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SUMMARY

Functional analysis is used to derive nonlinear counterparts of
the linear stability derivative and superposition integral formulations
for the aerodynamic pitching moment. The recurrence in the nonlinear
formulation of integral terms accouhting for the past is noted and
explained on the basis of an energy balance. The results suggest that
the equation of motion characteristic of free-oscillation wind-tunnel
experiments may be a Liénard equation. A method of extracting the
nonlinear elements of the equation from experimental records is shown
to have a close connection with the energy relationships existing between

free and forced oscillations.
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NOTATION

Cp pitching-moment coefficient, Ritching moment
qOSZ
Crg [o(8), a(E); ©,7] indicial pitching-moment response measured at

t per unit step change in o occurring at
T, with g held fixed at q(T)

Cmq[a(g), a(e); t,7] indicial pitching-moment response measured at
t per unit step change in g occurring at

T, with o held fixed at a(T)

CN , normal-~force coefficient, N
. 98
Glul(e), v(e)] functional notation: value at & =1t of a

function F(t) which is dependent on all the
values taken by the two argument functions

u(t), v(&) over the interval 0 <t <t

A ; characteristic length

N » normal force

q dimensionless pitching-velocity parameter, %l
o

4 ‘ dynamic pressure,’% pOVO2

S characteristic area

t time

tg, time required for the indicial response to

attain steady state following an instantaneous
change in angle of attack or pitching velocity -
Vo ' flight speed |
W aircraft weight

iii
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When @, &, and q are used as subscripts with a normsl-force or

pitching-moment coefficient, a dimensionless derivative is indicated;

thus

angle of attack

do &%
dp ’ g¢f
o,
dt

angle of pitch

running variable in time

atmospheric density

value of time

number of characteristic lengths traveled in time 1%,

circular frequency

£ at which a step change in o Or ¢ occurs

iv

Cm = S/,



ON NONLINFAR LONGITUDINAI: DYNAMIC STABILITY
By Murray Tobak¥*
Ames Research Center

National Aeronautics and Space Administration
Moffett Field, Calif., USA

1. INTRODUCTION

Many of the classical concepts of dynamic stability theory, for
example, stability derivetives, indicial functions, and4superposition,
were initially derived under the assumption of linearity. The question
can be asked: How, or to what extent, must one revise these concepts
when the assumption of linearity becomes untenable? Results presented
in (1) suggest the possibility of answering this question, at least in
part, when it is studied within the framework of functional énalysis.

It is of interest to situate functional analysis historically in
the general line of development of dynamic stability theory. We shall
try to show that it represents a logical continuation of this line from
the linear into the nonlinear domain. Consider an aircraft undergoing
a two-degree-of-freedom longitudinal motion consisting of arbitrary
variations in time of angle of attack o and dimensionless pitching
velocity q. The first formulation for the pitching-moment coefficient

at time %, given by Bryan in 1911 (2), is shown as Eq. (1):

Cnt) = a(5)Cpg(e) + )Gy () (1)

This formulation is based on two assumptions; first, that the pitching

moment depends only on the instantaneous values of o and g, and

*Research Scientist
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second, that it depends linearly on « and q. The coefficlents in Eq. (l),
the stability derivatives, are constants; the infinity symbol indicates

that they are to be evaluated for steady flow, that is, as though the

flow conditions existing at time t had existéd for all previous time.

An important development in the theory came with the recognition that the
pitching moment depends not only on the instantaneous values of « and g,

but also on their past values. Introducing the notion of indicial functions,
that 1s, the responses in 1lift and moment to step changes in o and q,

and that of superposition, led to a new formulation for the pitching

moment (cf. (3) for a comprehensive bibliography), namely,
t a0, A 5 dg
Cp(t) = Cyu(0) +f Crg,(t - ) 5= T +f Cmq(t - T) 3= ar (2)
[o) o]

Here, the indicial pitching-moment responses are shown as Cmm(t - 1) and
Cmq(t - 7). One sees that Cm(t) depends on the whole past of « and g,
since all values taken by o and q in the interval zero to t appear
within the integrals. Under the assumption of linearity, this formula-
tion 1s exact; 1t eliminates entirely one of the two assumptions of

Eqe (1). For the low reduced frequencies characteristic of aircraft
motions, Eq. (2) may be reduced to an equation correct to the first

order in frequency:

Ou(®) = o(5)O () + a(t) Oy () + (8) = Cig (3)

where 0

v
Oy == [ Enal=) - Cug(n) lar

(0]

The reduction restores the form of Eq. (1) but includes the additional term

(&l/Vo)Cm& which, in effect, accounts for the past within the order of
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the approximation. Now, still under the assumption of linearity, it
was the development of an integral form for Cp(t), Eq. (2), that
enabled one to see and remove the deficiencies of Eq. (1). Analogously,
it is logical to seek a new integral form for - Cm(t), now independent
of a linearity assumption, which might enable one to see and remove the
deficiencies of Eg. (2) and (3). Since Eq. (2) is exact within the
linearity assumption, the new form must include Eq. (2) as a special
case, and so must contain those features of Eq. (2) which are indepen-
dent of a linearity assumption. Accordingly, the new form for Cm(t)
must be an integral form which depends on o and 9 and on all the
values taken by o and g within the time interval zero to +. This
description of Cp(t) corresponds precisély ﬁith the description of a
functional, as originated by Volterra (4). The theory of functional
analysis, in its most general form, does not depend on a linearity
assumption. The theory, therefore, provides a logical framework for

continuing the linear theory into the nonlinear domain.
2. ANALYSIS

It will be shown how the indicial responses and Cp(t) may be
defined as nonlinear functionals. Then, suitable approximations will

be introduced which will reduce the equations to more tractable forms.
2.1 Definition of Nonlinear Indicial Responses

Two motions are considered, as shown on Fig. 1. First, beginning
at & = 0, the aircraft undergoes the motion being studied, a(t),

g(€). At a certain time T, the motion is constrained such that the
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values of o and ¢ at time T remain constant thereafter. The‘
pitching moment corresponding to this motion is measured at a fixed
time +t, subsequent to T. Second, the aircraft undergoes precisely
the same motion, beginning at €& = 0 and constrained at £ = T, except
that at & = T one of the two variables (o in Fig. 1) is given a
step change over its previous value at €& = 7. Again, the pitching
moment is measured at time +t. The difference between the two measure-
ments is divided by the incremental step A4a; the limit of this ratio
as the magnitude of the step approaches zero will be called the indicial
pitching-moment response -at time +t per unit step change in o at
time T. The indicial pitching-moment response to a step change in q
is defined analogously. Written in functional notation, the responses

are defined as

N (T
in 20 o fe), ale) ¢, 1) (+)

- 2op(t)
Aé:flo = cmq[m(g), a(e); t, 7l (5)

Eqg. (4) and (5) generalize the notion of indicial functions. As the
notation indicates, in general the indicial responses may depend not

only on the levels of « and g at which the steps occur, but also on
all the past values of o and q. In the most general case, then, the

indiclal responses are themselves functionals.
2.2 Summation of Responses

Just as in the linear case, one may break the time historiles of

o and ¢ into a series of incremental step changes, as shown in Fig. 2.
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Summing the incremental indicial responses to each of the step changes
over the interval zero to t gives the desired integral form for

Cp(t):

-t .
cn(t) = ea(0) + [ cgla(e), a(e)s ¢+, 71 Lar

%
v [ pglalt), ae)s v, 71 G ar (6)

Eq. (6) is the nonlinear counterpart of Eq. (2). In the form given,
it is exact, being in fact no more than an alternate, but suggestive,

way of writing Cp(t).
2.3 Approximate Formulation

At this point in the analysis, one may go in any of a number of
directions. For some problems, in particular, those involving hysteresis,
it may be necessary to retain, at least in part, the dependence on the
past of the indicial responses. For a wide range of problems, however,'
it is possible to say that the indicial responses will not be strongly:
dependent on the past. This will be particularly true for flight at
supersonic speeds and for dynamic stability analyses, where the motions
generally are slowly varying. This is illustrated on Fig. 3. One sees
that if the motion is slowly varying, and if the indicial responses
depend at most only on the most immediate past, then so far as the
indicial responses are concerned, the past is essentially time-invariant.-
In this case, the indicial responses now depend only on the parameters
a(t), q(r), rather than on the functions a(t), q(t), and the responses
become ordinary functions rather than functionals. The reduction is

indicated specifically as
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Cma[a'(g): Q.(g):» v, Tl =~ Cma(t - T3 G'(T); q-(T)) ( )
T

Coglo(e), a(e); ¢, 1]~ Cmq(’c -5 alt), a(T))

It will be noted in Eg. (7) that an additionai simplification accrues
with the assumption of an invariant past. For given levels afT),
q(t), the responses will have the same form no matter when the steps
occur. This means that the responses must be functions of the time
difference t - 7T, rather than functions of t and T separately.

When the use of Eq. (7) can be justified, the equation for Cp(t)
is simplified considerabiy. The equation for Cm(t) takes the form of
Eq. (8), where the deficiency functions F and G have been introduced,

defined by Egq. (9).

g
Cm(t) = Cples alt), a(t)) - F(t - 7 a(t), a(T)) da ar
) o foar

t
- h/; G(t - 15 a(r), a(r)) %% ar (8)

where

i

F(t - 75 at), a(r)) = Gyl a(r), a(r)) - Gy (t - 75 alr), a(r))

Gt ~ 75 alr), a(r)) cmq(oo; o), a(T)) - Cng (t - 73 a(T), (7))

(9)

The deficiency functions tend to vanish with increasing values of the
argument t - 1. Making use of the fact that aircraft motions generally
will be of low reduced frequency, one can further reduce Eq. (8) to an

equation correct to the first order in frequency. The result is
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C(t) = Cplos aft), 0) + q(t)Cpg(xs aft), O)
+ (%) ;}5 Oy ((t) ) (10)

where

Cmg(a(t)) = - \;—9 foo F(t; a(t), O)dr (11)
o

Eq. (8) and (10) are considered to be the central results of this
analysis. Eqg. (8) should serve as a suitable generalization of the
linear superposition equation, Eq. (2). Eq. (10) is the nonlinear
counterpart of Eq. (3).. One notes that Eq. (10) retains the familiar
form of the linear stability derivative formulation, the principal
difference being that now the coefficieﬁts are functions of a.

This form might almost have been arrived at intuitively; it is
reassuring, however, to have it emerge from within the framework of

a rigorous theory.
3. APPLICATIONS

Some of the implications of the preceding results will be dis-~
cussed. First, it will be shown why the term Cmd continues to
appear in the form of Eq. (11). Then, an implication of Eg. (10)
in regard to wind-tunnel experiments will be discussed, which will

lead to a discussion of the problem of system identification.
3.1 Interpretation of Cy,
. &

In Eq. (10) and (11), just as in the linear theory, Cps, the

term that accounts for the past, appears as an integral of the
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deficiency function. It will be shown by a physical argument why
this term, or more directly the analogous normal-force coefficient,
CN&’ continues to appear in this way. In Fig. %, the aircraft on
the left has been sinking, without pitching, for a long time at a
constant rate. A force P must be applied to maintain the constant
rate. The work done by the applied force over an arbitrarily large

time interval zero to tg is
rta
Wky = V, sin a, j [W - N(w; ag)lar (12)
0

where W is the weight of the aircraft and N(oo; ao) is the steady-
state normal force due to the constant angle‘of attack. Now, as
shown on the right side of Fig. 4k, let the same aircraft experience
a step change in o at time zero, and then undergo the same motion
as in the first case. The work done over the same time interval by
the force applied to maintain a constant rate is

ta

Wk, = Vg sin ag ‘Jf [W - N{T; ay)ldr (13)
o

The difference in work done is

% _
Wk, - Wkz = -V, sin o f . [N (o0; %) - N(v; a,o)]d‘r (1k)
(o]

After identifying t5 with the time required for N(T7; a,) to reach
steady state, one sees that the integral is the.area enclosed by the
indicial normal-force response curve and its steady-state value.
That is to say, it is the area of the normal-force deficiency func-
tion, énd it is therefore proportional to CN&' The energy of the

aircraft is the same in both cases, since it undergoes the same
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motion. The energy expended by the applied force is different in
the two cases. The balance of energy, which is Eq. (14), therefore
must have been given to or taken from the fluid. The term Cmd is
a measure of the energy given to or taken from the fluid whenever
the angle of attack changes from one level to another. This asser-
tion holds, it will be noted, regardless of the magnitude of the
angle of attack. This is why the terms Cig, and. Cmd continue to
appear as integrals of deficiency functions, even in the nonlinear

analysis.
3.2 Wind-Tunnel Experiments

For free-oscillation wind-tunnel experiments, where the model
oscillates about a fixed point, the angle of attack and the angle of
pitch will be the same. In this case, Eq. (10) indicates that the

equation of motion will have the form

a"(p) + a'(p)f(a) + gla) =0 (15)

where

?

£(a) ~ [Cug(ws a(9), 0) + Cg(o(9))]

g(a) ~ Cylo; alg), 0)
V.t
0%

If the theory is valid, Eq. (15), called a Liénard equation in non-
linear mechanics, is the one which should characterize oscillatory
motions in the wind tunnel in the presence of nonlinear serodynamic
moments. The result suggests that there will be an increasing need

for analytical methods capable of extracting the forms of f and g
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from the results of experiments. The author has shown recently (5)
how this might be done when the nonlinear elements in Eq. (15) are
sufficiently small. It turns out that if one merely uses the well
known Kryloff-Bogoliuboff method (6) in reverse, one obtains a pair

of Abel integral equations; simple inversions yield f and g explicitly.
3.3 System Identification

The method mentioned above has been generalized recently to
eliminate the necessity of the nonlinear elements being small (7).
The results again appear as inversions of Abel integral edquations.
It is possible to explain physically why they continue to appear in
this way. There follows an alternate development of the result for
the damping coefficient { which will reveal its close connection
with the energy relationships between free and forced oscillations.

Consider a system governed by Eq. (15), and let it be known
that f(a) must be an even function and g(a) an odd function. ILet
the origin of the ¢ scale be placed at the start of a cyecle of
period ©®, and definé the cycle so that a(0) = «(®) = 0. Multiply-
ing through by «' and integrating over the cycle gives an expres-—

sion proportional to the energy loss over the cycle:

12 —q! ' "o
fE =& (0) 20, 2(9) - /; @'z(q))f(a,)d(p (16)

The solution of Eq. (15), presumed to be known from the results of

experiments, can always be written in the form

o(0) = A(p)sin V() ; Vo= wp + (o)
a'(p) = wA(p)cos ¥(p) (17)
w = g£

9]
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Since sin ¥(0) = sin V¥(®) = 0, Eq. (16) can be written more conveniently

in terms of (A%); that is

12 BV 1
«'2(0) - a'#(e) _ %? [42(0) - A2(9)] (18)
or, equivalently,
08 = - %ﬁ (a3)’ (19)

where the bar signifies an average over the cycle (i.e.,
= ]
= (1/0 ao) .
¥ (/.)j‘oy P)
Now consider forced periodic oscillations of the same system
and let the period be the same as that of the particular cycle con-
sidered in the free oscillation. Over a cycle of oscillation, the

energy expended by the forcing function will be proportional to

o
P=]; ' ®(p)f(a)dp (20)

For the class of forcing functions yielding periodic motions of
period ¢, let the amplitude of each be such that each yields the
same energy measure DP; moreover,'let this unique value of P equal
the energy measure Eq. (19) of the cycle.of the free oscillation.

A particular member of this class of forcing functions will yield

a harmonic motion

a =6 sin wy ; W = %% ' (21)
with energy measure
=314
P = 0w 9/1 £f(Jo sin u)cos2 u du (22)

0

and amplitude /@ such that Eq. (22) equals Eq. (19). Then

[, =511
(43" = - % b/; f(6 sin u)cos® u du (23)
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Since the left side of Eg. (23) can be presumed to be known from the
results of experiments, Eq. (23) constitutes an integral equation

for f. That it is a form of Abel's integral equation can be seen

by letting
(42)" = 7(e) (2k)
and making the transformations
£ =06 sin® u
(25)
W nee)
NE
so 4Ahat, after a differentiation
| % n(e)at
Fr(g) = - & f (26)
T Jg Jo =t

This is Abel's integral equation, which has a particularly simple

inversion (8):

6
_d Fr(e)d
n(e) = - a8 fo J‘aﬁ—‘?‘—f' 1)

The determination of h, and hence f, follows immediately, therefore,m
on expressing ZKETT as a function of 6. Turning to this, and
observing that

(82)" = (g Ay) (28)
one sees the necessity of eliminating the dependence on the initial
condition Agy; for otherwise ZEEYT and so ultimately f would show
a dependence on Ay, which obviously would be incorrect. Now A2 and
V¥ will be known as functions of @ and A,; alternatively, A, and ¢
can be written in terms of A~ and ¥. Replacing A, and @ by these
dependencies in Eq. (28) yields (A%)' as a function of AZ and V:

2

(&))" = k(a3, V) (29)
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The average value of (A2)' is therefore

Y]
(43)" = 3 f K(A®, ¥)dg (30)

o

This expression, a measure of the energy loss over the cycle, equally
mist be a measure of the energy per cycle for every member of the

class of forced motions previously defined. In particular, it must

be a measure of the energy for the harmonic motion, for which A% =96,
¥ = wp. On simply replacing A2 by 6 (a constant in the integration),
¥ by wp, one has

R o -
t 1 =
@) -1 [ ke, wiar-k [Txe, wa @)

e}

The integration yields (A?)'. as a funcfion of 6 alone, and this is
the function F(6) required for use in Eq. (27).

Though the result is suggestive, it is necessary to remark that
'its practicability has not been demonstrated. Much more remains to
be done in this field, which has come to be known under the general
heading of "system identification" (see, e.g., (9)). Experimentalists
especially could make very useful contributions. In particular, there
is a need for a systematic series of experiments to determine in
practice how much and what kind of data are required before the form

of the nonlinearities can be defined with confidence.



- 1k -

REFERENCES

1. Tobak, Murray; and Pearson, Walter E.: A Study of Nonlinear
Longitudinal Dynamic Stability. NASA TR R-209, 1964.

2. Bryan, George Hartley: Stability in Aviation. Macmillan, London,
1911.

3. Garrick, I. E.: Nonsteady Wing Characteristics. (Sec. F of
Aerodynamic Components of Aircraft at High Speeds.) Vol. VII
of High Speed Aerodynamics and Jet Propulsion, Allen F. Donovan
and H. R. Lawrence, eds., Princeton University Press, Princeton,
N. J., 1957.

4. Volterra, Vito: Theory of Functionals and of Integral and Integro-
Differential Equations; Dover Pub., Inc., N. Y., 1959.

5. Tobak, Murray: On Deduction of Certain Nonlinear Differential
Equations From Their Solutions. NASA TN D-2779, 1965.

6. Kryloff, Nikolai Mitrofanovich; and Bogoliuboff, Nikolai
Nikolaevich: Introduction to Non-Linear Mechanics. ZPrinceton
University Press, Princeton, N. J., 1943.

7. Tobak, Murray: An Inverse Problem for a Class of Nonlinear
Differential Equations. J. Math. Anal. Appl., vol. 15, no. 2,
Aug. 1966.

8. Titchmarsh, Edward Charles: Introduction to the Theory ofn
Fourier Integrals. 2nd ed., Clarendon Press, Oxford, 1948.

9. Arnold, Charles R.; and Narendra, Kumpati S.: The Characteriza-
tion and Identification of Systems. Harvard Univ. Rep.

TR-471, 1965.



YINSOLTYD ‘AT LIFHOW ‘HIINTD HIUVISIY STWY
NOIVALSINIWGY. 3DVdS ONV SDIINVNOUZY TYNOUVYN

-oguodged TRIOTPUT JEBSUTITUOU JO UOTATUIIed -1 *JI14

} 1 0

ov

Ws

} 1 0

3




VINYOHIVD ‘01313 LI34JOW. “HIINID HD¥VISIY SIWV.
NOIVALISINIWGY 3DVdS ONV SDILNYNOYIV TYNOLLVN

-gosuodsad TERIOTPUT JO UCTYEumNG -7 *JBTd

{ 4 0] } 1 0
_ _ _ _

Wry Woy

(2)b - (1)0




VINYOJITYD. ‘I LI3HOW "83INID HOUVISTY. SIWV
NOILVEISINIWAY 30¥dS GNV SJLNVNOUIY TYNOUYN

sguotaom JutLiea LTmoTg —-*€ 314

} 1 0 | 2 0
3 _

— (2) ©
(2)b ()P




VANYOANYD ‘O3 LIIHOW. HIINID. HONVISIY SINY
NOUVALSINWAY 3DVdS ONY. SHLAYNONIY TYNOILYN

i
-"N5 g0 morgErSadIsquT - 814

oy °p aniL




