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ABSTRACT 

Laboratory measurements of rotat ional  temper- 
atures were performed over a 300' K t o  1000° K 
range i n  s t a t i c  low-density air  with an electron 
beam probe. 
t ional  temperatures was  found t o  be a function of 
gas numbe? density and temperature. Inclusion of 
an experimentally determined correction for  the 
gas number density effect  enabled measurements t o  
be made with an accuracy tha t  varied approximately 
from 0 percent t o  -6 percent with increasing gas 
temperature. 

The accuracy of the measured rota- 

INTRODUCTION 

The investigations described i n  t h i s  paper 
were undertaken as part  of a continuing instru- 
ment development program at NASA's Langley 
Research Center. 
directed towards the  verification of a technique 
f o r  measuring free-stream temperatures of low- 
density m e r s o n i c  Wind tunnels using air or  

This par t icular  e f for t  was  

N2. 

The technique is  t o  pass a beam of high- 
energy electrons (10 t o  30 kV) through a low- 
density gas. 
coll isions with gas molecules which produce 
fluorescence. 
rescence provides a means f o r  determining molec- 
ular gas rotat ional  temperature. 

The electrons have inelast ic  

A spectral  analysis of the fluo- 

The i n i t i a l  investigator, E. P. Muntz,' 
experimentally ver i f ied h i s  theoret ical  model f o r  
the electron beam probe technique f o r  two temper- 
atures, =300° K and 373O K. 
were conducted i n  a low-velocity (0.5 m/sec) flow 
of nitrogen gas and the data were obtained from 
the 0-0 band of the nitrogen first negativ 
tem. Since the or iginal  work, 0thers,~,3r$,5 
have used the technique f o r  diagnostic wind-tunnel 
measurements. Some have used the calculated tun- 
nel  parameters for  comparison with the measured 
temperatures as a t e s t  of the theory f o r  tempera- 
tures below 300' K.4 

These experiments 

sys- 

The purpose of the work reported here was t o  
experimentally ver i fy  the theory for  rotat ional  
temperature measurements over a 300° K f o  1000~ K 
range under controlled conditions i n  the labora- 
tory. These tests-  were conducted i n  a s t a t i c  
t e s t  gas, air, and the rotat ional  temperature 

measurements were made from data obtained from 
the 0-0 band of nitrogen. 

The procedure for  t h i s  investigation was t o  
pass high-energy electrons through the  s t a t i c  t e s t  
gas which was at a known temperature. The gas was 
contained in a test chamber which could be main- 
tained a t  a desired temperature and pressure. 
With the t e s t  gas under controlled conditions, 
measurements of the rotat ional  temperature were 
performed and compared with a reference tempera- 
ture. 
determining the applicabili ty of the  theory over 
a range of temperatures. 

Thhis comparison provided the basis f o r  

The first portion of t h i s  paper outlines the 
This is followed by a description of the theory. 

experimental system, t e s t  procedure, the experi- 
mental data, and resul ts .  

THEORY 

General *- 

The t e s t  gas used in  th i s  investigation was 
a i r  and the primary sources of vis ible  and near 
ul t raviolet  radiation were the f i r s t  negative and 
second posit ive systems of nitrogen. The excita- 
t ion  and emission path for  the first negative 
system is i l l u s t r a t e d  by an energy level  diagram 
i n  Figure 1. A high-energy electron, designated 
as a primary electron, i s  emitted by a source and 
has an inelast ic  col l is ion with a ground s t a t e  
nitrogen molecule, NS~C;. The molecule i s  
excited t o  the excited ionized s ta te ,  N>2G, 
from which it spontaneously radiates and drops 
in to  the ground ionized energy s ta te ,  N$X2Zg. 
The intensi ty  and spectral  distribution of the 
spontaneous emitted radiation ref lects  the  rota- 
t iona l  characterist ics of the molecules tha t  were 
i n  the N&,$ state .  

Rotational temperature may be obtained from 
an application of the intensi ty  of emission 
equation 

Superior numbers refer  t o  similarly numbered references at the end of t h i s  paper. 
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where hcvm is the energy of the emitted radia- 
t i o n  as a resu l t  of the t ransi t ion between s ta tes  
n and m, vnm is the wave number of the emitted 
radiation, i s  the  t ransi t ion probability of 
emission, and Nn is  the  number density popula- 
t i o n  of the i n i t i a l  l eve l  of t ransi t ion.  An 
inspection of equation (1) shows tha t  all terms 
are  constants o r  dependent only on the par t icular  
t ransi t ion involved except Nn. Application of 
equation (1) requires the determination of the  
population and its distribution i n  the i n i t i a l  
l eve l  , N$B~$. 

it 
bY 

Based on arguments presented i n  reference 1, 
is  assumed tha t  N&2< i s  populated primarily 
ionized and excited molecules from N2Xl.Z;. 

Population contributions frou other possible ori-  
gins are neglected. Therefore, the population of 
the rotat ional  energy s ta tes  of 
mined by the excitation-transition process of 
N2X1Zi molecules. 

is deter- 

The excitation-transition process may be 
described through a Born-Oppenheimer approxima- 
t ion of the molecular wave function 

where $e is the electronic wave function with 
the i t h  electronic coordinate ?i referenced t o  
the molecular axis, qv is  the vibrational wave 
function with nuclei separation FN? and $m 
the  rotational wave function which is  a function 
of the M e r  angles (e ,X,@).  The N e r  angles 
re la te  the molecular coordinate system t o  the 
coordinate system of the fixed point of observa- 
tion. Also, it i s  assumed tha t  the interaction 
of the primary electron with the orb i ta l  electrons 
can be described by a coulombic potential .  There- 
fore, the following m a t r i x  element of t h i s  inter-  
action may be used t o  describe the excitation: 

In  the above expression, the i n i t i a l  and f i n a l  
wave functions of the primary electrons are repre- 
sented by ePtt and ep l ,  est  the secondary 

electron, XIZi and B2< represent the init ial  
and f i n a l  electronic wave fimctions, vn  and v '  
the  vibrational states, and J"A"M" and J'A'M' 

the  rotational s ta tes .  O f  course, 1 
i 

the coulombic interaction term where the quantity 
rli is the distance between the high-energy pr i -  
mary electron and the Lth orb i ta l  electron. 

i s  e2 

It should be noted tha t  i n  the notation t o  
be used, prime superscripts re fer  t o  
s ta tes ,  double prime superscripts with a one (1) 
subscript refers  t o  N$'Z; 

N?$2< 

s ta tes ,  and double 

prime superscripts with a two (2)  subscript 'i.efer 
t o  ~ 3 2 ~ ;  s ta tes .  

Since the particular t ransi t ion of interest  
resu l t s  i n  the  removal of one orb i ta l  electron 

and for  simplicity w i l l  be replaced with k i 
- where the removed electron i s  labeled with a 
r12 
subscript 2. The removed orb i ta l  electron is  a 
uu2s 

therefore, the electronic s t a t e  may be expressed 

as XIZ+ = p<uu2s] Equation ( 3 )  i s  now 

rewritten as 

electron6 from N2X1Ci t o  form N g 2 < ,  

g 

Note tha t  K has been used i n  place of JJ t h i s  
may be done from consideration of the applicable 
coupling scheme which is Hund's case (b)6 and by 
suppressing the spin angular momentum. 

I n  order t o  evaluate t h i s  matrix element f o r  
high-energy primary electrons, a plane wave 
approximation is  made for  the primary electron 
waye functions and the integration over the pr i -  
mary electron coordinates is performed. This 
integration gives7 

where < is  the momentum transfer  and F2 is the 
position vector of the interacting orbi t  electron. 

A t  t h i s  point a ser ies  expansion of e i s  
made 

is. Q 

To a first-order approximation the first two 
terms of the above expansion are retained. 
the contribution from the first term i n  equa- 
t ion  (6) i s  zero because of the  orthogonality of 
the i n i t i a l  and f i n a l  s ta tes  of the molecule. 
Therefore, equation (4) is given by 

But 

(7 )  

In  order t o  evaluate equation (7) further,  
the  vector F2 is transformed t o  the  coorginates 
of the molecular axis  through the dyadic D(e,X,$) 
which relates  the molecular coordinate axis t o  the 
fixed coordinate system of the point of observa- 
t ion.  merefore,  equation (7) is rewritten 



i4ne25 is The absolute value squared of the term - 
contained i n  the excitation function, Ce, and 
w i l l  be suppressed i n  the following equations. 

q2 

Evaluation of equation (8) shows tha t  for the 

Most significant point is; not only 
case A" = A '  = 0 only odd M t ransi t ions are 
allowed. 
LX = $1 t ransi t ions are permitted, as assumed i n  
reference 1, but AK = k3, a>, and etc.  are also 
permitted. O f  course the cross sections for t h e  
& = &3, 45, and etc .  excitation-transitions w i l l  
determine t h e  contribution t o  the  population of 
the excited state. This contribution is expected 
t o  be small .  

The square of t h e  second matrix element i n  
equation (8) is defined as the band strength or 
the  vibrational t ransi t ion probability and is  
designed Pv;rv*l. This band strength Pvrv*f m a ~ r  
be approxFmated by assuming- a mean value of the  
internuclear separation. The second matrix ele- 
ment of equation (8) may then be writ ten 

The overlap integral  of the vibrational wave func- 
t ions squared I(vt[v")12 is the well-known 
Franck-Condon factor,  qvivll. Generally, equa- 
t i o n  ( 9 )  i s  then expressed as 

In  order t o  take into account the variation of 
internuclear separation, a method of i: cen- 
troids8 is used where 
value of the internuclear separation, q, as 
determined by the vibrational wave functions. 
Now, the band strength is given by 

is the expectation 

The rotat ional  l i n e  strength is given by the 
first matrix element of eqmtion (8) squared, 
summed over M" and M f  

This term is the  well-known Hznl-London factor  
S$$, which is  well tabulated.6 For the t ransi-  
t ion  of interest ,  the re lat ive rotational l i n e  
strength may be obtained through the r a t i o  of the 
l ine  strength t o  the  sum of the l ine  strengths, 
tha t  is, 

This equation is the relat ive l i n e  strength f o r  
excitation-transition which i s  indicated by the 
superscript a. The relat ive l i n e  strength f o r  
emission is the same except the summation is over 
IC" and is  designated PE. 

The preceding work of t h i s  section has been 
based on a plane wave approxLmtion f o r  the  high- 
energy incident primary electron. 
t o  consider low-energy secondary electrons since 
these may contribute significantly t o  the number 
of ionized nitrogen molecules. Several obsema- 
t ions may be made without making a detailed anal- 
ys i s  of the excitation-transition process. 
should be noted tha t  for electronic s ta tes  of the 
homonuclear nitrogen molecule, 
rotat ional  levels have symmetric and antisymmetric 
s ta tes  under nuclear exchange. 
properties of X1X2 and B2< are the opposite 
with respect t o  even and odd rotational quantum 
numbers. 
energy levels  with the same symmetry are  allowed. 
Therefore, the same selection rules with respect 
t o  AK for high-energy electrons apply t o  low- 
energy electrons. The only d i f f icu l ty  would be 
i f  the first-order approximation i s  not suffi- 
ciently accurate such tha t  = i3 or  other 
transit ions would contribute appreciably i n  
order t o  describe secondary electron-induced 
transit ions.  

It is  necessary 

It 

XIZi and B2G 

The symmetry 

And, only t ransi t ions between rotat ional  

Rotational Temperature, !L'R 

!Che rotat ional  number density, %I of 
N22.& is  a function of the excitation-transition 
process, depopulation rate, and number density, 
NK;I of NS1.X$. If it i s  assumed tha t  rotat ional  
s ta tes  of a v: are i n  thermal equilibrium, then 
N ~ ;  is given by6 

where % =I ( ~ 1  + 1 ) e  -EKiikTR is  the rota- 

t ional  par t i t ion  function, %; = F(5)hc the 

characterist ic energy of a rotational s ta te ,  
F(K:) the rotat ional  term, and !PR the  rota- 
t ional  temperature. 
temperature has been established through the 
Boltzmann factor  based on the expl ic i t  assumption 
that thermal equilibrium exis ts  i n  the ground 
electronic state of the neutral  species of N2. 

J s l  

Notice tha t  a relat ion t o  a 

In order t o  interpret  t h i s  temperature 
dependence in the  result ing intensi ty  of radia- 
t ion,  the selection rules f o r  t ransi t ions between 
various rotat ional  energy s ta tes  are applied. As 
a first approximation t h e  applicable selection 
rule f o r  the  excitation-transition process i s  



taken t o  be &S = 21. The LX = 31 selection 
rule  predicts the f o m t i o n  of a P branch and 
R branch i n  the rotat ional  f ine  structure of a 
vibrational band i n  excitation as well as emis- 
sion. Shown i n  Figure 2 are  the R and p 
branches of the 0-0 band of I$. 

With the formation of the P and R 
branches the steady-state population of 
i s  given by* 

where pm and F& are the relat ive rota- 
t iona l  l i n e  strengths of absorption, previously 
described, f o r  the P and R branches. 

With the determination of NKI,  the intensi ty  
of emitted radiation may be calculated as a func- 
t ion  of the  rotat ional  temperature, TR. Before 
the calculation may be accomplished, it is neces- 
sary t o  s e t  up an expression f o r  the emission 
t ransi t ion probability, ~ I K I  ,vs 

where X is a constant, v is the waye number 
of the transit ion,  and Pg is  the relat ive rota- 
t iona l  t ransi t ion probability f o r  emission. 

The intensi ty  of emission f o r  a par t icular  
R-branch t ransi t ion is  given by 

where 

This equation is  simplified by noting tha t  the 
product 

i s  a constant, Z, fo r  a par t icular  v t  - v" 2 
transit ion.  
ventional form6 by noting that 

Also, the equation may be put i n  con- 
2 ~ '  = K '  + K; + 1 

f o r  R-branch transit ions.  Therefore, 

(20) 
For the case of Tv <, 800' K, 99 percent of 

the t o t a l  population is i n  the v: = 0 level. 
Equation (20) may now be writ ten 

where Bo is  the rotational constant related t o  
the vibrational leve l  and 

Dv;e-EOI w v  

2QrIo 
Z' = (22) 

and 

Note tha t  a reference intensi ty  Io has been 
included t o  permit the measurements of re la t ive 
intensi t ies .  The term [G] involves TR and 
requires a solution of equation (21) through a 
process of i terat ion.  

Analysis of equation (20) a lso reveals that 
only a small error  &l percent w i l l  be introduced 
by extending the appli$a&ianYsof equation (21) t o  
temperature of 1000° K. 
formed by calculating a Beff t o  replace Bo i n  
equation (20). 

This analysis was per- 

For ease of application, equation (21) i s  put 
i n  the following form: 

Bohc 
- K ~ ( K I  + 1) + ztt 
WR 

where vo is  a reference wave number used t o  
normalize v. Following reference 1, vo value 
is chosen for  K '  - K l  = 3-2 transit ion.  Also, 
Z" is  jus t  loglo Z', which is  a constant. 

Test G a s  Temperature and Pressure Control System 

The test gas temperature and pressure con- 
t r o l  system, Figure 3, was designed t o  provide 

* The following derivation is  similar t o  that of reference 1 b y  E. P. Muntz. 



f l e x i b i l i t y  i n  temperature and vacuxm t e s t  condi- 
t ions.  Temperature and pressure operating ranges 
are  approximately 300' K t o  llOOo K and 6.7 t o  
133.3 X 10-3 N/m2 (1 t o r r  = 133.3 newton/meter2). 

The major component of the system is the 
t e s t  chamber which consists of three concentric 
cylinders. 
s t e e l  water-cooled jacket and i s  f i t t e d  with 
vacuum-tight water-cooled top and bottom covers. 
Each cover is f i t t e d  with large flanges, attached 
t o  extensions, f o r  mounting test hardware. Three 
7.6-cm-diameter opt ical  grade quartz windows are 
located i n  the outer cylinder wal l .  
concentric cylinder consists of a hel ical ly  wound 
nickel ribbon heating element and is attached t o  
ceramic supporting rods. Electr ical  connections 
are made t o  copper electrodes which extend through 
the  outer cylinder. 
20-cm-diameter 38-cm-long s ta inless-s teel  electro- 
s t a t i c  shield and is  grounded together with the 
outer cylinder t o  prevent charge buildup on the 
walls. Also, the  inner cylinder provides a more 
uniform heating surface f o r  the  t e s t  gas than 
would be provided by the ribbon heating element. 
The inner cylinder is equipped with end covers 
which have openings f o r  passage of the electron 
beam. A 3.8-cm by 1.3-cm slit opening is  pro- 
vided i n  the cylinder w a l l  and is  located i n  l ine  
with one of the viewing windows of the outer 
cylinder. 

The outer cylinder i s  a stainless- 

The next 

The inner cylinder is a 

Rectified heater current is supplied from a 

Tempera- 
440 Vac 3-phase system. Temperature control i s  
provided by coarse and f ine rheostats. 
tu re  is regulated within 21 percent of the  pre- 
set value by an on-off automatic pyrometer. An 
operating temperature of llOOo K i s  obtained f o r  
a heating element voltage and current of 35 Vdc 
and 50 amperes. 

A 35 p s i  water cooling system is provided as 

An inter-  
a heat sink for  the outer chamber w a l l  and covers, 
as well as cooling the diffusion pump. 
lock system prevents operation of the  heating 
system and diffusion pump unless proper cooling 
flow is established. 

A 5 CFM mechanical pump, 750 l i t e r / sec  dif- 
fusion pump, cold t rap  and necessary isolating 
valves comprise the vacuum pumping system. 
variable leak valve, with air dryer, i n  combina- 
t i o n  with the  mechanical pump was used t o  main-  
t a i n  the t e s t  chamber at the desired pressure. 
For a l l  experiments the chamber pressure was meas- 
ured with a McLeod gage. 

A 

Test  Chamber Temperature Survey 

A ser ies  of t e s t s  was conducted t o  establish 
the test chamber gas temperature. The first test 
was  a survey of the inner cylinder w a l l  t o  deter- 
&ne the uniformity of the heating surface. This 
survey was performed wlth 32 thermocouples 
attached t o  the inner cylinder w a l l  and located 
t o  give reasonable coverage. The results 

indicated t h a t  a ?20° K variation existed at 
llOOo K. 
temperature. The second test was made t o  deter- 
mine the effects  on the t e s t  gas at the point of 
observation by the  inner cylinder ends. This was 
necessary because the ends are  not i n  close prox- 
imity t o  the heating element and therefore cooler 
than the side walls. 
on the bottom end p la te  near the chamber center 
l ine.  
e s t  temperature of t h e  plate.  

This variation decreased with decreasing 

A thermocouple was located 

The temperatme of t h i s  polnt w a s  the  low- 

These w a l l  temperature measurements were 
used t o  calculate the gas temperature on the cen- 
t e r  l ine.  The results of the calculations show 
t h a t  the effects  of the  inner cylinder ends would 
lower the gas temperature at the  midpoint of the 
cylinder no more than 4O K at llOOo K. 

The f i n a l  t e s t  w a s  an independent measurement 
of the test gas temperature at the  point of obser- 
vation. These measurements were made with a 
thermocouple whose leads were brought i n  along 
the chiudber center l i n e  and the junction located 
at the point of observation. Two thermocouple 
sizes,  0.1-mm and 0.5-mm diameters, were used t o  
determine i f  there were significant heat losses 
at the point of observation due t o  thermocouple 
conduction. The data shows tha t  conduction losses 
were negligible. The resu l t s  are indicated i n  
Figure 4. 
tu re  at the point of observation i s  lower than the 
mean w a l l  temperature. This difference decreases 
with temperature and converges t o  zero at an 
ambient value of temperature. This difference is  
at t r ibuted t o  heat sinks provided by the observa- 
t i o n  and pumping ports.  

These data show that the gas tempera- 

Electron Beam System 

The electron beam system is  i l lus t ra ted  i n  a 
block diagram, Figure 5 ,  and details of the elec- 
t ron gun are  shown i n  Figures 6 and 7. The elec- 
t ron gun is  a conventional point cathode system 
which has a d i rec t ly  heated hairpin tungsten fila- 
ment, independent negative grid bias f o r  current 
control and cathode focusing. 
sage in to  the d r i f t  tube is magnetically focused 
and deflected. 
1.0-mm-diaineter hole i n  a 2r - em-long plug which 

i s  placed i n  the end of the d r i f t  tube. Because 
of the low gas conductance of t h i s  passage through 
the plug the test chamber may be operated at pres- 
sures approaching 133 N/m2 while maintaining the 
gun within acceptable pressure range of 
2.7 x loe2 N/m2 o r  less .  

The beam upon pas- 

The focused beam passes through a 

2 

For the  work reported here the beam system 
was operated a t  potentials between 25 and 30 Kv 
with currents of 1.0 t o  1.5 ma. The beam poten- 
t i a l  and currents were held constant withln 
?l percent of the selected valves f o r  a l l  tes t s .  



Optical and Electronic Detector System 

The major component of the opt ical  and elec- 
tronic detector system is  the 0.5-meter Fastie- 
Wer t  mount scanning spectrometer. This instru- 
ment has 16.0 &m dispersion in the first order 
and a 0.2 B resolution. 
blind photomultiplier tube which has a S-13 spec- 
t ra l  response characterist ic is mounted at the 
ex i t  slit. The photomultiplier output i s  fed 
into an electrometer amplifier which drives a 
s t r i p  chart recorder. 
the system is approximately 1 second. 
the relat ively slow response of the system, a 
5 B/min scanning speed was used. 

A l3-stage venetian- 

The overal l  response of 
Based on 

300' K t o  1000° K TR Experiments 

Rotational temperature measurements were 
made i n  air at approximately IOOO K intervals 
from 300' K t o  1000° K. 
formed f o r  three s e t s  of experiments. 
of experiments were performed with a constant gas 
number density of 1 x 1016/cm3 and the other with 
a constant number density of 5 x 1015/cm3. The 
rotat ional  temperature measurements were made from 
the 0-0 band first negative system of nitrogen. 
Typical spectral  traces are  shown i n  Figure 8. 

This procedure was per- 
Two se ts  

The procedure f o r  the rotational temperature 
measurement i s  t o  measure the peak value of a 
rotat ional  l i n e  and enter t h i s  value into equa- 
t ion  (24) for  1 ~ 1 ~ 1 1 .  It is  necessary at t h i s  

2 
point t o  make an estimate of the rotationaltem- 
perature by noting the  rotat ional  l ine  at which 
maximum intensity is recorded. With the a i d  of 

t h i s  estimate, a value f o r  hGl(v/vo)y is 
determined from table  1. 
repeated f o r  each rotat ional  l ine .  
s tep is  t o  plot each point, f o r  strong l ines ,  on 
a graph (e.g., Fig. g), then by leas t  squares f i t  
determine the best  s t ra ight  l ine.  From the slope 
of the curve a rotational temperature may be 
determined. 
the estimated value, the  process i s  repeated with 
another temperature estimate and t h i s  process i s  
repeated u n t i l  the estimated and calculated tem- 
peratures fall  within the smallest temperature 

division of the table  of {[GI ( v/vo) '} values. 

The ent i re  procedure is  repeated for  the weak 
l i n e  system of the band. The f i n a l  measured 
rotat ional  temperature is determined from a 
weighted mean average of the values obtained 
f r o m  the strong and weak l i n e  systems. 

Th& procedur'e is 
The next 

I f  t h i s  value does not agree with 

Results of these t e s t s  are given i n  Figure 10 
as a plot of the percent difference between 
weighted mean value of the rotationaltempera- 
tures  and the reference temperature versus the gas 

reference temperature. The gas reference tempera- 
tu re  i s  the mean value w a l l  temperature of the 
chamber corrected i n  accordance with Figure 4. 
There are two dis t inct  groups of data, each corre- 
sponding t o  measurements made at different gas 
number densit ies.  Two other points should be 
noted also. The first is  the general trend of 
the data indicating a change i n  the percent dif-  
ference between the measured value and reference 
temperatures with increasing gas temperature. 
The second is tha t  the measured rotationaltem- 
perature is  high at ambient temperature and the 
difference increased with an increase i n  gas num- 
ber  density. This resul t  indicated tha t  the 
measured rotat ional  temperature was dependent on 
gas number density. 

TR G a s  Number Density Dependence 

In several  cases investigators1J4 have 
pointed out tha t  TR measurements made i n  a 
s t a t i c  gas were higher than the reference tempera- 
tu re  and appeared t o  be a function of gas number 
density. Because of these observations and 
resu l t s  given above, t e s t s  were conducted t o  
determine TR dependence on the gas number den- 
s i t y .  
perature which ranged from 2870 K t o  303O K with 
an average of 291' K. The measured TR w a s  com- 
pared with the corresponding ambient temperature 
f o r  tha t  par t icular  t e s t .  The resul ts  are shown 
i n  Figure 11. An analysis of the resul ts  pro- 
vided the empirical equation 

A l l  t e s t s  were conducted at ambient tem- 

where aT is  the increase i n  gas temperature at 
the point of observation due t o  the number den- 
s i ty ,  n, dependence and no i s  the reference 
gas number density a rb i t ra r i ly  selected as 
3 x l0l4/cm3 since the resul ts  appear t o  converge 
t o  t h i s  value. The number density n is  limited 
t o  the range, 3 x 1Ol4/cd 6 n 5 3 x 1016/cd. 

It is assumed, based on experimental obser- 
vations, tha t  t h i s  increase i n  temperature is a 
function of number density only and is  independ- 
ent of gas temperature. Therefore, as the gas 
temperature increases the change i n  TR due t o  
number density would become relat ively small. 

It is also assumed tha t  equation (25) i s  
applicable only t o  the physical conditions of the 
t e s t s  reported here. That is, beam current, beam 
potential ,  and the distance of the observation 
point from the ex i t  aperture of the electron gun. 
A l l  observations were made at a point 30 cm from 
the gun exi t  aperture, beam current of 1100 pa, 
and beam potential ,  28.5 Kv. It is important t o  
note these conditions because of beam spreading. 
The greater the distance from the aperture the 
greater w i l l  be beam spreading f o r  a given gas 



numbe,r density. 
dependent on the  beam electron current density, 
then spreading wi l l  be an important factor. It 
should be pointed out tha t  changing the  beam cur- 
rent by a factor  of 2 did not change the measured 
TR within experimental accuracy. Also, the tem- 
perature of the gas at the point of observation 
w i l l  be a function of a temperature gradient, 
therefore beam spreading again may be a factor  
since it could a l t e r  the gradient. I n  any case, 
u n t i l  the exact molecular heating mechanism or 
process i s  determined, t e s t s  should be conducted 
for each test configuration. It is important t o  
determine the molecular heating mechanism t o  
determine conclusively the effects  on temperature 
measurements i n  a flowing gas. 

If the  gas heating should be 

R e s u l t s  

Corrections i n  accordance with equation (25) 
were applied t o  the measured rotat ional  tempera- 
tures. The corrected resu l t s  are shown in Fig- 
ure 12 which is a plot  similar t o  Figure 10. 
resultant sca t te r  of data has been reduced from 
+10 percent t o  -4 percent, i n  Figure 10, t o  
+2 percent t o  -6 percent, i n  Figure 12. 
data are approximately grouped about a common 
curve. 
the  data for the  two different densit ies.  This 
can be at t r ibuted t o  the inaccuracy of equa- 
t i on  (25) due t o  experimental uncertainty associ- 
a ted with its derivation. The corrected resul ts  
s t i l l  indicate a s l igh t ly  increasing difference 
between gas temperature and the measured rota- 
t iona l  temperature. An analysis of equation (24) 
does not reveal any apparent sources of t h i s  dif-  
ference. There are two possible causes. The 
f i r s t  t o  be considered is  possible experimental 
error. But careful analyses have been made for 
a l l  the experimental apparatus and reasonable 
confidence has been established. 
s ib le  source i s  in the  formulation of the theory 
leading t o  equation (24). 
t ransi t ion process is complex and no direct  
account has been made for the  effects  of second- 
ary electron excitation. Also the expl ic i t  
assumption has been made tha t  the rotat ional  
levels  of the  ground molecular s ta te ,  
are  i n  thermal equilibrium. But, since a temper- 
ature difference does exis t  between the refer- 
ence gas temperature and the measured value, then 
there W i l l  exis t  a population distribution of the 
rotat ional  levels at the point of observation 
which is  at leas t  s l i gh t ly  non-Boltzmann.9 A 
s l ight  deviation from a non-Boltzmann distribu- 
t ion  would not be detected within the obtainable 
experimental precision, but would affect  the 
measured rotat ional  temperature value. 

The 

Also the  

There still exis ts  a slight difference in 

The second pos- 

The excitation- 

NzX1$ 

Precision 

A re lat ive precision of t5  percent was es t i -  
mated for these measurements. The factors  
affecting the re la t ive  precision of the measure- 
ments were the uncertainties i n  gas number 

density, reference temperature, and the tempera- 
tu re  values obtained from the  graphic solutions. 
A value of *2 percent was calculated f o r  the 
effects  of density and reference temperature and 
+-3 percent was estimated for the uncertainty of 
the measured temperature based on standard e r ror  
values obtained from a large number of independ- 
ent measurements. 

CONCLUSIONS 

Rotational temperature measurements per- 

An empirical 
formed i n  a s t a t i c  gas were found t o  be a fmc-  
t i on  of the  gas number density. 
equation relat ing the difference between the 
measured rotat ional  temperature and a reference 
gas temperature t o  the gas number density w a s  
developed from experimental data. The equation 
was assumed t o  be applicable only t o  the physical 
conditions of the experiments reported here. 
Also, it will be necessary t o  determine the exact 
heating mechanism i n  order t o  evaluate th i s  
effect  in a flowing gas environment such as a 
wind tunnel. 

The resul ts  of t h i s  work indicated a minimum 
accuracy agreement with theory of +8 percent t o  
-4 percent for rotat ional  temperature measure- 
ments i n  a s t a t i c  gas over the 300' K t o  1000° K 
range. Application of the corrections fo r  the 
gas number density dependence of the measured 
temperatures resulted i n  a minimum accuracy 
agreement of 0 percent t o  -6 percent. 
the experiments that were conducted and reported 
here indicate tha t  the theory developed by Muntz 
for the electron beam technique fo r  measuring gas 
rotat ional  temperatures is reasonably accurate 
over a 300' K t o  1000° K range. 

Therefore, 

NOMENCLATURE 

defined by equation (18) 

t ransi t ion probabili ty for emission 
between states n and m 

t ransi t ion probabili ty f o r  emission 
between vibrational energy 
s ta tes  v' and v; 

t ransi t ion probabili ty for emission 
between rotat ional  energy 
states K' and Kz 

vibrational level  V;] = 0 
rotat ional  constant re la ted t o  the 

rotat ional  constant re la ted t o  the 
vibrational leve l  vy 

represents the electronic wave func- 
t ion  for Q~C; 

excitation function which describes 
the  electron-molecular excitation 
process 



e 

J',J" 

K' 

Kf 

k 

M' ,MI' 

Nn 

NO 

NK' r a t i o  of the excitation function t o  
depopulation r a t e  of @2< s t a t e  

speed of l igh t  

dyadic, function of Euler angles 

characterist ic energy of KZ rota- 
t iona l  energy leve l  

characterist ic energy of v: vibra- 

t iona l  energy leve l  

elt?ctron charge 

primary electron 

secondary electron 

rotat ional  term7 

defined by equation (23) 

vibrational term7 

Planck's constant 

intensity of emission for t ransi-  
t ions between n and m s ta tes  

intensi ty  of emission for transi-  
t ions between K' and K" rota- 
t iona l  energy levels 

reference intensity of emission 

intensity of emission f o r  t ransi-  
t ions between v r  and v; vibra- 
t iona l  energy levels 

quantum number of the  t o t a l  angular 
momentum 

quantum number of rotat ional  energy 
level  of ~32g 

quantum number of rotat ional  energy 
level  of ~2x1~: 

quantum number of rotat ional  energy 
leve l  of @+'x~ 

Boltzmannrs constant 

quantum number of a component of 
t o t a l  angular momentum 

number density population of 
s t a t e  n 

steady-state number density popula- 
t i o n  of NS'G 

Nv I1 

1 

steady-state number density popua- 
t ion  of a rotat ional  energy leve l  
K' of N$ + 2 +  & 

steady-state number density popula- 
t ion  of a rotational energy leve l  
X" of Ns1$ 

steady-state number density popula- 
t ion  of a vibrational energy leve l  
v' of N p 2 g  

steady-state number density popula- 
t i o n  of a vibrational energy leve l  
VI1 of @2$ 1 

neutral  nitrogen 

ionized nitrogen 

gas number density 

reference gas number density 

excited ion s t a t e  of 

ground s t a t e  of N 2  

ground s t a t e  of 

re la t ive rotational l i n e  strength 
f o r  excitation 

relat ive rotat ional  l i n e  strength 
f o r  excitation, R branch and 
P branch, respectively 

relat ive rotational l ine  strength 
f o r  emission 

relat ive rotational l ine  strength 
f o r  emission, R branch and 
P branch, respectively 

band strength 

rotat ional  par t i t ion f'unction 

vibrational par t i t ion function 

momentum transfer  term 

Franck-Condon factor  

electronic t ransi t ion moment for  
electronic s ta tes  i and j 

position vector of i t h  orbi ta l  
electron 



'12 

rli 

f2  

'/nul 
uu2s 

nuclei separation 

position vector of primary elec- 
tron with respect t o  point of 
observation 

distance between primary md second- 
ary electrons 

distance between primary and i t h  
o r b i t a l  electrons 

posit ion vector o f  secondary elec- 
t ron with respect t o  point of 
observation 

posit ion vector of secondary elec- 
t ron with respect t o  molecular 
axis 

bdnl-London factor  

rotational temperature 

vibrational temperature 

vibrational energy s t a t e  of N p  

+ 2 +  vibrational energy s ta tes  of Np & 

+ 2 +  

vibrational energy s t a t e  of NS~Y 
g 

vibrational energy state of Q2Z+ 
g 

a constant of & I K I , ~ F ;  

represents the electronic wavefunc- 
t ion  for  N S ~ ;  

constants defined i n  the tex t  

N e r  angles 

quantum number of the resultant 
electronic orb i ta l  angular 
momentum 

wave number of nm transi t ion 

angular characterist ics of an orbi- 
t a l  electron of NG~C;: 

electronic s t a t e  wave function 

molecular wave function 

rotat ional  state wave function 

'evJI1M 

%JAM 

vibrational s f a t e  wave function *v 
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Figure 1. - Partial energy level  diagram of nitrogen. 
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Figure 2.- Spectrometer trace N:O-O band rotational structure, =300° K. 



Figure 3.- Test gas temperature and pressure control system. 
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Figure 5.- Block diagram, electron beam system. 
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Figure 7.- Electron gun. 
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Figure 8.- Typical spectrum, N:(O-O) band R-branch. 
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