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AN ACCURACY STUDY OF FINITE DIFFERENCE METHODS 

IN STRUCTURAL m L y s r s Q  

By Nancy Jane Cyrus* and Robert E. Fulton** 

NASA Langley Research Center 

SUMMARY 

An accuracy study i s  made of cent ra l  f i n i t e  difference methods for solving 

boundary value problems i n  s t ruc tura l  analysis which a re  governed by equations 

with variable coefficients leading t o  odd order derivatives. Two methods are 

studied through application t o  beam-columns with nonuniform inplane loads and 

nonuniform s t i f fness .  Definitive expressions f o r  the  e r ror  i n  each glethod are 

obtained by using Taylor se r ies  t o  derive the d i f f e ren t i a l  equations which' 

exactly represent t he  f i n i t e  difference approximations. 

e n t i a l  equations are accurately solved by a perturbation technique uhich y ie las  

the error direct ly .  

The resul t ing differ- 

A "half stationn method, which corresponds t o  making f i n i t e  

d5fference approximations before expanding derivatives of function products i n  

the beam-column d i f f e ren t i a l  equations, was found clear ly  superior t o  a "whole 

station'' method which corresponds t o  expanding such products first. 

f,e 'material included herein was carried out by the first author i n  par- 

t i a l  fulfi l lment of the requirements f o r  a degree of Master of Science i n  

Mathematics a t  Virginia Polytechnic Ins t i tu te .  

%thematician, NASA 

**Aerospace Engineer , 
h g l q  Research Center. 

NclSA Langley Research Center, Member, ASCE, 



INTRODUCTION 

The d i f f e ren t i a l  equations governing t h e  behavior of beams, plates ,  and 

she l l s  a re  often solved by approximating the derivatives by f i n i t e  differences 

and solving the  resu l t ing  algebraic equations on a d i g i t a l  computer. 

analyses of complicated s t ructures ,  such as c i v i l  engineering s h e l l  structures 

or aerospace vehicle structures,  the number of simultaneous equations resul t ing 

from f i n i t e  difference approximations can be suf f ic ien t ly  large t o  exceed the 

capacity of the computer or introduce round-off error .  

I n  design 

For such problems, t h e .  

accuracy of the difference procedure can be a c r i t i c a l  item i n  obtaining mean- 

ingful  design resu l t s .  In  reference 1, fo r  example, it was found tha t  accurate 

answers fo r  the s t r e s s  i n  a s h e l l  could not be obtained by using cer ta in  f i n i t e  

difference approximations unless the mesh spacing w a s  smaller than machine 

capacity permitted. 

The most popular difference approximations a re  the so-called central  d i f -  

ferences which a r e  given i n  textbooks on numerical methods. There a re  a l te rna te  

formulations of cent ra l  differences which can be used when odd order derivatives 

occur i n  the d i f f e ren t i a l  equations. Such a s i tua t ion  resu l t s  i n  s t ruc tura l  

problems, fo r  example, when inplane loads a re  not uniform ( a  column loaded by 

i t s  own weight or a she l l  of revolution) or where the s t i f fnes s  of the struc- 

ture i s  nonuniform (a  tapered beam or a variable thickness s h e l l ) .  

The purpose of t h i s  paper i s  t o  investigate the accuracy of two a l te rna te  

forms of cent ra l  f i n i t e  difference approximations used i n  the solution of struc- 

tural problems. A new approach fo r  studying the accuracy of f i n i t e  difference 

or f i n i t e  element methods i s  presented and u t i l i zed .  

beam-column problems; however, t he  approach and conclusions a re  applicable t o  a 

wide class  of p l a t e  and she l l  problems. 

The study i s  confined t o  



SYMBOLS 

Y 

Y 

bending s t i f fnes s  of beam 

nondimensional tension i n  beam or s t r ing  

nondimensional s t i f fnes s  of beam 

f i n i t e  difference spacing 

l inear  d i f f e ren t i a l  operator 

tension i n  beam OT s t r ing  

nondimensional l a t e r a l  load 

l a t e r a l  load 

ax ia l  coordinate of beam or s t r ing  

deflection of beam or s t r ing  

deflection function i n  perturbation se r i e s  ( see eq. (12) ) 

STATENFXC OF THE PR0BL;EM 

Consider a general beam-column ( f ig .  1) with nonuniform s t i f fnes s  E1 and 

nonuniform inplane load N (taken posi t ive i n  tension).  The well-known differ- 

e n t i a l  equation governing the l a t e r a l  deflection y of the beam i s  

( E I ~ ~ ~ ) ' '  - (NY~)' - q(x) = o (1) 

where q(x) i s  the dis t r ibuted l a t e r a l  load and where primes indicate d i f fe r -  

ent ia t ion with respect t o  x. This equation can be solved by f i n i t e  differences 

by dividing the  beam i n t o  s ta t ions of equal spacing h. The quant i t ies  E 1  and 

N are  known, and f i n i t e  difference equations a re  writ ten i n  terms of the  d is -  

placements a t  t he  i t h  s t a t ion  (i = l,2,3 . . .) . 
In  the present paper, two different  f i n i t e  difference approximations a re  

considered. For convenience one formulation i s  cal led the  "Half Station" method 



and the  other the  "Whole Station" method. For the  term (Ny')' i n  eqmtion-(,l) 

these two methods lead t o  the following f i n i t e  difference expressions: 

1. H a l f  Station Method 

o r  

2. Whole Station Method 

Note tha t  t he  half  s ta t ion  method i s  the natural  resu l t  of  making the f i n i t e  dif-  

ference approximation before eqanding the derivatives while t he  whole s ta t ion 

method resu l t s  from making the  approximation a f t e r  the expansion. 

type of approximation i s  widely used (see, f o r  example, re fs .  2 and 3 ) .  

sponding choices f o r  the term (EIy")" are: 

The l a t t e r  

Corre- 

1. Half Station Method 

c r 
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. 2. Whole Stat ion Method 

= A{FEI)i  h4 - h(EI)dyi-p + ~ 4 ( E I ) i  

P 

+ 2h(EI)i + h2(EI)i yi-l + 6 ( E I ) i  ~1 

While the preceding two se t s  of f i n i t e  difference approximations are both of 

order h2, they clear ly  lead t o  different  coefficients f o r  the simultaneous equa- 

t ions i n  terms of the displacements a t  t he  i t h  s ta t ion.  O f  concern here are the  

re la t ive  magnitudes of the  errors  i n  these different  approximations. 

ERROR ANALYSIS AND FBSJLTS 

The usual approach i n  a f i n i t e  difference accuracy study i s  t o  carry out the  

numerical solution t o  a number of problems f o r  which exact solutions can be 

obtained and t o  compare the resul t ing numerical answers a t  each s ta t ion  with the  

exact answers. Such a procedure has the  l i a b i l i t y  t h a t  comparisons can only be 

made fo r  each problem a t  specif ic  s ta t ions and the calculations must  be redone 

each t i m e  t he  mesh s i ze  changes. 

5 



The approach used i n  t h i s  paper i s  one which has not been reported pPe- , 

viously i n  the l i t e r a tu re .  

Taylor series. 

equivalent t o  the f i n i t e  difference approximations. 

The f i n i t e  difference approximations are expanded i n  

This procedure resu l t s  i n  d i f f e ren t i a l  equations which are exactly 

The resul t ing d i f f e ren t i a l  

equations are then solved by a perturbation technique and y ie ld  analyt ical  expres- 

sions f o r  t he  la rges t  error  term. 

spacing, a re  d i rec t ly  comparable, and give a c lear  indication of the re la t ive  

These expressions are  independent of mesh 

accuracy of t he  difference approximations not j u s t  a t  discrete  points but over * 

the  length of t he  beam. 

There are two terms i n  the beam-column equation which are  approximated by 

f i n i t e  differences: (1) the nonuniform tension e f fec t  and (2)  the  nonuniform 

s t i f fness  e f fec t .  It i s  convenient t o  consider these t w o  e f fec ts  separately. 

Effect of Nonuniform Tension 

To study the e f fec t  of the inplane. load term i n  equation (1) l e t  E 1  = 0. 

The resul t ing equation describes the  behavior of a l a t e r a l l y  loaded s t r ing  sup- 

ported a t  each end and subjected t o  nonuniform tension. For convenience, the 

variables a re  nondimensionalized so tha t  the length of the s t r ing  i s  1 and tension 

i s  1 a t  the l e f t  end. This leads t o  the  following problem: 

- ( f (x)y ' ) l  - p(x) = 0 

Y(X0) = 0 y(xo + 1) = 0 

where f ( x )  now represents the nondirnensional tension i n  the s t r ing ,  p(x) i s  

a nondimensional l a t e r a l  load, and xo 

s t r ing.  

equation (6) yields: 

i s  the coordinate o,f the l e f t  end of t he  

Application of t he  two difference patterns,  equations (2) and ( 3 ) ,  t o  

6 



1. H a l f  Station Method 

Expand the  f i n i t e  difference recursion formula equations (7) and (8) about 

the i t h  point using such Taylor series expansions as: 

2 

2!  
= fi 2 hfi' + h fill 2 . . . f i k l  

For both the  half  s t a t ion  and whole s ta t ion  method t h i s  procedure leads t o  a 

d i f f e ren t i a l  equation of the  furm 

y i = O  a t  x = x o + l  

The symbols Lo, L1, and L2 a re  linear d i f f e ren t i a l  operators given by 

Lo(Yi) = - ( f i Y i t ) '  

7 



and 

1. H a l f  Stat ion Method 

2. Whole Stat ion Method -% 

J . . .  . . .  

Equations (9) and (10) together with e i ther  ( l l a )  or ( l l b )  a re  c lear ly  dif-  

f e r e n t i a l  equations which represent exactly the  f i n i t e  difference recursion 

formulas. A s  h goes t o  zero, equation (9) approaches equation (6).  The solu- 

t i o n  t o  equation (9) ,  sat isfying the appropriate boundary conditions, gives an 

ana ly t ica l  representation of the  numerical f i n i t e  difference answers. Unfortu- 

nately a closed form solution t o  equation (9) does not appear feasible  because 

it contains an i n f i n i t e  number of terms. h 

i s  perhaps 0.1 or 0.01 or even smaller. 

solved by a perturbation method with the perturbation parameter taken t o  be 

For a prac t ica l  problem, however, 

This suggests t h a t  equation (9) can be 

h2. 

Le t  t he  solution yi t o  equation (9) be taken i n  the form 

= Yo + h2Y1 + . . . Y i  

8 



Substituting equation (12) i n to  equation ( 9 )  leads t o  

Y~(xo + 1) + h2 + . . . = 0 

If  each order of error  term is  solved i n  sequence, the following ser ies  of prob- 

l e m s  resul t :  

(3)  - . . .  . . .  

Note tha t  since equation (6) i s  l inear  Yo given by equations (14) i s  i n  

f ac t  the exact solution. From the form of y i  it is seen tha t  Y1 can be 

interpreted a s  the  f irst  order e r ror  term i n  the f i n i t e  difference resu l t s .  

magnitude of Y1 

r e su l t s  as compared t o  the exact answer t o  the problem. A comparison of the e r ror  

terms Y1 resul t ing from two different  f i n i t e  difference approximations indicates 

the re la t ive  accuracy of the two approximations when the node point spacing i s  the  

same. 

The 

is  therefore a measure of the e r ror  i n  the f i n i t e  difference 

Using t h i s  method, the  e r ror  functions Y1 corresponding t o  the half sta- 

t ion  and whole s ta t ion  f i n i t e  difference approximations have been obtained f o r  a 

f a m i l y  of problems. 

dis t r ibuted uniformly and a tension force 

These problems are a s t r ing  having a l a t e r a l  load which is  

f ( x )  which varies as  follows: 

9 



1 (1) f (x)  = 

subject t o  the  boundary conditions 

and 

(2 )  f ( x )  = 1 + xn 

f o r  

for  2 , 1 1 6 6  < 

subject t o  the  boundary conditions 

Y ( 0 )  = 0 

For the case where f ( x )  is  l inear  (corresponding t o  f (x)  = 1, x, o r  

1 + x)  the  resu l t s  f o r  the  half s ta t ion  and whole s ta t ion f i n i t e  difference 

approximations a re  exactly the same. 

answers are  the exact answer. For a l l  other cases, however, the two difference 

methods lead t o  different  resu l t s .  It i s  useful t o  compare the resu l t s  for  the 

I n  fac t  fo r  f (x )  = 1, both difference 

case f (x )  = 1 i n  d e t a i l  as a typical  example. 
x3 

1 For f ( x )  = - and y(1)  = y(2)  = 0 
x3 

y o = - - + -  x.5 31,4 - - 16 
~ 5 75 75 

1. Half Station Method 

86 x3 31 ,2 + Y 1 = - - x 4 + - - -  41 
1125 6 150 1125 
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2. Whole Stat ion Method 

A plo t  of t he  two er ror  terms Y1 over the length of the s t r ing  i s  given i n  

figure 2(a).  Solutions were also obtained f o r  t he  error terms i n  deflection for 

a l l  of the remaining load functions 

of resu l t s ,  f o r  the case 

f (x )  noted previously; an additional plot 

f(x) = 1 I- x3> is  shown i n  figure 2(b), Detailed p lo t s  

of the remaining solutions a re  not shown because figure 2 serves t o  i l l u s t r ake  the  

character of the resu l t s ;  an overall measure of t he  r e l a t ive  errors i n  the  t w o  

methods w i l l  be shown Later for a l l  t h e  solutions obtained. 

While errors i n  t he  dleflections o f t h e  s t r ing  are impol-tarrt;, errors i n  

numerically obtained derivatives should also be considered for a thorough error 

analysis. Therefore, r e su l t s  were obtained by using the f i n i t e  &iffareme 

answers fo r  approximate curvatures (second derivatives).  The second difference 

operator w a s  applied t o  the difference resu l t s  followed by Taylor and p e r t u r b -  

t ion  se r i e s  expansions t o  yiela:  

= y$ + h2Yi1 + &(Yoiv I- h2YIiv f . . .) f . . 
3 2  

or 

The h2 er ror  terns i n  the  curvatures for the  t w o  aethods and for  the case 

1 f (x )  = - are  a s  follows: 
x3 

11 



1. H a l f  Stat ion Method 

2. Whole Stat ion Method 

A p lo t  of the e r ror  i n  the  curvature f o r  each of the two methods i s  also given i n  

figure 2(a)  f o r  t h i s  case and i n  figure 2(b) for the  case f ( x )  = 1 + x3. Again, 

r e su l t s  fo r  the  remaining load functions w i l l  be shown l a t e r  i n  the  form of an 

overal l  measure of t h e  re la t ive  e r ror .  

Numerical calculations were a l so  carr ied out fo r  the deflections and curva- 

tures  f o r  the  problems c i t ed  t o  determine i f  t he  analyt ical  e r rors  adequately 

represented the numerical errors .  'The data a re  not included here; however, fo r  

h 

errors  t o  within 1 percent. 

less than about 0.1 a l l  ana ly t ica l  e r rors  agree with calculated numerical 

Effect of Nonuniform St i f fhess  

To study the  e f fec t  of nonuniform s t i f fnes s  on the  numerical r e su l t s  f o r  the 

behavior of a beam-column, the  tension N i s  set equal t o  zero and the difference 

approximations given by equations (4)  and ( 5 )  are compared. Results a r e  obtained 

fo r  a simply supported beam having a uniformly dis t r ibuted load. Here again the 

variables have been nondimensionalized t o  make the length of the beam and the 

bending s t i f fnes s  a t  the l e f t  end each equal t o  1. This leads t o  the following 

problem: 

[g(x)y!j = 1 

12 



Y b o )  = 0 

y"(xo) = 0 

y(x0 + 1) = 0 

y"(xo + 1) = 0 

where g(x) now represents the  s t i f fnes s  of the  beam and the dis t r ibuted ' load 

i s  1. 

From equations (4)  and ( 5 )  the  two difference equations resul t ing from equa- 

t i on  (22) are  

I. Half Station Method 

+ ("pi - 2h2p<')yi + ( -4gi - 2hgi' + h2g$1)yi+l 

A s  before, expanding yi and gi about the i t h  point leads t o  the d i f f e r -  

e n t i a l  equation 



and 

1. Half Station Method 

60 

2. Whole Station Method 

360 
giyi- gi tyi v i  i 

80 20 
+ + + - -. 

360 J + - -  
80 20 

If solutions t o  equation (253, taking in to  account (26) and e i the r  (27a) 

(27b), are again taken i n  the form (U), the  se r i e s  of simpler equations (14) 

and (15) a re  again obtained (with p = 1). However, since the beam equa%ion is  

fourth order ra ther  than second, a boundary condition on bending moment must also 

be considered, The moment i s  taken t o  be zero a t  the enas of the beam; t h i s  

leads t o  

Yo" = 0 a t  x = xo and x = x o + l  

and 

Yoiv 
Y1(' + - = 0 a t  x = xo and x = x o + l  

12 

for  the zeroth and first order e r ror  problems, respectively (see eq. (19)). 

14 



. Results have been obtained f o r  

g(x) = xn n = 2, 3 ,  4 

and 

1 5 x 2 2  

f o r  both the  ha l f  s t a t ion  and whole s ta t ion  methods of approximating the  deriv- 

a t ives .  The e r ror  terms f o r  both deflections and curvatures a re  shown i n  f ig -  

ure 3 f o r  the case corresponding t o  the  case of a l inear ly  tapered 

beam. An  overal l  measure of the  re la t ive  e r ror  i n  the half  and whole s ta t ion  

methods i s  given below f o r  a l l  three cases. The analyt ical  e r ror  r e su l t s  fo r  

both deflection and curvature a l so  agree with numerical e r ror  calculations within 

1 percent f o r  h less than about 0.1. 

g(x) = x3 

Relative Errors of the Half and Whole Station Methods 

While results such a s  those given i n  figures 2 and 3 a re  usually suf f ic ien t  

t o  ident i fy  which of the two methods i s  superior f o r  a given problem, ident i f ica-  

t i o n  of the superior method fo r  specif ic  r e su l t s  i s  sometimes d i f f i c u l t  (see,  

f o r  example, the  curvature e r rors  of f i g .  2(b)). Moreover, a quantitative meas- 

ure of the r e l a t ive  accuracy of the methods i s  desirable. Probably the f a i r e s t  

comparison of t h e i r  overal l  m e r i t  can be made by examining the root-mean-square 

values of the errors  f o r  the whole structure;  t h a t  is: 

for  t he  e r ror  i n  deflection and 



fo r  the e r ror  i n  curvature, where the integration i s  over the ( u n i t )  length of 

the s t r ing  or beam. Thus, t o  assess quantitatively the  r e l a t ive  m e r i t s  of the  

half s ta t ion  and whole s ta t ion  methods f o r  t h e  various problems solved, the  

r a t io s  

*1 ,whole 

and 
II- 

'' 1 , half 

"'1,whole 
- 

have been calculated f o r  each problem. The results a re  shown i n  f igure 4. 

DISCUSSION OF RESULTS 

The r e su l t s  given i n  figure )+(a) show t h a t  fo r  a l l  problems studied, t h e  

e r ror  i n  the deflection resul t ing from use of the half s ta t ion  method i s  less 

than the  e r ror  due t o  the whole s ta t ion  method - i n  some cases, by an order of 

magnitude. The investigation of the  accuracy of t he  curvature approximations 

gives the  same re su l t  i n  general. Thus, the  half  s t a t ion  method i s  generally 

superior f o r  calculation of both deflections and bending curvature fo r  the  prob- 

lems studied. 

While the r e su l t s  a r e  a c lear  victory f o r  the half  s ta t ion  method, one 

f ( x )  = 1 + x2, exception occurs: 

the e r ro r  i n  the curvature i s  25 percent greater with the  half s ta t ion  method. 

fo r  the  case of the  s t r ing  with the  load 

Curiously, the difference between the  two methods is  seen t o  be generally less 

i n  calculating the  second derivatives of deflections than i n  calculating the 

deflections themselves; moreover, differences i n  the comparative e r ror  from 

16 



problem t o  problem a r e  noticeably l e s s  with the  second derivatives than with 

the deflections. Both of' these r e su l t s  are uneqected. 

It should be noted that the  ana ly t ica l  representation of e r rors  i n  the  

present paper shows c lear ly  the  danger of using numerical data a t  a s ingle  

s ta t ion  or a f e w  points t o  characterize the  e r ror  i n  a problem. 

i s  shown i n  figure 2(a)  f o r  If  comparisons are made of the  curva- 

ture near t he  end x = 1, the  whole s ta t ion  method appears much more accurate 

than the half  s ta t ion  method; whereas figure 4(b) shows clear ly  t h a t  the average 

A typ ica l  case 

f ( x )  = 1. 
x3 

er ror  with the  whole s ta t ion  method i s  over twice as great.  

It should be noted a l so  tha t  the present approach t o  e r ror  assessment may 

a i s0  be useful fo r  comparison of different  f i n i t e  element s t ruc tu ra l  approxi- 

mations. 

(eqs. (2)  and ( 4 ) )  a r e  the same recursion formulas which occur fo r  a f i n i t e  

element model consisting of r i g i d  bars connected by ro ta t iona l  springs, which 

often i s  used t o  re-place the  beam-column of figure 1 (see, f o r  example, r e f .  4 ) .  

I n  fac t ,  the  recursion formulas given by the half s t a t ion  method 

Thus, the r e su l t s  of the  present paper verify t h a t  t he  f i n i t e  element model 

of reference 4 i s  a good representation of beam-column behavior. 

Reasons f o r  the superiority of the  half  s t a t ion  method are not altogether 

c lear ,  but may include the symmetry of t he  matrix of coefficients i n  t h i s  method. 

By contrast ,  the  matrix of coefficients associated with whole s ta t ions i s  not 

symmetric. Matrix symmetry can be of great value fo r  many numerical procedures 

associated with eigenvalue routines and simultaneous equation solving routines 

and, i n  some cases, i s  required f o r  an e f f i c i en t  numerical solution of a la rge  

order system. 



CONCLUDING REMARKS 

A new procedure has been developed t o  determine an analyt ical  representa- 

t i on  of the  e r ror  i n  a f i n i t e  difference solution and t o  allow a d i rec t  c o q a r i -  

son between two difference methods which is  independent of mesh s ize .  This pro- 

cedure appears t o  have considerable m e r i t  f o r  assessment of the r e l a t ive  accuracy 

of f i n i t e  difference and f i n i t e  element numerical techniques of s t ruc tura l  

analysis. 

~ 

Using th i s  procedure, a comparison has been made of the accuracy of t w o  

different f i n i t e  difference methods f o r  solving s t ruc tura l  problems through 

applications t o  a spectrum of beam and s t r ing  problems having the character is t ics  

of nonuniform s t i f fness  and inplane load. The methods investigated were a "half 

station" method which corresponds t o  making the  f i n i t e  difference approximation 

before expanding the derivatives of function products and a "whole station'' ~ 

method which corresponds t o  expanding such products first; both methods are  i n  

use. It w a s  found tha t ,  fo r  the  same number of s ta t ions,  the average error  i n  

calculated deflection resul t ing from use of half  s ta t ion difference approxima- 

t ions was always less than the  error  which would resu l t  from the  use of whole 

s ta t ion difference approximations. I n  some cases th i s  error  i s  reduced by an 

order of magnitude. 

imations gave similar resu l t s  i n  general. Thus, the half s ta t ion  method i s  

indicated t o  be clear ly  superior t o  the whole s ta t ion  method and i t s  use i n  

f i n i t e  difference solution of s t ruc tura l  problems i s  recommended. 

The investigation of the accuracy of the curvature approx- 
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Figure 2.- F in i te  difference e r ror  i n  deflection and curvature f o r  a uniformly 
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