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SUMMARY 

The NASA has completed two phases of a general  p i lo t ed  launch 
vehicle study. 
t o  guide and cont ro l  a vehicle from ea r th  l i f t - o f f  through inse r t ion  
in to  e a r t h  o r b i t .  Two d i f fe ren t  study methods were used. One method 
w a s  pr imari ly  a paper and penci l  study, based on servo-analysis theory, 
wherein a mathematical model w a s  used t o  describe p i l o t  behavior. 
other approach used simulators extensively.  The f i rs t  p a r t  of t h i s  
paper discusses the  r e l a t ive  adequacy of these methods. 
cluded that much can be learned by ana ly t i ca l  procedures alone, bu t  
that assuming a l i n e a r  p i l o t  model has i t s  p i t f a l l s .  

The f irst  phase studied the  f e a s i b i l i t y  of using a p i l o t  

The 

It w a s  con- 

I n  t h e  second phase of t h e  study, a ground-based f l i g h t  simulator 
w a s  used t o  measure the  contribution t o  mission r e l i a b i l i t y  of allowing 
the  crew t o  pa r t i c ipa t e  ac t ive ly  i n  guiding and control l ing t h e  vehicle 
i f  ce r t a in  primary f l i g h t  cont ro l  systems fa i l .  The second p a r t  of 
t h i s  paper discusses the  methods used i n  t h i s  r e l i a b i l i t y  analysis .  It 
w a s  concluded t h a t  t h i s  procedure can systematically determine mission 
success f o r  complex manual control  problems e 

i 



FIGURE LEGENDS 

Fig. 1.- Gross similarities i n  launch vehicle and air t ranspor t  control .  

Fig. 2.- P i l o t  cont ro l  system analysis .  

Fig. 3.- Technical constraints .  

Fig.  4 .- Pilot-vehicle  cont ro l  systems. 

Fig. 5.- Controlled element-full  manual. 

Fig.  6.- Input power spectrum. 

Fig. 7.- Comparison of measured and predicted p i l o t  describing functions.  

Fig. 8 .- Combined pi lot-vehicle  open-loop frequency response. 

Fig. 9 .  - Comparison of p i l o t  and p i l o t  describing function performance. 

Fig.  10.- Body bending with vehicle controlled by p i l o t  and by p i l o t  
describing function a 

Fig. 11.- Time h is tory  of p i l o t  and p i l o t  describing function control l ing 
vehicle 

Fig. 12.- Ser ies  p i l o t  p lus  augmented vehicle cont ro l  system. 

Fig. 13.- Ser ies  p i l o t  p lus  augmented vehicle control  system. 

Fig.  14.- Performance comparison. 

Fig. 15.- Influence of p i l o t  remnant. 

Fig. 16. - Comparison of predicted and measured performance. 

Fig. 17.- Technique f o r  measuring probabi l i ty  of mission success. 

Fig. 18.- h u n c h  vehicle backup guidance and cont ro l  system. 

Fig 19 .- Failures  considered. 

Fig e 20- -  C r i t i c a l i t y  study, maximum wind condition. 

ii 



FLIGHT SIMUIATION AND PILOT DESCRIBING FUNCTION TECHNIQUES 

APPLIED TO THE ANALYSIS OF A PILOT CONTROL SYSTEM FOR A 

LARGE FLJ3XIBLF: LAUNCH VEHICLF: 

1. 

By Brent Y. Creer, Gordon H. Hardy, 
and Dallas G. Denery 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  C a l i f  ., USA 

INTRODUCTION 

?"ne NASA i s  conducting a general  research program concerned with 
p i l o t  control  of large,  f l ex ib l e  launch vehicles .  The launch vehicles 
being considered a r e  of t he  Saturn V c lass ,  which w i l l  be used i n  the  
forthcoming manned lunar mission. 

This program w a s  motivated by t h e  p o s s i b i l i t y  that the  guidance and 
control  system of such a vehicle might be simplified,  and the  r e l i a b i l i t y  
and performance improved i f  t h e  capab i l i t i e s  of t he  human p i l o t  were 
u t i l i z e d .  
phases. I n  the  i n i t i a l  phase, the  f e a s i b i l i t y  w a s  studied of using a 
p i l o t  t o  guide and control  from ea r th  l i f t - o f f  through inser t ion  in to  an 
ea r th  o r b i t .  I n  the  second phase, a more sophis t icated and ref ined 
invest igat ion w a s  conducted wherein a p i lo t ed  control  system w a s  defined 
as a backup fo r  t he  primary automatic f l i g h t  control  system. During 
t h i s  phase, the  extent t o  which mission r e l i a b i l i t y  would be increased 
by allowing the  crew t o  pa r t i c ipa t e  ac t ive ly  i n  guiding and control l ing 
the  vehicle i n  the  event of a n  emergency w a s  measured. The purpose of 
t h i s  paper i s  t o  discuss some of t he  methods used t o  analyze the  p i l o t -  
vehicle control  system. 

The research program, t o  date,  has encompassed two major 

A pe r fec t ly  log ica l  question a t  t h i s  point  i s  "Why discuss w e l l -  
known techniques f o r  analyzing pi lot-vehicle  cont ro l  systems?" 
the  pro jec t  i s  somewhat unique i n  that, essent ia l ly ,  two d i f f e ren t  
methods were used t o  study the  f e a s i b i l i t y  of using a p i l o t  t o  guide 
and control  t he  launch vehicle.  One method w a s  mainly a paper and 
penc i l  study based on servo-analysis theory wherein the  pi lot-vehicle  
control  system i s  treated as a closed loop (1-3) a The other approach 
used simulators extensively.  I n  the  l a t t e r  case, the  so-called experi- 
mental approach w a s  emphasized. Conducting these s tudies  independently 
and i n  p a r a l l e l  a f fords  an excel lent  opportunity t o  examine the  rela- 
t i v e  merits of these two methods. Therefore, i n  the  f i r s t  p a r t  of t h i s  
paper, t he  adequacy of these methods w i l l  be discussed. 
control  systems derived by servo-analysis methods w i l l  be compared with 
systems derived by t h e  more conventional simulator approach. The study 
of p i l o t  control  systems using t h e  servo-analysis approach w i l l  be 

F i r s t ,  

The p i l o t  
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termed "analytical ," and the  f l i g h t  simulator approach w i l l  be termed 
"experimental." 
t he  ana ly t i ca l  method w a s  used by Systems Technology Inc.  under contract  
t o  NAU (6 ,7) .  

The experimental method w a s  used by NASA ( h , 3 ) ,  while 

The second sect ion of th i s  paper w i l l  b r i e f l y  discuss the  simulator 
invest igat ion of t he  probabi l i ty  of mission success. 
t h i s  r e l i a b i l i t y  analysis  using p i lo t ed  simulators i s  unique. The 
method, as w e l l  as some of the general  conclusions regarding t h e  p i l o t ' s  
contribution t o  mission r e l i a b i l i t y ,  should be of general  i n t e r e s t  t o  
engineers concerned with the  in te r face  of a p i lo t ed  backup system with a 
primary automatic f l igh t -cont ro l  system since it i s  not l imited t o  a 
spec i f ic  vehicle.  

It i s  believed that 

2. SIMIIARITIES BETWEEN IAUNCH VEHICIXS AIYD LARGE WINGED VEHICIXS 

The methods of studying large f l ex ib l e  boosters should be of value 
i n  analyses of p i l o t  control  systems f o r  airplane-type t ranspor t s  
because boosters and large airplanes (supersonic, hypersonic, l a rge  sub- 
sonic, e t c  .) have ce r t a in  common cha rac t e r i s t i c s .  
complex control  systems, incorporating r a t e  gyros, i n e r t i a l  platforms, 
s igna l  processing f i l t e rs ,  and control-surface power ac tua tors .  
are subject t o  torque biases  when a n  engine f a i l s .  Both tend t o  be 
highly f l ex ib l e  with s t ruc tu ra l  mode frequencies approaching control  
system frequencies.  A gross comparison of the  approximate "frequency 
spectrum" f o r  t he  various degrees of freedom f o r  t he  two types of 
vehicles i s  shown i n  Fig.  1. It might be noted that ex terna l  d i s tur -  
bances (wind shears) tend t o  exc i te  and contribute t o  t h e  body bending 
of both c lasses  of vehicles and are a major f ac to r  i n  the  vehicle con- 
t r o l  system design. Final ly ,  i n  both cases the p i l o t  i s  located far i n  
f ron t  of t h e  vehicle center of gravity;  consequently, t h e  attendant 
cues ( i . e .  , accelerat ions,  e t c  .) that could influence p i l o t  control  are 
a l s o  similar. 

Both have f a i r l y  

Both 

From a t a sk  standpoint, we can argue t h a t  there  i s  a reasonable 
analogy between the  manned boost i n t o  o rb i t  and the  landing of a large 
a i r c r a f t  i n  zero-zero weather conditions; both are t e r m i n a l  control  prob- 
lems; both are performed on instruments; both involve similar time 
scales;  both primarily involve cont ro l  of t h e  f l i g h t  path as the  outer 
loop; and both involve such complex kinematics and guidance programs 
that successful completion by a completely unaided human p i l o t  i s  mar- 
g i n a l a t  bes t .  Because of these similarities, some of the techniques 
used i n  the  subject s tudies  may be applicable t o  ce r t a in  winged vehicles.  

3. ANALYTICAL AND EXPEFiIMENTAL METHODS 

Figure 2 provides some general  information which can be used t o  
determine a method of analysis  f o r  a p i lo t ed  vehicle control  system. 
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The two cha r t s  i n  t h i s  f igure  describe various degrees of system 
analysis complexity. 
lower, "experimental . I '  

and Belsley (8,9), and i s  based on an examination of various simulator 
invest igat ions.  They concluded that ground-based f l i g h t  simulators can 
be classed as rudimentary, bas ic ,  or advanced, depending upon t h e i r  
sophis t icat ion.  This table i s  t o  be used as follows: if  the  applica- 
t i o n  required of t h e  r e s u l t s  i s  known, as w e l l  as the  type of r e s u l t s  
desired (qua l i ta t ive  and/or quant i ta t ive)  , the table indicates the  type 
of simulator (rudimentary, bas ic ,  or advanced) and task  that must be 
considered t o  provide a proper evaluation. 
t i c  ( i n  a f l i g h t  sense) t h e  information that i s  required, the  more com- 
p l e t e  must be the  simulation. 
( 9 ) ,  t he  rudimentary, bas ic ,  and advanced simulators are defined i n  
terms of the  environment which might be impressed upon t h e  p i l o t  (visual ,  
au ra l ,  and k ines the t ic  feedback), t h e  sophis t icat ion i n  the  equations of 
motion, extravehicular disturbances, e t c .  

The upper char t  i s  t i t l e d  "analytical" and the  
The "experimental" char t  w a s  suggested by Cooper 

The more precise  and realis- 

I n  the  unabridged version of th i s  table 

A somewhat analogous t ab le  can be derived f o r  t he  ana ly t i ca l  
approach (10). 
a r b i t r a r i l y  labeled "rudimentary" and "basic. '' The rudimentary analysis  
i s  composed e s sen t i a l ly  of an open-loop analysis  wherein ce r t a in  vehicle 
cha rac t e r i s t i c s  a re  cornputed and compared with preanalyzed and cataloged 
information on p i l o t  r a t ings  given as functions of vehicle dynamic param- 
eters.  The bas ic  analysis  i s  synonymous with closed-loop system analysis  
techniques using adaptive p i l o t  models. A s  i n  t h e  experimental approach, 
the  type and appl icat ion of the r e s u l t s  determine the  level  of analysis  
required (Fig. 2) a 
have approximately the  same area of appl icat ion.  
ference, as shown by t h i s  t ab le ,  i s  that only p a r t  t ask  ( i .e . ,  e s sen t i a l ly  
continuous t racking)  can be considered when the  basic ana ly t i ca l  method 
i s  used. A bas ic  simulator i s  not so restricted since sequent ia l  and 
decision-making tasks  are pa r t i cu la r ly  easy t o  simulate. 

A t  l e a s t  two levels of complexity e x i s t  and have been 

The "basic" analysis and "basic" simulator seem t o  
The only e s s e n t i a l  d i f -  

The methods discussed i n  t h i s  paper are shown on Fig.  2. The 
f e a s i b i l i t y  s tudies  are classed as bas ic  experimental and bas ic  ana ly t i ca l  
s tudies .  The r e l i a b i l i t y  analysis  s tudies  would have t o  be classed as 
advanced experimental. It should be made c lear  at  t h i s  point  that t h e  
ana ly t i ca l  and experimental approaches are not competitive methods f o r  
t he  ana lys i s  of p i l o t  vehicle cont ro l  systems. If f l i g h t  simulators a re  
avai lable ,  t h e  two techniques should be combined f o r  maximum eff ic iency.  
However, f o r  t h e  f e a s i b i l i t y  studies discussed i n  t h i s  paper, no data  on 
the r e s u l t s  of t he  simulation program w e r e  made avai lable  t o  the  contrac- 
t o r  conducting the  ana ly t i ca l  study u n t i l  t h e  end of t h e  program. This 
severe cons t ra in t  w a s  de l ibera te ly  imposed t o  t e s t  the  paper and penci l  
methods (i .e., obtain a ca l ibra t ion)  . 
t o  be usefu l  if f l i g h t  simulators were not r ead i ly  avai lable .  

Such a ca l ib ra t ion  w a s  believed 

Figure 2 suggests then that the  design and performance of a p i lo t ed  
cont ro l  system can be predicted f a i r l y  wel l  without resor t ing  t o  f l i g h t  
simulators f o r  more quant i ta t ive information. In  f a c t ,  it has been 
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suggested t h a t  purely ana ly t i ca l  processes might be used u n t i l  it becomes 
necessary t o  solve operating problems, define minimum acceptable handling 
q u a l i t i e s  ( i . e  -, , failure mode ana lys i s ) ,  or define c e r t i f i c a t i o n  problems 
Substant ia l  evidence does support t h i s  p o s s i b i l i t y  f o r  conventional 
p i lo t ed  a i r c r a f t  (lO-l3), but more evidence i s  necessary before one could 
state t h i s  conclusively. I n  pa r t i cu la r ,  evidence i s  lacking f o r  t he  rela- 
t i v e l y  unexplored problem presented by the  f l ex ib l e  launch vehicle,  which 
represents  a more complex set of dynamics as w e l l  as a type of control  
problem f o r  which there  i s  l i t t l e  previous experience. A s  i l l u s t r a t e d  i n  
Fig. 2, t he  r e s u l t s  of these invest igat ions w i l l  be presented i n  such a 
way as t o  give the  reader an easy ins ight  i n t o  the  usefulness of t he  
"analytic" technique f o r  a r e l a t i v e l y  unexplored p i l o t  cont ro l  system 
problem without simulation support. 

4. TECHNICAL CONSTRPlIrJTS 

To in t e rp re t  the  r e s u l t s  properly,  it i s  e s s e n t i a l  t o  understand 
the  bas ic  technica l  cons t ra in ts  placed. 3n the  experimental and ana ly t i ca l  
studies (Fig.  3) 

I n  the  experimental program, t h e  r i g i d  body equations of motions 
simulated were a per turbat ion set with respect t o  a reference frame mov- 
ing along a given nominal t r a j ec to ry  t h a t  described the  vehicle motion 
i n  f i v e  degrees of freedom (i .e -, th ree  ro t a t iona l  and two t r ans l a t iona l  
degrees of freedom). The equations of motion w e r e  l inear ized,  and the  
coef f ic ien ts  were time varying. The f i r s t -  and second-mode body-bending 
equations were included i n  the  simulation. The nominal frequency f o r  the  
f i rs t  bending mode w a s  a 1  Hz, and f o r  t he  second, e 2 Hz. Sloshing mass 
accelerat ions were computed f o r  t he  two main propel lant  tanks i n  the  
f i rs t  stage.  
f ixed.  
erometer used t o  drive the  p i l o t ' s  display.  
approximated by ramp input building from 0 t o  75 m/sec a t  a rate of about 
10 m/sec2. 
p i lo t ed  simulation run f o r  t he  data discussed i n  t h e  f i rs t  sect ion of t he  
paper. The simulator invest igat ion u t i l i z e d ,  f o r  t he  most p a r t ,  a fixed 
cockpit. However, a l imi t ed  number of p i lo t ed  launches were simulated 
with a five-degree-of-freedom centrifuge so that t h e  launch vehicle 
accelerat ion could be impressed on the  simulator p i l o t .  The changes or 
s e n s i t i v i t y  of system performance t o  var ia t ions  i n  ce r t a in  vehicle param- 
eters w e r e  documented during t h e  simulator runs. 

The a t t i tude and rate-gyro locat ions were assumed t o  be 

The wind disturbance w a s  
However, some freedom w a s  allowed i n  the  posi t ioning of t h e  accel-  

The d i rec t ion  of t h e  wind w a s  randomly ro ta ted  between each 

The ana ly t ic  method w a s  applied only t o  a f ixed (frozen) f l i g h t  con- 
d i t ion ,  and the  maximum dynamic-pressure port ion of the  f l i g h t  p r o f i l e  
w a s  t he  key design point .  However, t h e  p i lo t ed  systems evolved were a l s o  
checked a t  t h e  l i f t - o f f  and the  f i r s t - s t age  burnout. Fuel sloshing 
dynamics were not included i n  the  ana ly t ic  study since it appeared from 
simulation studies t h a t  they did not s ign i f icant ly  influence the control-  
system design; a l so ,  t h e i r  delet ion simplified t h e  equations. The 
remaining technica l  cons t ra in ts ,  Fig. 3, were a l s o  applied t o  the 
ana ly t ic  study. 
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5 .  RESULTS AND DISCUSSION 

5.1 P i l o t  Vehicle Systems 

During these invest igat ions,  considerable e f f o r t  w a s  made t o  define 
several  competing p i l o t  control  systems. These systems were, i n  
essence, "candidate systems" which might warrant a more thorough study. 
Three that evolved can be distinguished, approximately, on the  b a s i s  of 
p i l o t  par t ic ipa t ion .  
vehicle cont ro l  systems seems appropriate, i f  f o r  no other reason than 
t o  understand the  systems which came under serious consideration and 
were later defined and analyzed i n  some d e t a i l  (Fig.  4)  e However, a l l  
of the systems shown i n  t h i s  f igure  w i l l  not be discussed i n  de t a i l  i n  
t h i s  paper. 

A b r i e f  review of these general  forms of p i l o t -  

The f u l l y  manual system w a s  considered f irst .  In  t h i s  case, t he  
p i l o t  observes ce r t a in  displays t h a t  indicate  t h e  vehicle s state; he 
m y  es t ab l i sh  ce r t a in  feedback paths  i n t e r n a l  t o  himself; then he 
d i r ec t ly  controls  t he  servos t h a t  swivel t he  engines i n  an attempt t o  
control  the  vehic le ' s  f l i g h t  pa th  and s t a b i l i z e  ce r t a in  modes of motion 
(e.g., r i g i d  body, body bending, e t c . ) .  

The second system i n  t h i s  figure i s  termed "series p i l o t  p lus  aug- 
mented vehicle." The p i l o t  i s  a pr inc ipa l  element i n  the  control  system; 
however, an inner feedback loop i s  establ ished around the  vehicle.  This 
loop augments t he  vehic le ' s  s t a b i l i t y  and improves i t s  handling qua l i t i e s  
and the  overa l l  pi lot-vehicle  control  system performance. 

I n  the  t h i r d  system of Fig.  4, t h e  p i l o t  i s  shown operating i n  a 
p a r a l l e l  or trimmer mode of control  wherein he can change the  vehic le ' s  
f l i g h t  pa th  by put t ing  i n  a b i a s  or trimming command t o  an automatic 
f l igh t -cont ro l  system. 

Hence, f o r  t h i s  spec i f ic  control  problem, whether attacked analyt-  
i c a l l y  or experimentally, only the  three  general  forms of vehicle- 
control  system need fu r the r  consideration and invest igat ion.  
Incidental ly ,  one might question whether these general  system forms were 
spec i f i ca l ly  products of t he  ana ly t ic  and/or experimental approach or 
whether they resu l ted  primarily from the  respective inves t iga tor ' s  
experience and general  knowledge of pi lot-vehicle  control  systems. This 
question probably cannot be resolved because the  general  forms of these 
systems are qui te  obvious and have wel l  es tabl ished precedents i n  current 
p i lo t ed  airplane control  systems. 

5.2 P i l o t  Models 

Theoretically,  i f  human behavior were exactly predictable  i n  a con- 
t r o l  task,  t he  same information could be obtained by both f l i g h t  simula- 
t i o n  and ana ly t i ca l  techniques. Obviously, at  this  time, human behavior 
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i s  not exactly pred ic tab le .  
primary advantage over a n a l y t i c a l  techniques f o r  studying p i l o t e d  cont ro l  e ) 
Nevertheless, before t h e  ana ly t i c  study of a closed-loop system can pro- 
ceed i n  earnes t ,  su i t ab le  approximate mathematical representations must be 
derived f o r  each element comprising t h e  closed-loop system, including t h e  
p i l o t .  
d i rec ted  toward describing human behavior i n  a cont ro l  t a sk .  Because of 
mathematical complexities, t h i s  research has l a rge ly  been confined t o  
deriving a "quasi-linear mathematical model" f o r  a p i l o t  while cont ro l l ing  
a system described by l inear ized ,  constant coe f f i c i en t  equations. Such a 
p i l o t  model cons i s t s  of a l i n e a r  describing function, Yp 
remnant component. It i s  s u f f i c i e n t  t o  say t h a t  t h e  key t o  t h e  success 
or  f a i l u r e  of t h e  ana ly t i c  approach depends upon the  v a l i d i t y  of approx- 
imating t h e  p i lo t -vehic le  cont ro l  system by a s e t  of l inear ized ,  constant 
coef f ic ien t  equations p lus  a s tochas t ic  remnant, and upon the  adequacy of 
t h e  derived p i l o t  model. The dynamic cha rac t e r i s t i c s  of t h e  human p i l o t  
i n  t e r m s  compatible with f l i gh t - con t ro l  engineering p rac t i ce  a r e  sum- 
marized i n  (14). 
a p p l i c a b i l i t y  of these  data, they have been used very successfully i n  
studying and analyzing t h e  more o r  less conventional a i r c r a f t  p i l o t  
con t ro l  problem. The va l id i ty ,  however, of extrapolating these p i l o t  
models and associated adaptation r u l e s  t o  controlled elements having 
higher order dynamics, such as la rge  f l e x i b l e  boosters o r  la rge  a i rp lane  
t ranspor t s ,  could be questioned. I n  the  following sect ion,  a cursory 
evaluation i s  made of t h e  v a l i d i t y  of extrapolating t h e  p i l o t  model data 
of (14). 
are applied t o  t h e  booster cont ro l  problem i n  t h e  ana ly t i c  study and w i l l  
be compared with p i l o t  models derived from measurements made with a 
p i l o t  f l y ing  the  launch vehicle  simulation. 

(This f a c t  gives  f l i g h t  simulation i t s  one 

I n  recent  years ,  a g rea t  deal of research and study has been 

as w e l l  as a 

Despite t h e  r a the r  severe l imi t a t ions  on the  region and 

The p i l o t  models derived from t h e  data and procedures of (14) 

A s  previously implied, t he  p i l o t  models a r e  l imited t o  t h e  case of 
a time invar ian t  controlled element. For t h e  data presented i n  t h i s  
sect ion,  t he  controlled element w a s  t h e  unaugmented launch-vehicle 
dynamics a t  a d i sc re t e  t i m e  of f l i g h t ,  77 see a f t e r  launch. This i s  
e s s e n t i a l l y  t h e  maximum dynamic pressure f l i g h t  condition and t h e  poin t  
at  which t h e  vehicle  i s  most d i f f i c u l t  t o  control .  Under these  condi- 
t i o n s  (i .e., unaugmented vehicle and maximum dynamic pressure condi t ion) ,  
t h e  pred ic t ion  of a p i l o t  model i s  most challenging and seems t o  repre- 
sent  an  "acidf' tes t  of t h e  techniques involved. 

I n  discussing pilot-model data, it i s  w e l l  t o  begin by defining t h e  
dynamics of t he  controlled element. The frequency response of t h e  
unaugmented vehicle  and i t s  cont ro l  system as used i n  t h e  simulator study 
i s  compared i n  Fig. 5 with the  controlled element dynamics f o r  t h e  ana- 
l y t i c  inves t iga t ion .  A s l i g h t  difference can be seen a t  both t h e  low and 
high frequency por t ions  of t h e  spectrum. That a t  low frequency i s  due t o  
t h e  assumption t h a t  ve loc i ty  w a s  constant while t h e  equations of motion 
were analyzed. The high frequency discrepancies are due t o  s l i g h t  d i f -  
ferences i n  t h e  engine dynamics and bending frequencies used. The la rge  
difference i n  gain a t  t h e  f i rs t  bending mode can be a t t r i b u t e d  p a r t l y  t o  
a lower f i rs t  bending mode na tu ra l  frequency and p a r t l y  t o  a neglect of 
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the  second bending mode i n  the experimental ana lys i s  as coypared t o  t h e  
ana ly t ic  study. The main cha rac t e r i s t i c s  of the systems are t h e  same, 
and t h e  e f f e c t s  of t he  noted discrepancies on t h e  subsequent p i l o t  
describing function data  should be small. 

5.2 -1 Analytic p i l o t  describing function 

Solely ana ly t i ca l  techniques and the control led element dynamics of 
Fig. 5 were used t o  form a p i l o t  describing function f o r  the  l i nea r  
component of the p i l o t  model by the  adaptation r u l e s  es tabl ished from 
exis t ing  data .  This p i l o t  describing function i s  as follows: 

The first numerator t e r m  (0.5) i s  the  p i l o t  ga in  i n  radians of engine 
angle command per radian of a t t i tude error. 
lead equalization supplied by the  p i l o t  t o  s t a b i l i z e  the  vehicle and 
control  t he  pi lot-vehicle  system adequately a The exponent -0.2jU 
represents the  delay i n  the  p i l o t ' s  react ion time and t h e  denominator 
term, (j./lO)" + 2(l)(j~/lO) + 1, represents h i s  neuromuscular lag .  

The term ( 2 j W  + 1) i s  the  

5.2 2 Measured p i l o t  describing function 

A s  noted previously, p i l o t  describing functions were a l s o  measured 
experimentally with an ac tua l  p i l o t  f ly ing  t h e  unaugmented vehicle i n  a 
fixed-cockpit f l i g h t  simulator, For these tests,  t h e  p i l o t  w a s  given a 
random appearing a t t i tude  tracking t a sk  i n  t h e  p i t c h  plane.  The f r e -  
quency and amplitude of t h e  input were comparable t o  the  input spectrum 
of the  jetstrean wind disturbance. The random appearing input s i  na l  
w a s  characterized by a 2' RMS value with a bandwidth of 0.183 rad$sec . 
The e r ro r  s igna l  w a s  displayed t o  the  p i l o t  by a horizontal  bar on an 
oscil loscope. The power spectrum of the  input and modified Fourier 
transform of the  ideal ized wind spike are shown i n  Fig. 6. The random 
input s igna l  w a s  composed of e ight  nonharmonic sine waves, four primary 
and four secondary. This pa r t i cu la r  forcing function w a s  used so t h a t  
a random appearing s igna l  would be obtained i n  the  frequency range of 
booster t a sk  demands, less than 0.2 rad/sec, and s t i l l  provide energy at  
higher frequencies without a f fec t ing  the  p i l o t ' s  low frequency perfor- 
mance. 
used successfully i n  t h e  pas t  and i s  described more f u l l y  i n  (14). 
power spec t ra l  cha rac t e r i s t i c s  of the wind spike w e r e  obtained by defin- 

ing a "pseudo-autocorrelation function" as ( l /p ) l im T 3 w J-: f (t)f ( t + T ) d T  

(15) where p i s  the  in t e rva l  of wind disturbance. Taking the  Fourier 
transform of this autocorrelat ion function, we obtain the  power spec t ra l  
cha rac t e r i s t i c s  of t he  wind spike, ( l / ~ ) I c ( W ) 1 ~ ,  where 
Fourier transform of the  wind spike. This function w a s  then modified t o  

This type of "augmented rectangular input spectrum" has been 
The 

c(.> i s  the  
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make the  amplitudes of t h i s  pseudo-continuous spectra compatible with 
the  d iscre te  spectra  f o r  comparison purposes. The ordinate i n  t h e  
f igure  i s  given i n  power dB ( i .e . ,  10 log,, CpX2(%) where 
amplitude of t he  input sine wave a t  frequency - Cp,(%> i s  t h e  

P i l o t  describing function data were recorded as wel l  as p i l o t  
opinion r a t ings  and the  in t eg ra l  of the  e r ro r  s igna l  squared. 

The p i l o t  describing function Yp w a s  determined from standard 
r e l a t ions  f o r  power density spectra  i n  l i nea r  systems. These methods 
are dealt with more thoroughly i n  (11~6-18). 
analyzed on an analog power spec t ra l  analyzer. The p i l o t  describing 
functions so measured are compared with t h a t  predicted i n  terms of t h e i r  
frequency response i n  Fig e 7. 
i s  a l s o  combined with the  Ames tes ted controlled element 
pared with the  experimentally measured YpYc i n  Fig. 8. These two 
f igures  indicate  that the  predicted 
t i o n  of t he  p i l o t  describing function i n  a t  l e a s t  the  low frequency 
range. The equalization charac te r i s t jcs  are i n  very close agreement. 
There does, however7 appear t o  be a sllght difference i n  the  phase. A 
low frequency phase droop i s  predictable  from previous human response 
data but  t h i s  w a s  in ten t iona l ly  omi t ted  from the  predicted i n  t he  
ana ly t ic  stud-y because of i t s  negligible e f f ec t  on the  system analysis  a 
Unfortunately, t he  high frequency charac te r i s t ics  of the  predicted 
describing function a re  not as e a s i l y  ver i f ied  f o r  t h i s  control  t a sk .  
I f  the  predicted high-frequency neuromuscular cha rac t e r i s t i c s  are 
assumed, the  experimentally obtained Yp can bes t  be described by 

The ac tua l  data w e r e  

The predicted p i l o t  describing function 
and com- 

1s a f a i r l y  accurate descrip- 

Y, 

yP 

Yp 

- [ 0.25 jw+( 0.1/ j W+O .2) ] 0.47(1.7jw + 1)e Y =  
[(jw/10)2 + 2(1)(jw/10) + 11 P 

Thus far, only the p i l o t  describing function port ion of t he  "quasi- 
l i nea r  mathematical model!' has been considered. However, the  model i s  
not complete without t he  remnant component. Before a completely val id  
comparison can be made of an ac tua l  p i l o t ' s  performance with t h a t  of a 
quasi-l inear mathematical model, t he  remnant t e r m  must be specified as 
wel l  as the  p i l o t  describing function. Unfortunately, t h e  remnant 
component has not been investigated so wel l  as the  p i l o t  describing 
function and it w a s  only b r i e f l y  considered during the  ea r ly  ana ly t i ca l  
s tudies  discussed i n  t h i s  repor t .  
por t ion  from t h e  f l i g h t  simulator experimental data has not been 
analyzed. However, even without a d i r ec t  descr ipt ion of the  remnant, 
several  d i f fe ren t  s e t s  of data were obtained during t h i s  study t h a t  
i nd i r ec t ly  show the  strong influence of t h e  remnant i n  t h i s  pa r t i cu la r  
p i l o t  booster cont ro l  problem. 

Likewise, at  t h i s  time, the  remnant 

A rough idea of t h e  importance of t he  remnant term can be obtained 
from Figs.  9 and 10. Previously, it w a s  noted that these p i l o t  describ- 
ing functions were measured while t he  p i l o t  w a s  performing a random 
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appearing a t t i t u d e  tracking t a sk  i n  the  p i t ch  plane.  During t h e  tests,  
t he  r a t i o  of the  mean e r r o r  s igna l  squared t o  t h e  mean input s igna l  
squared f o r  t h e  system when controlled by the p i l o t  describing function 
and when control led by two research p i l o t s  w a s  measured and i s  presented 
i n  Fig. 9.  
accelerat ions t h a t  occur a t  t h e  vehicle nose pos i t ion  while the  vehicle 
i s  controlled by an ac tua l  p i l o t  or by the  predicted p i l o t  describing 
function. These t ransverse accelerat ions are due t o  t h e  first bending 
mode. Both f igures  indicate  that something besides the  given p i l o t  
describing function i s  necessary t o  describe t h e  ac tua l  p i l o t  perfor- 
mance adequately. It i s  suspected that these discrepancies are the  
r e s u l t  of not including the  p i l o t  remnant i n  the  p i l o t  model. 

I n  addition, Fig. 10 shows the  time h i s to ry  of t h e  transverse 

During t h i s  evaluation of t he  p i l o t  describing function, t he  
ana ly t ic  p i l o t  describing function model w a s  switched on and assumed 
cont ro l  of t he  simulated vehicle without t he  ac tua l  p i l o t ' s  knowledge. 
It w a s  reasoned that i f  the  p i l o t  f a i l e d  t o  r ea l i ze  the  switch, t h e  
mathematical model used w a s  adequate t o  a first approximation. The time 
t r aces  of t h i s  experiment are shown i n  Fig. 11. Even though Figs.  9 and 
10 show that the  p i l o t ' s  output i s  not completely described by a describ- 
ing function, t h e  ac tua l  p i l o t  contirsued t o  control  the  vehicle f o r  
i n t e rva l s  of t i m e  exceeding a minute before he rea l ized  that he w a s  no 
longer i n  control  of the  vehicle.  It i s  a l s o  in te res t ing  t h a t  about a 
minute after the  switch, the  p i l o t  s control  cha rac t e r i s t i c s  changed 
considerably (Fig. 11) e 

gain technique used. 
The most obvious change i s  the  seemingly higher 

This b r i e f  evaluation of t he  "derived" and 'rmeasured'' p i l o t  describ- 
ing  function data indicates  that t h e  avai lable  p i l o t  describing function 
data are p a r t i a l l y  va l id  i n  the  low frequency regions, up t o  uni ty  gain 
crossover of 
herein.  However, preliminary resul ts  indicate  t h a t  f o r  t he  cont ro l  prob- 
lem considered i n  t h i s  paper, the  remnant t e r m  i s  of grea t  importance and 
must be included i n  the  analysis  before a complete system analysis  can be 
made. The e f f ec t  of p i l o t  remnant w i l l  be discussed later.  

YpYc, f o r  the  r e l a t i v e l y  unexplored problem discussed 

5.3 Control Loop Structure 

The next step i s  t o  show some examples of t he  spec i f ic  p i l o t -  
vehicle cont ro l  systems that resu l ted  from the  experimental and ana ly t i ca l  
studies. The cont ro l  systems presented are f o r  t he  p i t ch  plane of motion 
and f o r  t h e  series p i l o t  p lus  augmented vehicle.  A t  t h i s  point ,  it may 
appear inconsistent that the  p i l o t  describing function data  were pre- 
sented f o r  t he  unaugmented vehicle,  whereas the  cont ro l  system data are 
presented f o r  t h e  s e r i e s  p i l o t  p lus  augmented vehicle.  However, these 
various sets of data were selected f o r  discussion because they bes t  
i l l u s t r a t e  t he  capab i l i t i e s  of t he  various techniques involved. The 
der ivat ion of a p i l o t  describing function i s  most challenging f o r  a mar- 
g ina l ly  s tab le  control led element (unaugmented vehicle) .  
hand, t he  real worth of t he  ana ly t i ca l  techniques i s  demonstrated by 
t h e i r  a b i l i t y  t o  define and predic t  the  performance of an augmented- 
vehicle cont ro l  system that has good performance and handling qua l i t i e s ,  

On the other 
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e t c .  The spec i f ic  pi lot-vehicle  cont ro l  systems t h a t  resu l ted  
experimental and ana ly t i ca l  s tudies  are shown i n  block diagram 
Fig. 12. 

from the  
form i n  

The f l ight-s imulator  derived system, i n  the  upper p a r t  of the  
f igure ,  i s  composed of an inner feedback loop which augments the  vehicle 
s t a b i l i t y .  By means of an outer loop, ce r t a in  vehicle state var iables  
are displayed t o  t h e  p i l o t  and provide him with the  necessary information 
t o  perform assigned tasks  (such as, t o  reduce t h e  s t r u c t u r a l  loads, t o  
s t a b i l i z e  and cont ro l  vehicle a t t i t u d e ,  e t c  .) . There a re  two f i l t e r s  i n  
the  loops. The f i l t e r  i n  t he  rate augmentation loop s t a b i l i z e s  t h e  body 
bending or e l a s t i c  modes of motion. The design procedure w a s  t yp ica l  of 
that used by an automatic f l igh t -cont ro l  system engineer, i .e . ,  f inding 
a f i l t e r  that would at tenuate  and/or s h i f t  t he  phase of t he  body-bending 
content of t he  feedback s igna l  so t h a t  the  s t a b i l i t y  margins would be 
adequate without s ign i f icant ly  a l t e r i n g  the  rigid-body content of the  
s ignal .  A second-order passive f i l t e r ,  immediately downstream from the  
p i l o t ,  smooths the  output of t he  p i l o t ' s  cont ro l le r  a t  the  e l a s t i c  bending 
frequencies. This f i l t e r ,  i n  conjunction with the  r a t e  augmentation 
f i l t e r ,  s t a b i l i z e s  and reduces the magr.i-tude of t h e  e l a s t i c - s t ruc tu ra l  
exc i ta t ion  t o  an  acceptable l eve l .  

Now l e t  us examine the  p i l o t  control  system loops which resu l ted  
from the  ana ly t ic  approach. The equalization f i l t e r ,  selected t o  ade- 
quately augment the  r i g i d  mode s t a b i l i t y  and at tenuate  the  bending modes, 
w a s  placed i n  the  forward path,  as shown. The block diagram i n  Fig. 12  
i s  determined by the ana ly t i ca l  procedures with no remnant e f f ec t  applied.  

To understand the  outside feedback loop, one must appreciate t he  
p i l o t  t ask  involved. 
control  t he  vehicle a t t i t u d e .  
i s  approached and as t h e  wind disturbance i s  encountered, the  p i l o t ' s  
primary t a sk  becomes one of reducing the  s t r u c t u r a l  load (termed load 
r e l i e f )  on the  vehicle by minimizing the  body-bending moments, with sec- 
ondary emphasis on a t t i t u d e  control .  When the  a t t i t ude - s t ab i l i za t ioh  
t a sk  was analyzed, t he  outer loop w a s  closed by t ransmit t ing the  vehicle 
p i t ch  angle 
Similarly,  when the  load-rel ief  task  w a s  analyzed, t he  vehicle t rans-  
verse accelerat ion A, formed the  outside loop closure, since the  p i l o t  
uses the  transverse accelerat ion t o  help reduce the  s t ruc tu ra l  loads. A 
switch has been placed i n  the  outside loop t o  indicate  t h a t  the ana ly t ic  
method admits t o  a s ingle  "error" quantity ( i . e . ,  a t t i t u d e  or accelera- 
t i o n )  being fed i n t o  the  p i l o t  describing function box. The K/S terms 
shown w i l l  be discussed later.  

A t  l i f t - o f f ,  t he  p i l o t ' s  t ask  i s  t o  s t a b i l i z e  and 
A s  t he  region of maximum dynamic pressure 

Cp t o  t he  loop element representing the  p i l o t  ( K $ ( t ) ) .  

Some appreciation f o r  the  similarities between these two systems 
can be gained from a b r i e f  qua l i ta t ive  coqa r i son  of these loop s t ruc-  
t u re s .  The system block diagram i n  the  lower port ion of Fig. 12 has been 
recas t  i n t o  a completely equivalent block diagram and i s  shown i n  Fig. 13. 

Fig. 13 shows t h a t  t he  ana ly t i ca l  and experimental systems a r e  simi- 
lar i n  t h a t  rate-feedback and rate-augmentation f i l t e r s  a r e  present i n  



-11- 

both systems. 
are nearly equivalent.  One d iss imi la r i ty  i n  t h e  two systems i s  apparent 
i n  t h a t  the  ana ly t ic  invest igat ion indicated that vehicle static s t a b i l -  
i t y  i s  required f o r  a good p i l o t  ra t ing .  
loop feedback of vehicle p i t c h  a t t i t u d e .  
represent a strong d i s s imi l a r i t y  with the  experimentally derived system, 
inasmuch as it only changes t h e  vehicle 's  s t a t i c  s t a b i l i t y  from s l i g h t l y  
negative t o  s l i g h t l y  pos i t ive .  
t r o l  systems i s  the  p i l o t ' s  s t i c k  f i l t e r .  
the  dynamics of t he  ac tua l  nonlinear t i m e  varying hwnan p i l o t  requires  a 
describing function p lus  a remnant. Because of t he  lack of su i tab le  r e m -  
nant data, no quant i ta t ive design of t he  p i l o t ' s  s t i c k  f i l t e r  using purely 
ana ly t i ca l  techniques w a s  attempted. However, it was predicted,  qual i ta-  
t i ve ly ,  t h a t  a p i l o t ' s  s t i c k  f i l t e r  might be required t o  reduce the  vibra- 
t o r y  exc i ta t ion  (6). 
p i l o t ' s  s t i c k  f i l t e r  may be confusing i n  view of t h e  equalizing element 
t h a t  appears immediately downstream from the  p i l o t ,  However, it should 
be reca l led  from the  e a r l i e r  discussion of t h i s  system, as shown i n  
Fig. 12, that the  lag elements were a d i rec t  r e s u l t  of s t ab i l i z ing  the  
bending modes and were not based on preventing the  exc i ta t ion  of body 
bending caused by the  p i l o t ' s  cont ro l le r  output, pe r  se. 

From a frequency-response standpoint, these two f i l ters  

This w a s  achieved by the  inner- 
However, t h i s  feedback does not 

A major difference between these two con- 
An adequate descr ipt ion of 

The foregoing emphasis of differences i n  the  

The foregoing discussion again poin ts  out one important aspect of 
the  remnant or ,  r ea l ly ,  t he  current dearth of su i tab le  remnant data from 
which a good analysis  can be made. Another aspect of th i s  remnant prob- 
l e m  i s  associated with the placement o f  t he  K/S i n  the  accelerat ion 
feedback loop (Figs. 12 and 13) .  The K/S term w a s  included mainly t o  
improve the  dynamic response of t he  vehicle a t  low frequencies. I n  a 
quasi-l inear analysis  t h a t  d i d  not consider p i l o t  remnant, it i s  not 
c r i t i c a l  whether t h i s  term w a s  placed i n  f ron t  of t he  p i l o t  or down- 
stream from him; but ,  when the  system performance w a s  checked on a f l i g h t  
simulator with an ac tua l  (noisy) p i l o t  i n  control ,  it w a s  found t o  depend 
strongly upon t h e  pos i t ion  of t h i s  term.. Consequently, p i l o t  remnant w a s  
concluded t o  be a dominant f ac to r  i n  system performance. It should be 
noted t h a t  p i l o t  comments indicated the  system performance w a s  influenced 
t o  a ce r t a in  extent  by t h e  p i l o t ' s  d i f f i c u l t y  i n  in te rpre t ing  the  dis-  
played control  var iables  that had been f i l t e r e d  by the  K/S t e r m .  Some 
performance f igures  showing the  marked e f f e c t  of p i l o t  remnant ( i .e. ,  
pos i t ion  of the  
discussed l a t e r .  

K/S t e r m )  on pi lot-vehicle  system performance w i l l  be 

The ana ly t ic  and experimental derived systems were compared b r i e f l y ,  
on the  b a s i s  of t he  cont ro l  loop s t ruc ture .  Perhaps the  bes t  way t o  com- 
pare two p i lo t ed  cont ro l  systems i s  on the  b a s i s  of t h e i r  performance. 
Accordingly, some quant i ta t ive as w e l l  as subjective performance measure- 
ments were made f o r  t he  systems j u s t  discussed and these measures are 
shown i n  Fig. 14. These data are f o r  t he  case i n  which the  K/S t e r m  
i s  placed downstream from the  p i l o t .  
present data f o r  t he  case i n  which the  t e r m  i s  i n  f ron t  of t he  
p i l o t .  
and Nz. The r a t i o  M/MD i s  the  maximum vehicle s t ruc tu ra l  bending 

A s  noted previously, we w i l l  a l s o  

me performance measures are p i l o t  ra t ing ,  p i l o t  opinion, M / M ~ ,  
K/S 
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moment encountered as the  vehicle penetrates  t he  wind-shear region 
divided by the design bending moment. An M/MD value of 1 or grea te r  
ind ica tes  s t r u c t u r a l  f a i l u r e .  Any M/MD value less than 1 i s  safe from 
a structural- load standpoint. It should be noted t h a t  t he  motions expe- 
rienced by t h e  p i l o t  of a f l ex ib l e  launch vehicle are somewhat s imilar  
t o  those that would be experienced by a p i l o t  s i tua ted  on t h e  end of a 
long, f lex ing  pole .  
Nz, are measures of t he  body bending. 
values of 
control .  It should be emphasized at t h i s  point  that these performance 
measures were obtained by programming each system on the  fixed-cockpit 
f l i g h t  simulator (. 

The resu l t ing  osc i l l a to ry  t ransverse accelerat ions,  

may be undesirable since they may be detrimental  t o  p i l o t  
It w a s  an t ic ipa ted  that large 

Nz 

Figure 14 indicates  that t h e  performance of t h e  two systems i s  
almost i den t i ca l  w i t h  t he  exception of some minor differences i n  pi lot ,  
comments on t h e  handling qua l i t i e s .  
s t i c k  f i l t e r  design and perhaps other p i l o t  remnant e f f e c t s )  were not 
considered i n  the  derivation of the  ana ly t ic  system, it i s  somewhat sur- 
p r i s ing  t h a t  t he  two systems are so  similar i n  t h e i r  performance capa- 
b i l i t y .  However, a f t e r  a moment's re f lec t ion ,  it becomes c l ea r  t h a t  t he  
main benef i t  derived from the  placement of t h e  K/S term a f t e r  t he  
p i l o t  is, e s sen t i a l ly ,  t h a t  it acted as a p i l o t ' s  s t i ck  f i l t e r ;  conse- 
quently, t he  performance of t h e  ana ly t i ca l  and experimental derived 
systems were nearly the same. 
it appears t h a t  t h e  
t h a t  t he  remnant port ion of t he  p i l o t  model w a s  no longer an important 
element i n  the  system analysis .  

Since c e r t a i n  f ac to r s  ( i . e . ,  p i l o t  

From a s l i g h t l y  d i f f e ren t  point of view, 
K/S t e r m  modified the dynamics of t he  system so 

5.4 Effects of Remnant Term on System Performance 

It w a s  indicated earlier t h a t  t he  performance of t h e  ana ly t i ca l  
derived system i n  a f l i g h t  simulator w a s  markedly influenced by sh i f t i ng  
the  K/S term from forward of t he  p i l o t  t o  behind him. The performance 
data  obtained were both objective and subjective; they point  out t he  
strong influence of t he  p i l o t  remnant t e r m  i n  t h i s  pa r t i cu la r  p i l o t -  
vehicle cont ro l  system. 
shown on Fig. 15. The data f o r  t he  K/S f i l t e r  after the  p i l o t  are 
presented i n  the  lower p a r t  of the  f igure .  
ments, and ce r t a in  measures of pi lot-vehicle  system performance a r e  
given. 
P i l o t s '  comments were "acceptable with mildly unpleasant charac te r i s t ics"  
and l'requires smooth control  t o  prevent exc i ta t ion  of the  body-bending 
motions." Values of M/MD from 0.45 t o  0.5 were measured with the  p i l o t  
attempting t o  f l y  the  vehicle so as t o  minimize the s t ruc tu ra l  loading as 
the  wind shear w a s  penetrated.  Values of t h e  transverse accelerat ions at  
the  p i l o t ' s  pos i t ion  were from 0.05 t o  0.1 g.  

The resul ts  of t h i s  phase of t he  program are 

P i l o t  ra t ings ,  p i l o t  com- 

P i l o t  r a t ings  from 3 t o  3-l/2 indicate  a sa t i s fac tory  system. 

Shif t ing the K/S t e r m  ahead of the  p i l o t  caused a marked deter iora-  
t i o n  i n  the  system performance and acceptab i l i ty .  The p i l o t  r a t ing  
deter iorated from sa t i s fac tory  t o  unsat isfactory with handling qua l i t i e s  
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. acceptable f o r  emergency conditions only ( r a t ing  of 6-1/2). P i l o t  
comments w e r e  "very d i f f i c u l t  t o  i n t e r  ret cor rec t  control  ac t ion  from 
the  displays,  e tc ."  The values of M/$) were doubled as a r e s u l t  of 
sh i f t ing  the  K/S term; the  transverse accelerat ions experienced a t  the 
spacecraft  cockpit were four times the previous l eve l .  

5.5 Predicted and Measured Performance 

A per t inent  question a t  t h i s  point i s  "How w e l l  can objective 
measures of system performance, such as p i l o t ' s  opinion and p i l o t ' s  
numerical ratings of the  vehicle control  system handling q u a l i t i e s  be 
predicted by closed-loop system analysis  techniques?" 
states t h a t  making these predict ions with the  ana ly t ic  method i s  
d i f f i c u l t  and highly a r t i s t i c  enterprise." 
comments and p i l o t  ra t ings  of vehicle handling qua l i t i e s  predicted from 
the  ana ly t ic  invest igat ion as w e l l  as those gathered, f o r  t he  same sys- 
t e m s ,  from f l i g h t  simulator runs.  I n  t h i s  case, data a r e  given f o r  two 
d i f fe ren t  systems, namely, t h e  f u l l y  r i n u a l  system (or unaugmented 
vehicle case) and the  series p i l o t  p l w  augmented vehicle cont ro l  system. 
The p i l o t  opinions and r a t ings  measured from t h e  f l i g h t  simulator are 
shown along the  lower port ion of the f igure  and t h e  predicted values are 
shown along the  upper p a r t .  
and measured ra t ings  agree substant ia l ly .  The best numerical r a t ings  by 
the  par t ic ipa t ing  p i l o t s  w a s  5 ,  which i s  iden t i ca l  t o  the  predicted 
value. The upper l e v e l  of t h e  predicted r a t ings  w a s  9 ,  which w a s  sub- 
s t a n t i a l l y  worse than the  ra t ings  which would be confirmed by f l i g h t  
simulator runs ( i . e .  , 7) .  
data i s  the  close agreement between the  p i l o t ' s  predicted and ac tua l  
comments. The major difference i n  p i l o t  comments w a s  t he  predict ion 
that with appropriate displays,  the  p i l o t  could f l y  the  unaugmented 
vehicle about two axes. 
w a s  possible  t o  control  the  unaugmented vehicle about one axis only. 
subsequent questioning, t he  p i l o t s  indicated t h a t ,  i n  t h e i r  opinion, t h i s  
l a t t e r  statement w a s  t rue  regardless of t he  displays.  It w a s  a l s o  pre- 
dicted t h a t  the  accuracy i n  tracking p i t ch  guidance commands would be 
poor. This predict ion stemmed from the  droop of t he  frequency-response 
curve i n  t h e  lower frequency range of the  spectra  f o r  t he  control led 
element i n  the  ana ly t i c  invest igat ion (Fig. 5 ) .  
t h e  controlled element, as investigated on t h e  f l i g h t  simulator, did not 
exhib i t  t h i s  cha rac t e r i s t i c  and hence t h i s  la t ter  predicted p i l o t  comment 
w a s  never ver i f ied .  

Reference (6) 
11 a 

Figure 16 shows the  p i l o t  

For the  unaugmented vehicle t he  predicted 

Perhaps the  most noteworthy point  from these 

The p i l o t ' s  ac tua l  comments indicated t h a t  it 
I n  

A s  noted previously, 

Now consider the  augmented vehicle. Only one set of f l i g h t  simula- 
t o r  data i s  shown, i.e., for  t h e  K/S term behind the  p i l o t .  These data 
are presented, since t h e  previous discussions indicate  t h i s  i s  the  par- 
t i c u l a r  case f o r  which t h e  "analytic techniques" might pred ic t  p i l o t  
ratings and p i l o t  opinions. 

For t he  augmented vehicle,  the  f l i g h t  simulator derived r a t ings  
ranged from 3 t o  3-l/2'. 
from 3 t o  6, which i s  a ra ther  imprecise predict ion of p i l o t  rating 

It w a s  predicted t h a t  t he  ratings would range 



although it does bracket t he  measured p i lo t - r a t ing  data. 
comments are i n  fair agreement, but  the predicted comments lead one t o  
bel ieve that exc i ta t ion  of body-bending motion i s  no problem. 
p i l o t  comments, however, indicate  that smooth control  inputs  are neces- 
sary t o  prevent such exc i ta t ion .  

P i l o t s  

Actual 

6. DISCUSSION OF A TECHNIQIE FOR REXCABILITY ANALYSIS 

The conclusion reached from the  s tudies  discussed i n  the  first p a r t  

Thus it would be expected t h a t  t he  "probabili ty of mission 
of t h i s  paper w a s  t h a t  p i lo t ed  cont ro l  of a large f l ex ib l e  launch vehicle 
i s  f eas ib l e .  
success" would be increased i f  a manual control  system were added t o  
back up the  vehicle 's  automatic f l i g h t  control  system. 
made t o  determine whether the  probabi l i ty  of mission success could be 
increased by incorporating the proposed p i lo t ed  backup cont ro l  system. 
The technique f o r  measuring the  r e l i a b i l i t y  contribution of a p i lo t ed  
backup system i s  the  subject of t h i s  sect ion of t he  paper. 

An analysis  w a s  

The technique i s  similar t o  one t h a t  has been used f o r  t he  automatic 
system. It i s  a l s o  similar t o  the "Pilot-Controller Integrat ion f o r  
Emergency Conditions" concept (19) which w a s  ref ined and applied t o  the  
X-22A V/STOL vehicle (20) .  

The seven s teps  inherent i n  the  technique a re  shown i n  Fig. 17 and 
are discussed below. 

1. Define system: Collect t he  necessary information on the  vehicle,  
systems, t r a j ec to ry ,  mission, e tc . ,  t o  enable a simulation t o  be con- 
ducted. Define manual system. 

2. Define major f a i l u r e  modes: Predict  major f a i l u r e  modes (as 
opposed t o  component failure modes). 
necessary information t o  simulate f a i l u r e  modes.. 
number (probabi l i ty  of occurrence) f o r  each major failure mode. 

Define f a i l u r e  dynamics and obtain 
Obtain u n r e l i a b i l i t y  

3 .  Simulate system and failure modes: Use  t he  data gathered i n  
s teps  1 and 2 and appropriate mathematical models t o  develop a real-time 
p i lo t ed  f l i g h t  simulation of t he  vehicle and i t s  major failure modes. 

4. Define p i l o t  procedures: U s e  t he  f l i g h t  simulation developed 
i n  step 3, conduct a systematic invest igat ion wherein the  failure modes 
investigated are made t o  occur a t  various times of f l i g h t  with the  
p i l o t  i n  control  of t h e  simulated vehicle.  From t h i s  invest igat ion,  
develop background information from which the  crew can l ea rn  t o  detect  
and cor rec t ly  iden t i fy  each failure as w e l l  as t o  follow the  correct  
p i l o t  procedure i n  the  event of a f a i l u r e .  (Most of t he  emergency sec- 
t i o n  of t he  p i l o t ' s  handbook i s  wr i t ten  during t h i s  study phase. Also,  
a t  t h i s  time, preliminary changes t o  the  proposed manual system can be 
made a ) 
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5 .  Conduct simulation with random failures: Using several  suhjects  
and a large number of simulated f l i g h t s  w i t h  random failures, determine 
the  probabi l i ty  of mission failure ( e f f ec t iv i ty )  f o r  each of the major 
failure modes. 

6. Determine probabi l i ty  of mission failure: U s i n g  t he  unreli- 
a b i l i t y  numbers from step 2 and the  e f f e c t i v i t y  numbers from s tep  3 ,  
ca lcu la te  t he  failure mode c r i t i c a l i t y  ( e f f ec t  of failure on probabi l i ty  
of mission failure).  

7. Modify system and procedures as necessary: Analyze the  r e s u l t s  
of s tep 6 t o  determine those fa i lure  modes having the  grea tes t  influence 
on mission failure. Redesign the  system or modify the  procedures devel- 
oped i n  s tep 4 as necessary t o  reach a su i tab le  l e v e l  of "probabili ty 
of mission success . ' I  

The appl icat ion of these seven s teps  t o  the  subject vehicle w i l l  now be 
discussed e 

6.1 Definit ion of Launch Vehicle and Systems 

The example boost vehicle ca r r i e s  the  second stage,  t h i r d  stage, 
and the  spacecraft  from the  laurich pad through the high dynamic-pressure 
region t o  staging a t  an a l t i t u d e  of about 66,000 m. The f l i g h t  lasts 
about 2-1/2 minutes and stages a t  about 2,400 m/sec. 
l e m  i s  complicated by wind and gusts ,  as wel l  as by flexible-body and 
fuel-sloshing dynamics with frequencies approaching cont ro l  frequencies. 

The control  prob- 

The cont ro l  system selected f o r  t h i s  por t ion  of the study i s  based 
The upper half  of t he  f igure  on e a r l i e r  f e a s i b i l i t y  s tudies  (Fig. 18). 

shows ( so l id  l i n e s )  t he  automatic system as implemented i n  t h i s  study. 
The engine actuator  command s ignals  are a t t i t u d e  rate and a t t i tude  e r r o r  
summed, gained, and f i l t e r e d  i n  the  control  computer. The vehicle has 
f i v e  t h r u s t  engines, four of which a re  cont ro l  engines. This provides 
some redundancy i n  t h e  event of t h r u s t  losses  or actuator  failures. The 
lower half shows ( so l id  l i n e s )  t h e  spacecraft  control  system. 
dashed l i n e s  indicate  the i t e m s  added for  t h e  proposed manual backup 
system. 
vehicle guidance system, as w e l l  as the outputs from body-mounted accel-  
erometers i n  t h e  launch vehicle e 
i t y ,  f l igh t -pa th  angle, e t c  ., of t h e  spacecraft .  The output of t he  p i l o t  
cont ro l le r  w a s  passively f i l t e r ed  (low pass t o  a t tenuate  output a t  
f l ex ib l e  body frequencies) and summed with t h e  output of t he  automatic 
system a t  the cont ro l  computer. This system allowed the  p i l o t  t o  form 
an adapt ive-paral le l  control  loop which i s  ac t iva ted  when f a i l u r e s  occur 
i n  t h e  primary system. 

The 

The p i l o t ' s  display included at t i tude e r ro r ,  from the  launch- 

The display included a l t i t u d e ,  veloc- 

6.2 Definit ion of Major Fai lure  Modes 

The launch-vehicle major failure modes can be divided i n t o  three  
categories:  (1) control-system hardware failures (gyros, wiring, etc.) , 
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(2) engine actuator  f a i l u r e s  (hard over, nu l l ,  o sc i l l a t ing ) ,  and (3) 
t h r u s t  failures. The f i rs t  t e n  failures i n  Fig.  2 are the  lawnch 
vehicle major f a i l u r e  modes considered i n  order of t h e i r  assumed unre- 
l i a b i l i t i e s  (probabi l i ty  of occurrence) e 
failure mode i s  shown r e l a t i v e  t o  t h e  most probable failure mode (one 
engine actuator  hard over) .  
associated with the hardware added as a r e s u l t  of t he  p i lo t ed  backup 
system. 
since no mission failures were caused by a display failure. 

The u n r e l i a b i l i t y  f o r  each 

Fai lure  modes 11 through 19 of Fig. 19 are 

The u n r e l i a b i l i t y  data  fo r  t he  p i l o t ' s  displays are not shown 

6.3 Simulation System and Fai lure  Modes 

A de ta i led  and comprehensive fixed-cab simulation w a s  set up. It 
included f u e l  sloshing, engine, and flexible-body dynamics as w e l l  as 
six-degree-of-freedom rigid-body dynamics. 

6.4 Defini t ion of P i l o t  Procedures 

The p i l o t ' s  primary task  before a system f a i l e d  w a s  t o  monitor t h e  
H i s  only cont ro l  inputs were those necessary f o r  load r e l i e f  displays.  

i n  t h e  event of la rge  wind-induced aerodynamic loads. He reduced the  
loads by closing t h e  p i lo t ed  p a r a l l e l  loop using the  displayed output 
s ignals  of t he  body-mounted accelerometers. 
loads gives the  vehicle a greater  margin of sa fe ty  i n  the  event of a 
system failure. 

Reducing these aerodynamic 

In  the  event of a launch-vehicle system failure ( i .e . ,  f a i l u r e s  1 
through lo), t he  "overriding" p i l o t  s procedure w a s  t o  "keep the  a t t i t u d e  
of t h e  vehicle at  the  nominal value." 
adaptive element i n  the  loop that para l le led  t h e  automatic f l igh t -cont ro l  
system. For hardware f a i l u r e s  i n  the  launch-vehicle cont ro l  system 
( i .e . ,  l o s s  of platform, a t t i t u d e  r a t e ,  a t t i tude s ignal ,  e t c . ) ,  t he  p i l o t  
used information displayed from sensors located i n  the  spacecraft  t o  
s t a b i l i z e  and cont ro l  t h e  vehicle a t t i tude .  Specif ical ly ,  i f  t he  launch 
vehicle a t t i t ude - ra t e  loop malfunctions ( i .e . ,  f a i l u r e  6 or 10) and t h e  
vehicle motions become unstable,  t he  p i l o t ,  using the  displayed-rate 
information (which i s  sensed from gyros located i n  the  spacecraf t ) ,  takes  
over and s t a b i l i z e s  the  vehicle motions. When an engine actuator  fails ,  
t h e  vehicle develops asymmetric ro t a t iona l  moments. I n  t h i s  case, t h e  
p i l o t  a c t s  as an in tegra t ion  type element i n  that he i n j e c t s  trimming or 
b i a s  commands t o  n u l l  t he  unbalanced or  asymmetric ro t a t iona l  moments. 
I n  the  case of a s ingle  display failure, the information displayed w a s  
su f f i c i en t ly  redundant that by a quick cross-check the  p i l o t  w a s  able  t o  
detect  which instrument had f a i l e d  and continue t o  f l y  t h e  vehicle using 
the  remaining sources of displayed information. 

He d i d  t h i s  by operating as an 

6.5 Simulation With Random Fai lures  

It should be pointed out t h a t  i n  t h i s  study we were concerned 
pr inc ipa l ly  with the  question "Is t he  automatic f l igh t -cont ro l  system 
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p lus  a p i lo t ed  backup system more or less r e l i a b l e  than t h e  automatic 
f l igh t -cont ro l  system taken alone?" 
matic f l igh t -cont ro l  system forms the reference condition, thus making 
it necessary t o  measure the  r e l i a b i l i t y  of the automatic system using 
the  same f l i g h t  simulation setup, same f l i g h t  conditions, e tc . , tha t  were 
used fo r  t h e  p i lo t ed  system. 

The r e l i a b i l i t y  level of t h e  auto- 

There were several  var iables  t o  consider i n  t h e  simulation: t h e  
number of p i l o t s  (3  used) and failures (19 f o r  p i lo t ed  system and 10 f o r  
t h e  automatic), t h e  wind magnitude (2  used), t he  time of failure (3 
major divisions; before, at, and after high 
(i.e.,  f o r  some failures the  vehicle tu rns  i n t o  or away from wind). 
From these var iables  it w a s  determined that there  were 176 bas ic  failure 
s i tua t ions  per p i l o t  f o r  the p i lo t ed  system and 116 fo r  t he  automatic. 
To make the  number of failures approximately proportional t o  probabi l i ty  
of occurrence, 79 addi t iona l  s i tua t ions  were added making a t o t a l  of 253 
s i tua t ions  per  p i l o t  f o r  the  manual system and 195 f o r  t h e  automatic 
system. These s i t ua t ions  were then presented t o  t h e  p i l o t  i n  a random 
order with one f a i l u r e  f o r  each simulated f l i g h t .  The automatic system 
data were obtained at the  same time t h e  simulation w a s  set up f o r  t he  
manual f l i g h t s .  The probabi l i ty  of mission failure fo r  a major failure 
mode ( e f f e c t i v i t y  number) w a s  calculated from these data. The cr i ter ia  
f o r  a successful or unsuccessful f l i g h t  were vehicle s t ruc tu ra l  loading 
and guidance considerations.  

q)  , and the  wind d i rec t ion  

6.6 Determination of t he  Probabi l i ty  of Mission Fai lure  

The major failure mode e f f e c t i v i t y  numbers as determined by the  
simulation are tabulated i n  Fig.  20. The data are shown f o r  one wind 
magnitude only e The failure mode c r i t i c a l i t y  (probabi l i ty  of mission 
f a i l u r e )  shown i n  Fig. 20 i s  the  product of t he  failure mode unre l i -  
a b i l i t y  and e f f e c t i v i t y  numbers. 
normalized t o  the  most probable failure mode, the  c r i t i c a l i t y  numbers 
a l s o  have only r e l a t i v e  significance.  The ove ra l l  mission c r i t i c a l i t y ,  
shown at  the  bottom of Fig. 20, i s  obtained by s w i n g  t h e  c r i t i c a l i t y  
numbers f o r  t he  appropriate f a i l u r e  modes. The r e s u l t s  indicate  that 
including the  p i l o t  i n  a backup control  system f o r  t he  f i rs t  stage 
reduces mission c r i t i c a l i t y  by a f ac to r  of 2. 

Since t h e  u n r e l i a b i l i t y  numbers were 

7. DISCUSSION 

Some results obtained i n  t h e  present study a r e  applicable t o  cer ta in  
other vehicles.  Consider the  question of what i s  the  optimum p i l o t  con- 
t r o l  mode f o r  t h e  all-weather landing of la rge  t ranspor t  a i r c r a f t .  
t rend has favored a f u l l y  automatic system with p i l o t  monitor and backup. 
This i s  prec ise ly  t h e  mode of cont ro l  used f o r  the  present study. A sig- 
n i f icant  question concerning t h i s  mode of cont ro l  i s  "Can the  p i l o t  
adapt t o  t h e  f a i l u r e  dynamics Sast enough i n  the  event of a failure?" 

The 
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The present study shows that, with su f f i c i en t  recent prac t ice ,  t h e  
p i l o t  could adapt t o  the failure dynamics from a monitor mode as fast as 
from a primary cont ro l  mode, 

The p i l o t ' s  a b i l i t y  t o  recognize display failures w a s  another s ig-  
n i f i can t  result of t he  study. A s  seen i n  Fig. 20, no mission failures 
were a t t r i bu tab le  t o  display f a i l u r e s  (zero e f f e c t i v i t y )  . Inadvertent 
takeovers were eliminated by t h e  ground rule that two separate indica- 
t i o n s  of a failure were necessary before a p i l o t  could take over. 

A t h i r d  s ign i f icant  result of t h e  study w a s  the  p i l o t ' s  a b i l i t y  t o  
a c t  as a highly e f f ec t ive  frequency se lec t ive  f i l t e r .  
mode of operation considered, t he  p i l o t  w a s  required t o  a c t  as an adap- 
t i v e  p a r a l l e l  loop t o  the  automatic system., 
mode , he w a s  required t o  c lose a t t i tude,  a t t i t u d e  rate, and/or acceler-  
ometer load-rel ief  loops, 
qui te  e a s i l y  separated out and disregarded the f l ex ib l e  body content of 
these sensor signals;  i n  most instances,  t h i s  allowed t h e  p i l o t  t o  con- 
t r o l  rigid-body motions more e f fec t ive ly  than an automatic system 
u t i l i z i n g  passive f i l t e r i n g  of the  flexible-body s ignals .  

I n  the  backup 

Depending on the  failure 

By observing h i s  display panel, t h e  p i l o t  

8. CONCLUDING REMARKS 

'he technique described above allows mission success t o  be sys- 
tematical ly  determined f o r  a complex manual system. 
fu r the r  ind ica tes  those systems or procedures requiring fur ther  develop- 
ment. In  addition, several  spec i f ic  r e s u l t s  applicable t o  other large 
vehicles resu l ted  from the  study. 

The technique 
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