed to be inviscid and adisbatic. Numerical results are presented for
the time histories of the stagnation-point pressure and the shock-layer thick-
ness along the stagnation streamline for a number of perfect-gas cases and two
equilibrium-air cases.

The shock-wave—blunt-body interaction problem can be approximated by
assuming that the body is placed in a still gas and accelerated instantaneously
to supersonic speed. Cabannes (1), Bausset (2), and Miles, Mirels, and Wang (3)
have used thils assumption to obtain approximate analytical expressions for the
time history of shock-layer thickness. Experimental results have been obtained
for the transient behavior in the flow fields of various blunt bodies which
have been washed by normal shock waves by Davies (4), Bryson and Gross (5), and
Offenhartz and Weisblatt (6). Numerical results for diffraction of normal
shock waves by & flat-nosed cylinder and a rectangular cylinder with its axis
perpendicular to the flow have been obtained by Butler (7), who employs a

numerical techrnique similar to the one which is used here.
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The Numerical Method

In the present investigation, numerical solutions are obtained to the
initial value problem for the partial differential equations which govern
unsteady inviscid gas flow and the boundary conditions for flow over g sphere.
These solutions are calculated with a finite difference method which is based
on a technique of first-order accuracy that P. D. Lax (8) developed for
treating one-dimensional unsteady inviscid flow fields containing embedded
shock waves. The virtue of the Lax technique is that the shock waves are not
represented by apparent discontinuities in the flow property profiles, but
rather by continuous profiles with steep gradients in the vicinity of the
shocks.

The natural coordinate system for the present problem is a spherical polar
system with its origin located at the center of the sphere and its axis directed
along the étagnation streamline. The governing partial differential equations
are used in conservation form. The equations which are employed at points away
from the axis in the present work are:

Continuity:

g%(pr) + é%{pur) + g%(pv) 4+ pu+ pv cot 8 =0 (1)

Radial momentum:

gag(pur) + ga; (p + pu2)1] + —a%-(puv) -p+ p(u2 - v2) + puv cot 8 = 0 (2)

Tangential momentum:

9 9 9 - 2 =
at(pvr) + ar(puvr) + ae(p + p ) + 2puv + pvecot 6 = O (3)
Energy:

; (oEr) + BI‘(pu.‘Hr) + 5649VH) + puH + pvH cot 8 = O (&)



where

E=e+ %(92 + v£§
H=h+]2-=(112+v2)

In these equations, r and 6 are the standard polar coordinates, u and Vv
are the velocity components in the r and 8 directions, respectively, p,
p, e, and h are the pressure, density, internal energy, and enthalpy of the
gas, and t ds the time.

Indeterminacies occur in equations (1) to (4) on the axis (6 = 0), where
v vanishes and cot 8 is infinite. These indeterminacies can be removed with
the aid of l'Hospital's rule. For example, the continuilty equation for 6 =0

is given by

-a%(pr) + a—a-(pur) + 2%(pv) + pu=0 (5)

T

The general form of the governing equations is

+Dj =0 (6)

am; B/ o0
5 T Y5

The Lax technique can be extended to the problem which is being treated by
replacing the partial derivative OA;/dt in equation (6) by the forward finite

difference expression

1 (A )“At - L))" + (A & + K (A-)t + (A-)t
a\Vi)r,e T ( i)r+Ar,9 i)r-Ar,e 1/r, 0400 */r,0-00

and substituting the central difference expressions

—EA%F[:(BZL);W,B - (Bi):.Ar,g_}



and
2L (et _( )’0
200 [(Cl>r,e+ae €1i)r,0-00

for the partial derivatives OB;i/0r and OC;/06, respectively. The quan-
tity K in the forward finite difference expression has the value sec 6 for
the momentum equations (egs. (2) and (3) above). For the continuity and energy
equations (egs. (1) and (4), respectively) K has a value of unity. This
modification to the finite difference expressions for the time derivatives of
the momentum equation is made in order that they will vanish for uniform flow

parallel to the axis. The average value

%[(Di)zmr,e ¥ (Di>:'-Ar,9 * (Di):,eme + (Diﬁ,eﬁae}

is used to represerit the undifferentiated term in equation (6).

When these difference expressions are substituted into the partial dif-
ferential equations and expanded about the point (r,e,t), the following equa-
tion results:

%A
3t2

0Ay | OBy , OC4
5 T T %

) 2 32 2 324,
1+}T(Ar) Ay, 1 (20) 2 o(ad) (1)

1
+Dj = ~= At
T2 A 32 B A 32

This equation differs from the general form of the partial differential equa-
tions given by equation (6) because of the presence of the terms on the right-
hand side. These terms cause the inviscid flow properties to be continuocus
across shock waves so that computations can be made in the vicinity of shocks
in the same manner as elsewhere.

The procedure which is used in this investigation consists of using the

forward time difference given above and another time difference given by



l(At-l-A’clAt N 1[r, Eat S\ EBE L (Yo
X3 i)r,e ""2‘( i>r+Ar,e+( i)r-Ar,e *3 ( i>r+2Ar,e’ (Ai>r,9 +( 1)r-onr,6

on alternate time intervals. When the expansion for the first form of the time
differences in equation (7) is replaced by that for the second form, the

following equation results:

OA; OBy . 304 g, %y 5
¥+-5;+§5-+Di——§AtS;§—+O(A> (8)

It has been found that the solutions which this alternating procedure yields
are more accurate than those which are obtained when the first form of the time
differences is used exclusively.

It has been shown that the Courant-Friedrichs-Lewy stability conditions
are sufficient for both of the computational procedures mentioned above if
allowance is made for the mixing of the flow properties in the vicinity of the

smeared shocks.

RESULTS

Detailed Time-History Calculations
The diffraction of the incident shock wave by the sphere and the subse-

quent motion of the reflected shock wave for 7 = 1.4 and Mg = 5.55

(M, = 1.70) are shown in figures 1 and 2, where the Mach numbers Mg and M,
are those of the incident shock wave and the uniform flow behind the incident
shock, respectively. The nondimensional time which is used is T = ct/&n,
where t 1s the time after shock impingement, ¢ is the initial speed of the
reflected shock, and B, 1is the steady shock detachment distance. The shock

waves shown in the figures are positioned at the midpoints of the rapid rises



'in the pressure profiles across the shocks. The computation is initiated at

T = -0.21 before shock impingement has occurred. The shock wave moves down-
stream, strikes the sphere, and is reflected. Initially, the reflection is
regular. When the angle of inclination of the incident shock to the surface
has increased, Mach refiection occurs. Examples of regular and Mach reflection
are shown in figure 1 for T = 0.088 and T = 0.37, respectively.

The movement of the reflected shock wave as steady flow is approached is
shown in figure 2. The numerical results for the shock wave location at
T = 5.28, and the experimental results of Ladenburg, Winckler, and Van
Voorhis (9) are in agreement near the axis where the numerical solution has
reached the steady state. The numerical solution is still slightly transient at
points away from the axis and in the vicinity of the shock wave.

In figure 3, the transient stagnation streamline pressure distributions are
shown. The pressure drops rapidly after the initial overpressure so that the
pressure profile within the layer approaches its steady configuration before the
shock detachment attains its steady value. The pressure profile at T = 0.12
shows the maximum value of the stagnation-point pressure that is encountered
during the computation. It is seen in the figure that the maximum overpressure
compares favorably with the pressure behind the reflected shock in the one-
dimensional shock reflection problem. The time <+ = 0 corresponds to the time
at which the incident shock should reach the body according to an exact one-
dimensional sghock computation. The numerically determined overpressure occurs
a little later because the incident and reflected shock waves are smeared over
several mesh spaces, and it takes several time steps for the reflection to

occur.



The pressure distributions at T = 5.28 as determined by employing the
two forms of the time differences alternately and by using the first form
exclusively are compared in figure 3. The alternating procedure is seen to
yield the best results. The stagnation-point thermodynamic properties are
less in error, and the profiles are smeared less at the shock wave. It should
be noted that the mesh spacings which are used for the two computations are

identical; only the methods of computation differ.

Shock Detachment Distance Histories

Numerical results for the transient behavior of the shock detachment
distance for several perfect-gas cases are presented in figure 4. The nondi-
mensional gquantity 8/8°° is plotted against T where the steady shock
detachment distances 9, are determined from the results of Van Dyke and
Gordon (10) and Lomex and Inouye (11). The cases for 7 = 1.1 and 7 = 1.k
span a wide range of incident shock Mach number Mg. As M, approaches unity
the shock layer becomes large and difficult to compute when the steady state
is approached. TFor this reason, the case 7 = 1.4 and Mg = 2.51 (M, = 1.20)
is terminated before steady flow is established. Since ¥, 1is small for all
values of Mg when 7 1s large, only one case is presented for 7 = 5/5.

Results for two computations are shown in figure 4 for the case y = 1.1
and Mg = (M, = 4.26). Finer mesh spacings are used for the computations
indicated by the circles. The results show that the shock detachment histories
are not very sensitive to the size of the mesh spacings.

All the curves in figure 11 lie in a fairly narrow band. This indicates
that the nondimensional time 1 is an effective scaling parameter. In general,
the curves are arranged in ascending order within the band according to the

value of M,.



Several cases are treated for 7 = 1.4 +to determine the asymptotic
behavior of the shock detachment histories as Mg 1s increased. It is seen
in figure 4 that the histories approach the limiting case for fairly low values
of Mg; the curves for the cases Mg = 30 and Mg = 3.7 coincide for all
means and purposes. In addition, the history of the shock detachment distance
for the intermediate case 7 = 1.4 and Mg = 5.55, the case which is illus-
trated in figures 1, 2, and 3, 1s represented by this curve.

Since the curves in figure 4 lie in a narrow band although 7y varies
over a wide range, it would appear that real-gas effects should not affect the
shock detachment distance histories sppreciably. Two cases for equilibrium
alr were treated to check this observation. These cases are illustrated in
figure 5. It is seen that the curves for these cases lie within the band of
perfect-gas solutions shown in figure L.

A perfect-gas case is also shown in figure 5. The governing parameters 7
and Mg for this case were chosen such that the Mach number M, and the ratio
of enthalpy to internal energy in the region of uniform flow behind the inci-
dent shock wave. would match those of the equilibrium case where Ug = 10,000 fps,
Py = 10-2 atmosphere, and T, = 32° F. It is seen that the curves for the
shock detachment distance histories for these cases coincide.

The equilibrium cases shown in figure 5 were computed with the aid of a
curve fit of the thermodynamic properties. It can be seern from the governihg
differential equations, equations (1) to (4), that the finite difference equa-
tions determine the density p and the internal energy e at each new grid
point. The curve fit is used to determine the pressure p and the enthalpy h

in terms of p and e.



Stagnation-Point Pressure Histories

The numerical results for the stagnation-point pressure histories for
several represertative cases are presented in figure 6. The nondimensional
pressure Pstag/Pm is plotted against +~. Initially, an overpressure occurs
at the stagnation point. Then the pressure drops ragpidly and approaches its
steady value monotonically. The results of Butler (7) show that the transient
stagnation-point pressure for a flat-nosed cylinder undershoots the steady value
when 7 is low and Mg dis high. This phenomenon is not observed in the pres-
ent results for the sphere. The maximum overpressures are in fair agreement
with the pressures behind the reflected shocks for the one-dimensional shock
reflection problems with similar values of Mg and 7. The numerical results
for the steady stagnation-point pressures are in good agreement with the exact
values.

The stagnation-point pressure histories for the perfect-gas case Mg = 9.7
and 7 = 1.24 and the equilibrium-air case Ug = 10,000 fps, D, = 1072 atm,
and T, = Z50 T are compared in the figure. It is seen that these histories
are similar.

A comparison of the results in figures 4 and 5 with those in figure 6
shows that the stagnation-point pressure approaches its steady value more
rapidly than the shock detachment does. The pressures are within about 10 per-
cent of the final values for T = 1. At this time, the shock detachment dis-
tances have reached only about 50 percent of their final values. The shock
detachments approach their final values at T = 5 or 6. The asymptotic behavior
of the other stagnation-point thermodynaemic properties is similar to that of the

pressure.



The mesh spacings A8 and Ar are chosen such that 1° € A9 < 2° and
Ar Sw/lo. It has been found that the shape of the curves for the stagnation
point pressure histories is influenced by the mesh spacings. The waviness of

these curves is reduced if the size of the mesh spacings is reduced.

Approximate Analytic Solution
A closed-form solution can be obtained for the shock detachment distance
when M, is large and 7 1is near unity. For these conditions, it can be
assumed that the shock is concentric and the tangential velocity gradient
varies linearly with distance behind the shock in the stagnation region. The
density varies only slightly with position and time. The céntinuity equation
is integrated across the shock layer using the one-strip method of integral

relations. The time-dependent detachment distance is given by

5 =5,(1 - 1) [1 - (2 - K)e‘KT] -

where

28, @R, -, ]

The quantities subscripted with b and s are evaluated at the body and the
shock, respectively, for steady flow.

The approximate solution for 7 = 1.1 and Mg =« 1is shown in figure L,
CONCLUSIONS

It is shown that the transient flow gbout a sphere which has been washed

by a normal shock wave is not coupled. The stagnation-point pressure adjusts

10



to the steady value more rapidly than the shock detachment distance. In addi-
tion, it is shown that the shock detachment distance histories of a number of

perfect-gas cases can be scaled effectively.
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