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V/STOL TERMINAL AREA INSTRUMENT FLIGHT RESEARCH

By John P. Reeder
Aero-Space Technologist/Research Pilot
NASA Langley Research Center

INTRODUCTION

V/STOL aircraft would seem to have the ultimate potential for safe
Category III landings, even onto rooftop landing pads. However, prcblems
have been experienced during instrument flight studies at low speeds on
an approach guidance system. Also, there are added piloting tasks
required in the operation of some V/STOL aircraft types in transition
flight. These factors indicate an urgent need for research in the crit-
ical terminal area instrument flight environment.

The research program at NASA-Langley is designed to investigate the
handling and operating problems of V/STOL aircraft during instrument
flight throughout the sequential operations from cruise flight to landing
on a pad. The take-off to cruise flight operation will also be studied.
Design information, solutions to operating problems and more suitable
operating procedures than presently possible are desired results.

This paper will first summarize the state-of-the-art in V/STOL
instrument flight to illustrate the problems and will then discuss the
three facets of the Langley research program which are intended to :
generate solutions to the problems.

These facets are:

a. Basic handling qualities

b. Pilot information requirements and flight displays

c. Terminal area operations with actual V/STOL aircraft
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STATE-OF-THE-ART

The best V/STOL aircraft we have tocday, the helicopter, has been a
production article since 1943 but has attained only limited IFR cortifi-
cation and use to date. V/STOL aircraft other than helicopters have
been available in only crude form to date. Langley Research Center has
had limited flight experience with 11 of these. Only one aircraft, the
XC-142, is suitable for realistic instrument flight studies. However,
only limited instrument flight has been accomplished to date even with
this aircraft.

When Langley began instrument flight studies with helicopters in
1950 it became apparent that the nature and magnitude of some major'
problems had not been anticipated. It was found that instrument flight
without following a guidance system could be accomplished reasonably
well, even with unstable aircraft, and it is felt that this is true for
many of the V/STOL aircraft flying today. This type of instrument flight
is illustrated in figure 1. Examples in practice are ASW "dips" where
exact spatial position is not required, and GCA approaches to large
alrports at cruise speeds.

The problem becomes an order of magnitude more difficult, however,
when it is desired to hit a small, specific spot in very low visiﬁility
(refs. 1, 2, 3, and 4). An example of this requirement might be landing
on the Pan American building roof in New York when it is in the clouds.
This type of operation is illustrated in figure 2, and with present
technology, requires a specific path to the specific point. It is

assumed there will be many desired landing sites similar to this in both
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commercial end military V/STOL operations. In fact, V/STOL aircraft
may not be economically justified in feeder operations unless they can
operate routinely in lower weather minime than airplanes do today.

Thus far it has not been found possible on an'opera$ional basis
for a pilot to slow to a hover and land on a specific spot by instruments
despite the fact that stabilization systems have been extensively
developed for helicopter use. For the time being, therefore, the final
slowdown and vertical landing from an instrument approach must be
accomplished visually.

The state-of-the-art in guidance systems provides a localizer course
for directional alinement as well as the glide path for guidance in the
vertical plane. Over many years the precision instrument approach
technique in using this system which has been found necessary for the
airplane, a simpler vehicle than V/STOL aircraft, is that shown in
figure 3. Note that the only intended variable during the final approach
is altitude. All other parameters have a fixed reference about which
only necessary small corrections are made. The need for adhering to this
technique is greater today than ever as weather minima are reduced. In
other words the number of variables for the pilot to manage must be kept
to a minimum for concentration on the primary task of following the
guidance system. The flare and landing are then performed visually
after breakout.

In contrast, desirable V/STOL approaches are shown in’figure L.
These approaches approximate minimum time and also maximum utilization

of airspace in the case of-+the curved path. Note that nearly everything
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is varisble, so with current technology the human pilot would have a
virtually impossible task to perform during an instrument epproach.

Since the pilot cannot cope with all the variables of the desirable
V/STOL eircraft aspproaches shown in figure U4, “he approach must be flown
at a constant airspeed and glide-path engle until visual contact is
establighed with the landing area. To see and land at zero speed with
a reasongble maneuver in 1/8-mile visibility, such as the Pan American
roof might probably have when ceilings at New York sairports are approach-
ing airplane minima, the approach closure speed should not exceed that
shown in figure 5 (ref. 5) or about 35 knots.

The objective with present technology, then, is to get into position
for landing visually at the proper speed. A non-helicopter V/STOL air-
craft instrument approach for best performance (straight in) using current
technology might appear as in figure 6 in vertical cross section. Fol-
lowing descent the flight path is leveled so the pilot can concentrate on
starting auxiliary lift systems if required. During this operation he
must readjust for large drag changes and probably large pitching moment
changes. The aircraft must still remain wingborne during this stage.
This operation will require at least a minute if everything is planned
and executed perféctly. It is to be noted that if this operation cannot
be performed in the clouds the aircraft must adhere to circling weather
minima or higher, since there would not be sufficient time after breakout
under lower ceilings.

The next operation is to reduce speed below that for wing-borne
flight to a lower,‘maneuvering value by thrust vectoring and adjustments

of 1ift and cruise thrust systems. In the pure vectored-thrust type
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(including the tilt-wing sircraft) this vectoring to obtain speeds below
purely wing-borne flight will be the first step in setting up the
approach, as there are no auxiliary systems to start. Reduction to
speeds below fully wingborne is thought necessary for all V/STOL types
prior to the final stages of the approach because large lift, drag and
pitching moment changes of initial conversion and required adjustments
should be made before the precision guidance phase begins.

Following this partial conversion, the pilot is ready to establish
his precision alinement and readjust his speed and height for intercept
of the glide path. The alinement procedure will require at least one
minute based on flight expericence. The glide path is then acquired and
final speed established. Both speed and glide path angle are then
essentially constant until breakout to visual conditions for landing.
Flight e#perience has indicated that this phase of the approach requires
about 90 seconds or 1~1/2 minutes to allow for acquisition of steeper
glide slopes than the usual 3° and the effects of wind gradients with
height. When visual contact is established, the aircraft is slowed to a
vertical landing visuelly. Note that at least 5 minutes of slow flight
are required for this pattern. For a jet type, this slow flight repre-
sents a very high fuel consumption and could amount to about one-third
the range of the aircraft. Missed approaches are prohibitive in cost
in this case. Propeller or fan type aircraft will nct suffer such a
large penalty in range.

In all probability the best performance approach illustrated cannot
be accomplished because of traffic conditions, wind and landing direction,

and approach aids available. Although omrii-directional epproach systems

-5 -




have been suggested for VIOL facilities (ref. 6) they are intended to
provide for approaches into the wind under all conditions, and not for
approaches from any direction regardless of wind. Operation of VIOL at
low speed will be seriously hampered by large cross-wind and taill-wind
components. Consequently, the pattern flown might be more nearly as
shown in figure T, where meneuvering is required between steps to get
into position. Time for the epproach will, of course, increase. Pattern
size is directly proportional to speed as the comparison with that for
the airplane in the figure indicates., The reason is that time required
for alinement on the precision courses is very nearly the same for both
types of aircraft.

For practical reasons such as the avoidance of adverse airflow
conditions in the lee of buildings, for obstacle clearance, or for
expediting descent from cruise altitudes a glide path angle of at least
6° is suggested. Although 6° does not seem steep to the uninitiated,
instrument flight trials of references 1, 2, 3, and 4 have indicated
limitations to the use of appreciably steeper angles. As stated earlier,
vertical approaches on instruments have not yet been found possible or
even desirable in most cases. 1In fact, flight at low airspeeds and steep
angles on a guidance system have proved difficult. Also, rate of descent
should not exceed TO0 feet per minute to allow time to arrest descent
when visual contact is made. Since wind effects and flight path control
difficulties decrease as speed is inecreased the 6° slope rather than
steeper angles allows a selection of higher flight path speeds if

acceptable without exceeding TOO feet per minute rate of descent.
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Control of the glide path for a V/STOL aircraft at low speed
differs from airplane flight and is indicated in figure 8. Note that
adjustment of the thrust vector angle determines the approach speed and
the thrust or power level is adjusted for unaccelerated flight at the
selected speed. o control the glide path, then, the thrust vector
angle is modulated primarily .f the angle of attack must be held within
narrow limits to avoid stall, pitchup, excessive dihedrsl, or large drag
buildup. If the angle of attuck can safely vary as for the tilt-wing
or helicopter types, the thrust or power level can be modulated for

glide path control with essentially constant attitude.
PROBLEMS OF LOW SPEED FLIGHT

As indicated earlier, an instrument approach to a vertical landing
at a selected spot in 1/8-mile visibility with present technology requires
that a maximum steady speed of about 35 knots be maintained for about
1-1/2 minutes. The problems encountered at low speeds such as this on a
guidance system are listed in figure 2. It is noteworthy that very few
organizations have tried this type of flight to learn of the problems,
even with helicopters, although those which have tried have reached simi-
lar conclusions (refs. 1, 2, 3, 4, 7, and 8). As a result, no large tcale
effort toward solutions has been undertaken. The factors that cause
problems are:

a. High angular rates of deviation from flight path occur due to
small upsets in attitude. These rates are, simply, inversely proportioneal
to speed and do not depend on aircraft type. However, in some V/STOL
aircraft types large sideslip angles may result instead of a turn should

the aircraft deviate from laterally level flight.
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b. The high angular rates of deviation occur with vanishing

acceleration clues for detection by the pilot.

¢. Wind-shear elfects require rapid and large glide psth and
heading corrections below 200 feet even in light winds, and below
700 feet, or so, in strong winds regardless of whether the sirer It has
stabilization systems. .Lateral flight path control is always performed
by banking and turning to accomplish heading corrections. In the first
place it is considered highly undesirable to hold heading and vary side-
slip to stay on track because of the continually changing lateral and
directional trim requirements with no fixed reference. Secondly, dihe-
dral effect has proved to be high for most V/STOL types, so there is
every possibility of using all of the lateral, or even the directional
control for trim, allowing none for maneuvers, disturbances or emer-
goncles. Also, as glide path angles are steepened the wind~-shear effects
geometrically alter the glide path angle in sruce, if airspeed is main-
tained. Flying the glide path thus becomes more difficult and corrections
become markedly larger, warticularly on slopes higher than 6°.

d. For the speeds being discussed flight is most probably on the
"backside" of the thrust or power required curve which leads to difficul-
ties in glide path control if angle of attack or attitude inadvertently
vary or if attitude alone is used in flying the glide path guidance system.

e. Although V/STOL aircraft masy be statically stable in an enginecer-
ing sense at low speeds the magnitude of restoring moments is decreased to
low levels about one or more axes because of low dynamic pressures.

f. The aerodynamic damping forces and moments about the linear and

angular axes of the aircraft, respectively, also tend %0 be low due to
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low dyneamic pressure, resulting in further deterioration of handling
qualities, The jet supported asireraft have been troubled with low
linear damping along the vertical axis which has led to "accelerated
settling" during night or simulated instrument approaches where visual
references have deteriorated end constant attention to this axis canrot
be maintained.

The end result of these low speed characteristics is to force the
pilot's rate ol instrument scanning o an excessively high level. Eye
fixations have been measured at two per second. This is true even with
present stabilization s&stems gince many flight path corrections are
required. A brief distraction or requirement for a large correction may
easily allow the aircraft to get ahead of the pilot and the approach may
have to be abandoned.

It cannot be denied that automation of portions oi all 6f the
approach and lending will be accomplished ewventually. We prefer to think
that the characteristics of the aireraft and the methods of operation
within the aircraft operational envelcpe must be explored before intellii-~
gent automation can be emﬁloyed. hkutomation will probably then be applied
progressively to critical portions of the overall task as feasibility is
demonstrated. It is not reasonable to expect rewmplets automation of a
VIOL spproach and landing without an extensive dzvelopment pericd as the
overall operation is more complex than an airplane landing today,
particularly if it involves a decelerating degcent. It is of interest
to note that the airplane, even today, has achieved automatic landings in
only experimental operations, or in a few trial cases with passengers
aboard when visibility was adequate for the pilot to take over control at

any time.




ATTACKING THE PROBLEMS

In order to examine and solve the problems of the "high performance"
instrument approach for V/STOL aircraft and to simplify the techniques
and shorten the procedures for approach and landing Langley has been
proceeding on a three-facet research program which is outlined in
figure 10. The program includes handling qualities studies with a heli-
copter used as an airborne V/STOL simulator, pilot information require-
ments and display studies in another helicopter, and terminal area instru-
ment flight operations studies with several V/STOL aircraft other than
hellcopters. An experimental GSN-5 radar is used to provide a.wide range
of guided flight paths for the studies.

The three facets of the program are discussed in turn:

Airborne Simulator.- For the past 3-1/2 years Langley has been oper-

ating a CH-U6C (Vertol 107) tandem helicopter as a variable-stability-and-
control airborne simulator whiéh uses the model-following technique with
analog computers. Its mission is to explore and develop better aircraft
characteristics for the critical tasks of V/STOL operation. The aircraft
has been used for study of many of the individual handling qualities
parameters involved in piloted visual and instrument flight. Flight con-
trol systems and antogation about the various aircraft axes for automated
approaches and landingg will bé investigated.

Two recent studies of particuvlar interest to V/STOL operation will be
discussed to illustrate the use of this aircecraft. The first study is of
an "on-off" control system similar %o that used in spacecraft (ref. 9),

the characteristics of which are shown in figure 11. As illustrated on the
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right of the figure full control is either on or off as control is dis-
placed beyond a *1/h-inch deadband at neutral. This system was flown in
the CH-46C through all normal maneuvering and precision hovering tasks
near the ground for comparison with proportional control. Resultis are
compared with th- roportionel system in figure 12 as control power and
damping for a satisfactory pilot rating (Cooper 3-1/2). Note that satis-
factory ratings were achieved with the on-off control with control powers
found unacceptable for the normal proportional control, and they were
about one~-quarter those for satisfactory proportional control. This
result is significant in that some V/STOL aircraft derive control power
from bleed flow from the lifting system, thus influencing the size and
weight of the lift-propulsive systems and therefore, the aircraft. The
on-off control may thus influence the configuration and minimize the size
of the aircraft. The satisfactory control shown is for maneuvering only,
and additional control moments must be provided for trim. Additional trim
requirements can be accommodated more readily with a proportional system.
The second‘sfudy referred to is of the thrust-to-weight ratio (T/W)
required to arrest the vertical velocity of V/STOL aircraft for landings

from steep descents at 500 to 1000 feet psr minute performed visually

(ref. 10). Results are shown in figure 13 as pilot rating for combina-

tions of vertical damping and T/W ratio where power required is constant
with speed. This power required characteristic is typical of a jet air-
craft near hover. Surprisingly, for typical V/STOL aircraft damping a
T/W ratio of only 1.05 was found satisfactory (Ccoper 3-1/2), although

the pilots would like more for unlimited maneuvering. It will be of

great interest to see what T/W ratios are reqﬁired for actual V/STOL
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aircraft for glide path corrections during instrument approaches at low
speed. In the study from which the figure was drawn the pilots actually
demanded higher T/W ratios for horizontal acceleration and climb capabil-
3ty than they did for the landing maneuver.

Pilot displays.- Until automation is fully developed, our research

viewpoint is that the pilot should remain in the control loop as an active
participant. The reason for this thinking is that failures do and will
continue to occur. Since it is likely that V/STOL aircraft will have more
systems involving more components than present airplanes the component
failure rate may well increase. Guidance system malfunctions must also
be considered. In order for the pilot to take over as quickly as possible
in any situation he must be directly geared to the operation.

We have hopes that, with vastly improved displays and improved
guidance systems, approaches which we now fly visually and which are close
to the minimum-time type may possibly be flown with these displays all the
way to touchdown at the desired point. No displays to date have permitted
such VTIOL operatiocn, at least on an operational basis. Our goal is to
reduce the aﬁproach time required from 5 to 6 minutes by present procedures
to 1-1/2 to 2 minutes. We are, therefore, actively working on improved
displays with a helicopter, trying at the same time to keep them simple
in mechanization; i.e., mechanical and/or electrical.

For evaluation of the displays a GSN-5 radar (prototype of the SPN-10)
is used to provide any shape or width of approach path and, by means of
radio data link, it provides the aircraft with cockpit-displayed guidance
signals. The radar also plots the vertical and horizontal tracks of the

aircraft for measurement of task performance. The approach paths selected
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by trial have been wider than normal ILS courses and of constant linear
width from 1500 feet range to the pad to reduce the sensitivity at a
critical point in the approach. The glide path angle has been 6°.

Our display program started cut with initially three phases:

l. Flight director with auxiliary information on vertical tapes

2. Horizontal situation display with auxiliary information on

vertical tapes
3. Contact analog with auxiliary information for landing on a
specific spot

The program has expanded somewhat as new ideas have been generated by
experience.

We have thoroughly explored "needles at their best" (ref. 11) with
the flight director shown in figure 14 which is augmented by vertical tape
displays of ground speed, geometric height, range, airspeed and vertical
speed. We are now convinced that needles do not and cannot give the pilot
sufficient knowledge of his situation to do the job. It has become evident
that the pilot needs quantitative position information in the landing area
and his velocity vector, both speed and track over the ground, in addition
to attitude and relative heading, if a worthwhile reduction in workload and
improvement in accuracy at breakout is to be accomplished. This has been
confirmed with the graphic horizontal situation display (ref. 12) shown in
figure 15 which is augmented by vertical tape display of coarse and fine
geometric height, airspeed and vertical speed. Labels on the figure
explain the information provided by elements of the disPIay. The pilot
gains a more complete appreciation for his horizontal situation and what to

do about it than needles can possibly give him. The indications are that
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large attitude instrument above the display gives the pilot reference atti-
tude information without specific eye fixations on it.

The next version of the display having vertical situation added will
use a 6-inch horizon (5-inch at present) without command needles. A
measure of effectiveness of this display in reducing workload is shown in
figure 16 as breakout position at a 50-foot height from the 6°-glide slope
flown at 30 knots airspeed. The longitudinal dispersion, evidence of
glide path control difficulties caused by wind gradient effects below
‘about 200 feet, is cut to less than half because the pilot can spend more
time on glide path controi using the improved horizontal situation display.
Pilot comments attest to an even greater reduction in workload than the
dispersion data indicate.

The display work is only partially complete and is heing pursued along
several promising lines. After a preliminary study using & television picture
of the real world (ref. 13), we are beginning work with a contact analog in

which auxiliary picture information is provided for judging height and range

to the pad and for execution of vertical touchdowns.
{t is worth noting that the same inputs to the displays that the pilot
needs to assess his situation are those needed for automation of the
§ approach. The velocity inputs are not available frbh present operational
k guidance systems, although airborne doppler or inertial systems might be
used in combinstion with them.
We feel that improved displays are a logical and necessary step toward

f easier and shorter instrument approaches not only for piloted control but

also for full automation. In the latter case improved displays may be able
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to present the total situation of the aircraft clearly enough that the
pilot can be a passive monitor and still take gquick corrective action
should anything go wrong (2 secs. instead of 6 secs. for action). This
capability would go a long way toward speeding up pilot acceptance of
full automation.

Terminal area operations.- The third phase of Langley's V/STOL flight

program is to get experience in "high performance" instrument flight with
actual VIOL aircraft. So far, this type of flight has simply not been
explored with VIOL aircraft other than helicopters. Langley's terminal
area operations studies are a "systems approach" to solving the high
performance instrument approach and landing problems. The operations will
include entrance into the landing area patterns of figures 6 and 7 from
cruise flight and performing all the necessary operations to a vertical
landing in simulated instrument flight. The takeoff and transition into
cruise flight will also be investigated. Thus the various phases of the
operation are integrated in proper sequence into a realistic operational
task.

The objectives of the terminal area operationé program are the
dete?ﬁination of the flight controls requirements for critical flight
tasks; the piloting problems of managing and operating the propulsion
and conversion systems while performing the required flight tasks, and
Qetermination of operating procedures that minimize pilot workload, time
and airspace. The overall program is intended to explore several types
of lift-propulsion systems, the autostabilization or augmentation systems
required, and significantly improved pilot displays. These obJjectives

are shown in figure 17. As stated earlier, a long-range objective is the
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reduction of time from cruise to landing from 5 to 6 minutes with present
technology to 1-1/2 to 2 minutes. The reduction in time probsbly means re-
duction of airspace required as well as fuel. If these factors are reduced
it will have been because the piloting tasks have been simplified toward
that of visuel flight and the risk of missed approaches will be greatly reduced.

The aircraft Langley plans to use for these studies are:

1. Hawker P.1127

2. Jet V/STOL research aircraft

3. XC-1h2

We have recently begun terminal area operations studies with a
Hawker P.1127 which was made available to us by the Department cf Defense
following the U.S. National Trials. With this aircraft we hope to get
design information and initial experience with which to firm up the
program for a planned jet V/STOL operations research aircraft. As shown
in figure 18, the P.1127 is limited in its research capability for low
speed instrument flight because it has a single engine, carries a single
pilot, has no stability augmentation, carries little payload, has a low
excess T/W ratio available, and has little hovering time available.
Howgver, important favorable characteristics of the P.1127 are its simple,
quick and flexible vectoring system which permits it to fly at any speed
in the transition speed range, to accelerate and decelerate from hover to
airplane flight, and vice versa, at a rapid rate and to descend at moder-
ately steep angles'at low speed while holding desired attitude of angle
of attack. These characteristics and capabilities provide reference points
at one end of a spectrum of V/STOL aircraft characteristics and capabil-
ities by which to gauge more complex systems in terms of times required,

flight path angle and path control capabilities, and the pilot workload.
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Although it has been proposed by Langley for some time to acquire a
jet V/STOL operations research aircraft and an XC-142 for terminal area
operations studies, approval of the jet V/STOL program and funding for an
XC-142 operation have not yet been obtained. Firm plans, therefore,
cannot be formulated.

The jet V/STOL operations research aircraft is intended to develop
technology for military fighters of the 1975-1980 time period. General
requirements would be as shown in figure 18. As indicated this aircraft
would have multiple 1lift and propulsive units and the aerodynamic config-
uration to simulate the low speed characteristics of advanced designs.

The latest technology would be applied in all areas. The payload, two-man
crew, endurance, engine-out safety, an excess of control power and vector-
ing over mcst present systems and variable stability and control provisions
would provide capability for advariced research. Langley contracted with
two companies for engineering studies of the feasibility, and for the best
design and current cost of such an‘aircraft for both new and modified
airframes. These studies have recently been completed and indicate that
suiteble aircraft can be built to the stated requirements within the
state-of-the-art with a few acceptable compromises. This technology is
available in published form and are listed as references 14 and 15.
Immediate implementation of a portion of the planned research for this
vehicle may be forthcoming through a cooperative program with the Air
Force in which one of the two XV-UB aircraft would be modified as feasible
to meet the special requirements of NASA's program and would be operated
by NASA. Acquisition of this aircraft as an airworthy research aircraft

would require about two years after go ahead.
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NASA has long had a strong desire to acquire an advanced propeller-
driven V/STOL such as the XC-142 for a terminal area operations research
program. Acquisition of one of the XC-142 aircraft from the Air Force
now seems promising. The general program and objectives will be similar

for the propeller and Jet types of aircraft.
CONCLUDING REMARKS

It should be emphasized that the research described in this paper
is oriented toward solving problems of Category III VIOL instrument flight.
It is considered that at least some V/STOL aircraft types are already

suitable for operation in Category I weather minima today.
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CONSTANT:

CONFIGURATION
AIRSPEED v,
RATE OF DESCENT

ANGLE OF DESZENT
ATTITUDE ALT.

GROUND TRACK CONSTANT
TRIM SPEED
POWER
Vi DISTANCE
VARIABLE:

ALTITUDE |

Figure 3.- Instrument final approach as performed Ly airplanes.
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DETERMINATION OF
1. FLIGHT CONTROLS REQUIREMENTS

2. PILOTING PROBLEMS
3. BEST OPERATIONAL PROCEDURES

TASK
V/STOL TAKE-OFF, LANDING APPROACH, AND

LANDING IN INSTRUMENT WEATHER
VARIABLES

1. TYPE OF PROPULSION SYSTEM

2. TYPE OF AUTOSTABILIZATION

3. TYPE OF PILOT DISPLAY

Figure 17.- Objectives of terminal area instrument flight operations studies.
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