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SUMMARY 

Functional analysis i s  used t o  derive nonlinear counterparts of 

t he  l inear  s t a b i l i t y  derivative and superposition in t eg ra l  formulations 

for  t h e  aerodynamic pitching moment. 

formulation of in tegra l  terms accounting f o r  t he  past  i s  noted and 

explained on t h e  basis of an energy balance. The r e su l t s  suggest t h a t  

The recurrence i n  the  nonlinear 

the equation of mot ion character i s t  i c of f r e e  -os c i l l a t  ion wind -t unnel 

experiments may be a Li6nard equation. 

nonlinear elements of t h e  equation from experimental records is  shown 

t o  have a close connection w i t h  t he  energy relat ionships  exis t ing between 

f r e e  and forced osc i l la t ions .  

A method of extracting the  

i 



Fig. 1.- Definition of nonlinear indicia1 response. 

Fig. 2 .- Summation of ind ic ia l  responses. 

Fig. 3 . -  Slowly varying motions. 

Fig. 4 .- Interpretation of CN&. 
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NOTATION 

i tching moment pitching-moment coefficient,  p 
closz 

Cm 

c,[a( 5 ) , q( t ); t ,T 3 ind ic ia l  pitching-moment response measured a t  

t per uni t  step change i n  a occurring a t  

7, with q held fixed a t  q ( T )  

Cmg[a( E ) ,  q(5 ); t ,T]  ind ic ia l  pitching-moment response measured a t  

t per unit  step change i n  q occurring a t  

T,  with a held fixed at  u ( T )  

q0 

s 

t 

t a 

VO 

W 

N normal-force coefficient,  - 
%S 

functional notation: value at 5 = t of a 

function 

values taken by the two argument functions 

u( 0, v( 5 )  over the in te rva l  

F ( t )  which is  dependent on a l l  the 

0 5 5 _< t 

character is t ic  length 

normal force 

dimensionless pitching-velocity parameter, - 

dynamic pressure, 2 pOvo2 

character is t ic  area 

time 

t i m e  required for the ind ic ia l  response t o  

6 2  
VO 

1 

a t t a i n  steady s t a t e  following an instantaneous 

change i n  angle of a t tack or pitching velocity 

f l i gh t  speed 

a i r c r a f t  weight 

iii 



U 

a’, u” 

Q 

8 

!i 

PO 

7 

cp 

w 

angle of a t tack  

du a% 
dCP ’ dcp2 
du 
at 

- -  

angle of p i tch  

running var iable  i n  t i m e  

atmospheric density 

value of t i m e  5 at which a s tep change i n  a, or q occurs 

number of charac te r i s t ic  lengths traveled i n  t i m e  V O t  
t ,  1 

c i rcu lar  frequency 

When a, Q,  and q are used as subscripts w i t h  a normal-force or 

pitching-moment coeff ic ient ,  a dimensionless derivative i s  indicated; 

thus 
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1. ITJTROWCTION 

Many of t h e  c l a s s i ca l  concepts of dynamic s t a b i l i t y  theory, for  

example, s t a b i l i t y  derivatives,  ind ic ia1  functions, and superposition, 

were i n i t i a l l y  derived under t h e  assumption of l i nea r i ty .  

can be asked: How, or t o  what extent, must one revise these concepts 

when the  assumption of l i nea r i ty  becomes untenable? Results presented 

The question 

i n  (1) suggest t he  poss ib i l i ty  of answering t h i s  question, at  l e a s t  i n  

pa r t ,  when it is  studied within t h e  framework of functional analysis.  

It i s  of i n t e re s t  t o  s i t u a t e  functional analysis h i s tor ica l ly  i n  

t h e  general l i n e  of development of dynamic s tab i l i ty  theory. W e  shall 

t r y  t o  show that  it represents a log ica l  continuation of t h i s  l i n e  from 

t h e  l inear  i n t o  the  nonlinear domain. Consider an a i r c r a f t  undergoing 

a two-degree-of -freedom longitudinal motion consisting of a rb i t ra ry  

var ia t ions i n  t i m e  of angle of a t tack u and dimensionless pitching 

veloci ty  q. The first formulation for  t h e  pitching-moment coeff ic ient  

a t  t i m e  t ,  given by Bryan i n  l9ll (2), i s  shown as Eq. (1) : 

Cm(t) = a ( t ) c % ( ~ )  + q(t)Cmq(m) ( 1) 

This  formulation i s  based on two assumptions; first, t h a t  t h e  pitching 

moment de-pends only on the instantaneous values of u and q, and 

*Res ear e h Scient i st 
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second, t ha t  it depends l inear ly  on u and q. The coeff ic ients  i n  Eq. (l), 

the  s t a b i l i t y  derivatives,  are constants; t he  i n f i n i t y  symbol indicates 

t h a t  they are t o  be evaluated f o r  steady flow, t h a t  is ,  as though the  

flow conditions exis t ing a t  t i m e  t 

An important development i n  the  theory came w i t h  the  recognition that t h e  

pitching moment depends not only on t h e  instantaneous values of u and q, 

but a l so  on t h e i r  past  values. 

t h a t  i s ,  the  responses i n  l i f t  and moment t o  s tep  changes i n  u and q,  

and t h a t  of superposition, l ed  t o  a new formulation for  t he  pitching 

moment ( c f .  (3) f o r  a comprehensive bibliograyhy) , namely, 

had existed f o r  a l l  previous t i m e .  

Introducing the  notion of i nd ic i a l  functions, 

t t 
C m ( t )  = Cm(0) C,(t - 7) dT Cmq(t  - 7) 2 dT 

0 0 

Here, the ind ic i a l  pitching-moment responses are shown 

C % ( t  - 7). C m ( t )  depends on t h e  whole One sees t h a t  

as C,(t - T )  and 

past  of u and q, 

since a l l  values taken by a and q i n  t h e  in t e rva l  zero t o  t appear 

within the  in tegra ls .  Under t h e  assumption of l i nea r i ty ,  t h i s  formula- 

t i o n  i s  exact; it eliminates en t i r e ly  one of t h e  two assumptions of 

Eq. (1). For t h e  low reduced frequencies charac te r i s t ic  of a i r c r a f t  

motions, Eq. (2) m y  be reduced t o  an equation correct t o  t h e  f i rs t  

order i n  frequency: 

The reduction restores  the  form of Eq. (1) but includes the  additional term 

(&Z/Vo)C% which, i n  e f fec t ,  accounts fo r  t he  past  within the order of 
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the approximation. Now, s t i l l  mder  the assumption of l i nea r i ty ,  it 

was the development of an integral  form for  

enabled one t o  see and remove the deficiencies of Eq. (1). 

it is logica l  t o  seek a new integral  form for  C m ( t ) ,  now independent 

of a l i nea r i ty  assumption, which might enable one t o  see and remove the  

deficiencies of Eq. (2) and (3 ) .  Since Eq. (2) is  exact within the 

l i nea r i ty  assumption, the new form must include Eq. (2) as a special  

case, and s o  must contain those features of Eq. (2) which are indepen- 

dent of a l i n e a r i t y  assumption. 

must be an integral  form.which depends on a and q and on a l l  the 

values taken by a and q within the time interval  zero t o  t .  This 

C m ( t )  , Eq. ( 2 ) ,  t ha t  

Analogously, 

Accordingly, the new form fo r  C m ( t )  

description of 

functional, as originated by Volterra ( 4 ) .  

analysis, i n  i t s  most general form, does not depend on a l i nea r i ty  

assumption. The theory, therefore,  provides a log ica l  framework fo r  

continuing the l inear  theory into the nonlinear domain. 

C m ( t )  correspon'ds precisely with the  description of a 

The theory of  functional 

2 .  ANALYSIS 

It w i l l  be shown how the indicia1 responses and C m ( t )  may be 

defined as nonlinear functionals. Then, suitable approximations w i l l  

be introduced which w i l l  reduce the equations t o  more t ractable  forms. 

2 .1  Definition of Nonlinear Indicia1 Responses 

Two motions are considered, as shown on Fig. 1. F i r s t ,  beginning 

a t  

q ( 5 ) .  

5 = 0, the a i r c r a f t  undergoes the motion being studied, a(k), 

A t  a cer ta in  time T, the  motion is constrained such that the 
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Values of a and q a t  t i m e  7 remain constant thereaf te r .  The 

pitching moment corresponding t o  t h i s  motion is  measured a t  a fixed 

t i m e  t ,  subsequent t o  7. Second, the a i r c r a f t  undergoes precisely 

the same motion, beginning at 5 = 0 and constrained a t  5 = 7, except 

tha t  a t  5 = T one of the two variables (a i n  Fig. 1) is  given a 

s tep change over i t s  previous value at  5 = 7. Again, the pitching 

moment is  measured a t  t i m e  t .  The difference between the two measure- 

ments i s  divided by the incremental s tep &; the  l i m i t  of t h i s  r a t i o  

a s  the magnitude of the step approaches zero w i l l  be called the ind ic ia l  

pitching-moment response a t  t i m e  t per uni t  s tep change in  a a t  

t i m e  7. The ind ic ia l  pitching-moment response t o  a step change in  g 

is  defined analogously. Written i n  functional notation, the responses 

are defined as 

E q .  

notation indicates,  i n  general the ind ic ia l  responses may depend not 

only on the levels  of a t  which the steps occur, but a l so  on 

a l l  the past  values of a and q.  In the most general case, then, the 

ind ic ia l  responses are themselves functionals. 

(4) and ( 5 )  generalize the notion of ind ic ia l  functions. A s  the 

a and q 

2.2 Summation of Responses 

Just  as i n  the l i nea r  case, one may break the time h is tor ies  of 

a and q into a ser ies  of incremental step changes, as shown i n  Fig. 2 .  
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Summing the incremental ind ic ia l  responses t o  each of t he  s tep changes 

over the in te rva l  zero t o  t gives the desired integral  form f o r  

Cm( t): 

Eg. (6) i s  the nonlinear counterpart of Eq. (2 ) .  In the form given, 

it is  exact, being i n  f ac t  no more than an al ternate ,  but suggestive, 

m y  of writing C m ( t ) .  

2.3 Approximate Formulation 

A t  t h i s  point i n  the  analysis, one may go in  any of a number of 

directions.  For some problems, in  par t icular ,  those involving hysteresis, 

it may be necessary t o  re ta in ,  a t  l ea s t  i n  par t ,  the dependence on the 

past of the ind ic ia l  responses. 

it is possible t o  say that the ind ic ia l  responses w i l l  not be strongly 

dependent on the pas t .  

supersonic speeds and fo r  dynamic s t a b i l i t y  analyses, where the motions 

For a wide range of problems, however, 

This w i l l  be par t icular ly  t rue  for  f l i g h t  a t  

generally a re  slowly varying. This is i l l u s t r a t ed  on Fig. 3. One sees 

tha t  i f  the motion i s  slowly varying, and i f  the ind ic ia l  responses 

depend at  most only on the most immediate past ,  then so far as the 

ind ic ia l  responses a re  concerned, the past  is  essent ia l ly  time-invariant. 

In t h i s  case, the ind ic ia l  responses now depend only on the parameters 

a(-r), q ( T ) ,  ra ther  than on the functions 

become ordinary functions rather than functionals. 

a(5 ) , q( 5 ) , and the responses 

The reduction is 

indicated specif ical ly  as 



It w i l l  be noted i n  Eq. (7) that an additional simplification accrues 

w i t h  the assumption of an invariant pas t .  

¶(?I, the responses w i l l  have the same form no matter when the steps 

occur. 

difference t - 7 ,  ra ther  than functions of t and 7 separately. 

For given levels  a ( T ) ,  

This means tha t  the responses m u s t  be functions of the t i m e  

When the use of Eq. (7) can be jus t i f ied ,  the equation fo r  C m ( t )  

C m ( t )  takes the form of is  simplified considerably. 

Eq. (8), where the deficiency functions 

defined by Eq. ( 9 ) .  

The equation fo r  

F and G have been introduced, 

argument t - 7 .  

w i l l  be of low reduced frequency, one can fur ther  reduce Eq. (8) t o  an 

equation correct t o  the first order i n  frequency. 

Making use of the fac t  t ha t  a i r c r a f t  motions generally 

The result is 



2 
I- qt )  - cm.(a(t)) 

VO 

where 

Eq.  (8) and (10) are considered t o  be the central  results of t h i s  

analysis.  Eq. (8) should serve as a suitable generalization of  the 

l i nea r  superposition equation, Eq. ( 2 ) .  Eq. (10) is the nonlinear 

counterpart of Eq. (3) .  . One notes t h a t  Eq. (10) re ta ins  the familiar 

form of the l i nea r  s t a b i l i t y  derivative formulation, the principal 

difference being that now the coefficients a re  functions of a. 

This form might almost have been arrived a t  intui t ively;  it is 

reassuring, however, t o  have it emerge from within the framework of 

a rigorous theory. 

3 .  APPLICATIONS 

Some of the implications of the preceding results w i l l  be dis- 

cussed. F i r s t ,  it w i l l  be shown why the term CmdL continues t o  

appear i n  the form of Eq. (11). 

i n  regard t o  wind-tunnel experiments will be discussed, which w i l l  

lead t o  a discussion of the problem of system ident i f icat ion.  

Then, an implication of Eq. (10) 

N& 
3.1 Interpretation of C 

In  Eq. (10) and (11) , j u s t  as in  the  l i nea r  theory, (2%’ the 

t e r m  t ha t  accounts for  the past ,  appears as an integral  of the 
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deficiency function. 

t h i s  term, or more d i r ec t ly  the analogous normal-force coefficient,  

CNk, continues t o  appear i n  t h i s  way. In Fig. 4, the a i r c r a f t  on 

the l e f t  has been sinking, without pitching, fo r  a long time a t  a 

constant r a t e .  A force P must be applied t o  maintain the constant 

rate. 

time interval  zero t o  t a  is 

It w i l l  be shown by a physical argument why 

The work done by the applied force over an a r b i t r a r i l y  large 

W k l  = Vo s i n  a. J,"" [W - N(w; u0)]d7 

where W i s  the weight of the a i r c ra f t  and N(w; uo) is the steady- 

s t a t e  normal force due t o  the constant angle of a t tack.  Now, as 

shown on the r igh t  side of Fig. 4, l e t  the same a i r c r a f t  experience 

a s tep change i n  a a t  time zero, and then undergo the same motion 

a s  i n  the first case. The work done over the same t i m e  interval  by 

the force applied t o  maintain a constant r a t e  is 

The difference i n  work done is  

- wk, = -v, s i n  a. st" 0 [Ntoo; ao) - N(T; uo)]dt (14) 

After identifying ta  with the time required f o r  N(T; uo) t o  reach 

steady s t a t e ,  one sees that  the integral  is  the area enclosed by the 

indicia1 normal-force response curve and i ts  steady-state value. 

That is  t o  say, it i s  the area of the normal-force deficiency func- 

t ion,  and it is therefore proportional t o  

a i r c r a f t  is  the same i n  both cases, since it undergoes the saw 

C N ~ .  The energy of the 
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motion. 

the  two cases. 

The energy expended by the applied force i s  d i f fe ren t  i n  

The balance of energy, which is  Eq. (14), therefore 

must have been given t o  or taken from the f lu id .  The term C is  

a measure of the energy given t o  or taken from the f lu id  whenever 

the angle of a t tack changes from one l eve l  t o  another. This asser- 

t i on  holds, it w i l l  be noted, regardless of the magnitude of the 

angle of a t tack.  This is why the terms C N ~  and (2% continue t o  

appear a s  integrals  of deficiency functions, even i n  the nonlinear 

analysis . 

3.2 Wind-Tunnel Experiments 

For free-oscil lation wind-tunnel experiments, where the model 

o sc i l l a t e s  about a fixed point, the angle of at tack and the angle of 

pi tch w i l l  be the same. In t h i s  case, Eq. (10) indicates tha t  the 

equation of motion w i l l  have the form 

If the theory i s  val id ,  Eq. (l?), called a Lignard equation i n  non- 

l inear  mechanics, i s  the  one which should characterize osci l la tory 

motions i n  the wind tunnel i n  the presence of nonlinear aerodynamic 

moments. The result suggests that  there w i l l  be an increasing need 

fo r  analyt ical  methods capable of extracting the forms of f and g 
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from the r e su l t s  of experiments. 

how t h i s  might be done when the nonlinear elements i n  Eq. (15) a re  

suf f ic ien t ly  small. It turns  out t ha t  if  one merely uses the w e l l  

known Kryloff-Bogoliuboff method (6) in  reverse, one obtains a pa i r  

of Abel integral  equations; simple inversions yield f and g expl ic i t ly .  

The author has shown recently ( 5 )  

3.3 System Ident i f icat ion 

The method mentioned above has been generalized recently t o  

eliminate the necessity of the nonlinear elements being small (7) .  

The r e su l t s  again appear as inversions of Abel integral  equations. 

It is possible t o  explain physically why they continue t o  appear in  

t h i s  way. There follows an a l te rna te  development of the result for  

the damping coefficient f which w i l l  reveal i t s  close connection 

with the energy relationships between free and forced osci l la t ions.  

Consider a system governed by Eq. (l?), and l e t  it be known 

that f ( a >  must be an even function and g(a) an odd function. Let 

the  origin of the cp scale be placed a t  the start of a cycle of 

period @, and define the  cycle so tha t  a(0) = a,( @) = 0. Multiply- 

ing through by a' and integrating over the cycle gives an expres- 

sion proportional t o  the energy l o s s  over the cycle: 

The solution of Eq. (15), presumed t o  be known from the results of 

experiments, can always be written i n  the form 

2n 
@ 

w = -  J 
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Since 

i n  terms of (A2); t ha t  i s  

s i n  $ ( O )  = s i n  $( Q,) = 0, Eq. (16) can be writ ten more conveniently 

ar2(o)  - a'2(@) 3 
= - [A2(0) - A2( a)] 2 2 

or, equivalently, 

where the bar s ign i f ies  an average over the cycle (i.e.,  

Q, y = (1/@) J, Y acp) * 

Now consider forced periodic osc i l la t ions  of the same system 

and l e t  the period be the sane a s  tha t  of the par t icular  cycle con- 

sidered i n  the f r ee  osc i l la t ion .  

energy expended by the forcing function w i l l  be proportional t o  

Over a cycle of osci l la t ion,  the 

P = l C P a 1 2 ( q ) f ( u ) d r p  (20)  

For the class  of forcing functions yielding periodic motions of 

period 

same energy measure P; moreover, l e t  t h i s  unique value of P equal 

CP, l e t  the amplitude of each be such that each yields the 

the energy measure Eq. (19) of the cycle of the f ree  osc i l la t ion .  

A par t icular  member of t h i s  c lass  of forcing functions w i l l  yield 

a harmonic motion 

2fi 
CP 

w = -  a = f i  s i n  wcp ; 

with energy measure 

and amplitude f i  such that Eq. (22) equals Eq. (19) .  Then 

12fi 

0 
(A2)' = -: J f(& s i n  u)cos 2 u du 
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Since the l e f t  s ide of Eq. (23) can be presumed t o  be known from the  

r e su l t s  of experiments, Eq. (23) const i tutes  an in tegra l  equation 

f o r  f .  That it is a form of Abel's in tegra l  equation can be seen 

by l e t t i n g  

(A2) I 

and making the  transformations 

= F(8) 

so  khat , after a d i f fe ren t ia t ion  

(24) 

This is A b e l ' s  in tegra l  equation, which has a par t icu lar ly  simple 

inversion (8) : 

The determination of h, and hence f ,  follows immediately, therefore,  

on expressing (A2) as a function of 8 .  Turning t o  th i s ,  and 

observing tha t  

(A2)'  = fn(cp; A,) (28) 

one sees the necessity of eliminating the dependence on the  i n i t i a l  

condition A,; f o r  otherwise (A2)' and so ult imately f would show 

a dependence on A,, which obviously would be incorrect.  Now A2 and 

$ 

can be wri t ten i n  terms of A and $. Replacing A. and cp by these 

dependencies i n  Eq. (28) yields  (A2)' as a function of A and $: 

w i l l  be known as functions of rp and 4; a l te rna t ive ly ,  A, and rp 

2 

2 

( A ~ ) '  = K ( A ~ ,  q )  (29) 
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The average value of (A2)' i s  therefore 

This expression, a measure of the  energy lo s s  over the  cycle, equally 

must be a measure of the energy per cycle fo r  every member of the 

c lass  of forced motions previously defined. In par t icu lar ,  it m u s t  

be a measure of the energy for  the harmonic motion, f o r  which 

9 = w'p. On simply replacing A2 by 0 (a constant i n  the integrat ion) ,  

A2 = 8 ,  

by w'p, one has 

(D 
( A 2 ) '  = K ( 8 ,  w'p)d(p = & s,'" K ( 8 ,  u)du (31) 

The 

the 

its 

-. 

integration yields  (A2)' as a function of 8 alone, and th i s  is 

function F(8) required f o r  use i n  Eq. (27) . 
Though the  result is  suggestive, it is necessary t o  remark that 

prac t icabi l i ty  has not been demonstrated. Much more remains t o  

be done i n  t h i s  f i e l d ,  which has come t o  be known under the general 

heading of "system ident i f ica t  ion" (see, e .g . , ( 9 )  ) . 
especially could make very useful contributions. 

is a need f o r  a systematic s e r i e s  of experiments t o  determine in  

practice how much and what kind of data a re  required before the form 

of the nonl inear i t ies  can be defined w i t h  confidence. 

Experimentalists 

In  par t icu lar ,  there  

' 
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