' PRELIMINARY RESULTS FROM THE LUNAR ORBITER

SELENODESY EXPERIMENT *

_ LWillism H. Michsel, Jr.

/ NASA-Langley Research Center
Langley Station

Hampton, Virginia 23365 -

(ACCESSION NUMBER) {THRU)

(PAGES) (C!DE)
[MX~60(23 2 ( )
(NASA CR OR TMX OR AD NUMBER) (CATEGORY)

Presented at the NASA Instipute for Space Sciencés' Colloguium,
New York, New ¥urk

FACILITY FORM 602

May 18, 1967 -



INTRODUCTION

In this presentation, I would like to discuss the progress to date,
at the Langley Research Center, on the Selenodesy Experiment being
conducted in connection with the Lunar Orbiter Project. The objective
of this experiment is to analyze the tracking data from the Lunar Orbiter
spacecraft to determine the gravitational field of the moon, and other
parameters which can be extracted from the tracking data.

An outline of what I intend to cover in this discussion is shown
on the first slide. We start with a definition of the objectives and
some description of the data required. |

As already indicated, the basic objective of this analysis 1is the
determination of the components of the gravitational field of the moon..
The gravitational field results are desired for two main purposes:

(1) for orbit prediction for lunar satellites, in general, and (2) for
determination of various physical properties of the moon.

The basic data required are tracking data from lunar satellites.
The tracking data contain information on the position and velocity of
the satellites as a function of time, and from this information one
can determine the perturbations produced on the satellite by the
gravitational field components. The tracking data used in this analysis °
are those obtained from the first three Lunar Orbiter spacecraft.

The use of lunar satellites for this purpose has a short history,

/

effectively dating for efforts in this country from last Auéust, when

Imnar Orbiter I was successfully injected into orbit about the moon.

%
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The NASA Lunar Orbiter Project, managed by the lLangley Research Center,
has the primary objective of obtaining high-quality photographs of the
lunar surface, for identification and selection of landing sites for
future manned missions, and for other scientific and engineering purposes.
A secondary objective is to provide tracking data for use in determination
of the gravitational field and other properties of thé moon.

Instrumentation required in the spacecraft consists of a power
source, an omnidirectional antenna, and a transponder, to receive high
frequency radio signals from earth tracking stations and to retransmit
the signals back to the stations to provide Doppler frequency measurements.
The instrumentation is already avaiiable in the spacecraft and is used
in determining the coordinates and orbital properties of the spacecraft,
for controlling it and its subsystems in accomplishing the primary
photographic objective. The additional instrumentation required for
providing tracking data for this analysis therefore can be saild to
require zero weight and zero volume (an unbeatable combination for any
experiment). After the photographic phase of a Lunar Orbiter mission
is completed, and after the photographic data have been transmitted to
earth, the main purpose for maintaining the operation of the spacecraft
is for accumulation of tracking data.

To be more specific about what is to be determined by analysis of
the tracking data, we refer to slide 2. The equgtion is the standard.
representation of the gravitational potential in:terms of spherical
harmonics. The objective is the determination éf a finite number of

coefficients Cn,m and Sn,m in this expansion, resulting in the
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definifion of the gravitational field. 1In this‘equation, U is the
product of the gravitational constant and the mass 6f the moon, R

is the radius of the moon, r is the radial distance from the center
of mass of the moon, Pn,m are associated Legendre polynomials, @
is latitude, and A 1is longitude.

Other parameters which can be determined are shown on the slide.
The spacecraft state at an epoch at the beginning of the data arc is
always included in the solution, and the other parameters can be
included if desired.

Some discussion of the equation given on the slide is in order
here. If all the C's and S's were zefo, the acceleration on the
spacecraft due to the gravitational potential would be that corresponding
to a central gravitational field, and if no other forces were present,
the spacecraft would describe an unperturbed elliptical orbit. This
is not the case, however, and each of the Cn,m and Sn,m coefficients
introduces a small perturbation in the orbit. The amplitudes and
periodicities of the perturbations in the various characteristics of
the orbit are more or less attributable to a particular coefficient.
These small perturbations in the orbital properties are reflected in
the tracking data, and this, of course, is the reason that the coefficients
can be defined through analysis of the tracking data.

The polynomials, Py (sin @), have some geometrical properties
which give an insight into effects which can be expected from various

coefficients. The polynomials vanish along (n - m) parallels of latitude,

and along 2m meridians. From these geometrical properties, one can
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determine that perturbations in the orbit should be periodic with period
of the rotational period of the moon divided by m, or of approximateiy
g%fé days. The periodic dependence of the perturbations, therefore,
allows separation of effects due to coefficients with various values of
m. For m= 0, and for even n the periods of some of the perturbations
are infinite. Thus these coefficients cause secular variations in the
node and argument of pericenter, parameters related to the orientation
of the orbit in inertial space. For coefficients with m = O and odd

n the perturbations are not secular, but are of very long period, and
primarily affect the eccentricity of the orbit. All of these character-
istic perturbations are important in separation of effects due to various
coefficients and in the determination of the coefficients. However, a
basic difficulty remains.

Coefficients with a given value of m, and differing by 2 in n,
whether n 1s odd or even, produce perturbations which are very similar,
and therefore from which it is difficult to determine the particular
coefficients. This effect is particularly pronounced for low inclination
orbits. This is seen physically by observing that low inclination orbits
are mainly affected by gravitational forces within the equatorial region,
and insufficient sampling of the effects at higher latitudes leads to
the problem of not begng able to separate effects due to particular
coefficients. 1In an attempt to circumvent this problem, data from
orbits with different inclinations, in the range from 12° to 219, have
been used for this analysis. Tncluding data with.three different inclina-

tions in the analysis has helped the problem, but has not eliminated it.
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Higher inclination orbits, and perhaps a greater variety of other orbital
parameters, will be required before the high correlations can be entirely

eliminated.
DESCRIPTION OF PROCEDURES FOR THE TRACKING DATA ANALYSIS

The discussion so far has been somewhat of an introduction to the
problem. We now proceed to a brief description of the procedures used
for the analysis of the tracking data, for determination of the gravita~
tional field parameters.

Although tracking data from lunar satellites have only recently
become available, procedures for the analysis of the data have been
under development at Langley Research Center for about 3 years. The
procedures have some features related to classical methods for orbit
determination and some features related to methods employed for analysis
of earth satellite tracking data. In general, the procedures make use
of the methods of weighted least squares, differential correction, and
numerical integration ~ to determine the wvalues for a set of parameters,
with the eriterion that the values so determined provide a good fit
to the data.

T do not intend to go through a complete description of the
procedures. But I do intend to discuss some of the basic formulations,
which are rather straightforward, to give some indication of the overall

process.
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We will discuss the process of differential corrections, outline
the procedure for the solution for the parameters, and say a little
about the calculations required in the analysis.

Some definitions and equations are shown on slide 3. Here @
is defined as an observed quantity at same time i, etc. @y is, in
general, a nonlinear function of the set of parameters, p. The set
of parameters can include a number of gravitational coefficients, plus
the initial conditions defining the spacecraft state at the beginning
of the data arc, and other parameters as defined earlier. Initial estimates
for the parameters are available. For the state parameters, the initial
estimates may be obtained from the nominal conditions for the orbit,
or they may be available from previous solutions. The initial estimates
for the gravitational coefficients could be zero, or values from previous
solutions. The initial estimates are to be corrected with use of the
data, to obtain a better estimate for the values of the parameters. The
calculated value of the observed quantity is based on the initial estimates
for the parameter set.

The first equation on slide 3 is the Taylor's series expansion for
¢(po + Ap), where Ap represents the corrections to the parameters.

The expansion is linearized by neglecting terms involving the second=-
and higher=-order derivatives.

We now obtain an observational equation by forming the difference
between the observed quantity @3 and the right side of equation (1).
This gives equation (2), which is the basic equation for differential

correction of the parameters p.
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There is one equation like equation (2) for each observation. 1In
theory, if the number of observations 1 'were equal to the number of
parameters in the set ©p, equations (2) could be solved exactly for the
corrections to the parameters Ap. However, this would, in general,
not produce a good solution for the parametersvfor two main reasons:
(1) with such a small data sample, even small.random errors in the
observables would introduce significant errors in the solution, and
(2) some of the parameters, such as the gravitational field parameters,
produce periodic effects on the orbit and thus on the tracking data,
and there must be sufficient long- and short-period sampling of the
data to detect these effects in order to obtain a good solution for
the parameters. Thus, in general, the number of observations will
greatly exceed the number of parameters. In this case, there will be
no exact solution to equations (2), but rather the equations will have
the form of equations (3) where the €3 are the residuals.

The desired solution to equations (3) is the solution for the
parameters for which the residuals are a minimum; specifically, the
solution for which the weighted sum of the squares of the residuals
is a minimum. The quadratic form to be minimized with respect to p
is shown as equation (M), where A 1is the matrix of partial derivatives.
In this formulation, a weighting matrix, W, has been included to provide
a means for incorporating weights on the individual observations.

On performing the‘minimization of Q with respect to p, the
weighted least squares condition for the solution is. that shown as

equation (5). Equations (5) are called the normal equations, and the
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normal equations constitute j equations for the | parameters to
be corrected.

The weighted least squares solution for the corrections to the
original estimate of the parameters is thus that shown as equations (6).
The new estimates for the parameters are shown as equations (7).

Since a linear approximation was used back up in equations (2),
the solution must be iterated by substituting the new estimates of the
parameters for the previous estimates and repeating the process until
the changes in the parameters become negligible. The resulting values
of the parameters are then the best estimates for the parameters in the
welghted least squares sense.

We can refer to equation (6) on the slide to get an idea of some
of the things involved in the calculations and in the solution. We
see that there are three major constituents: the observed quantities
@5, the calculated quantities @;(p,), and the matrix of partial
derivatives, A.

The observed quantity for this analysis is two-way Doppler frequency
count. This quantity is proportional to the relative velocity between
the tracking station and the spacecraft in orbit about the moon. These
gquantities are derived from the tracking data. The tracking data are
obtained through the facilities of the NASA Deep Space Network, using
the tracking stations in California, Australia, and Spain.

The calculated value for the relative velocity must involve
three things: (1) the motion of the spacecraft in orbit about the

moon, (2) the motion of the moon relative to the earth, and (3) the motion
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of the tracking station due to the earth's rotation. The motion of
the spacecraft is calculated by numerical integration of the equations
of motion, taking into account all the perturbations on the spacecraft.
The other motions are calculated with use of ephemeris tapes. This
information must be interpolated for the time of each observation to
be able to compare ¢i(po) with ¢i at each observation time.

The partial derivatives are important in the process of differential
correction because they contain the information required in arriving
at the corrections to the original estimates of the parameters. The
partial derivatives are obtained from numerical integration of perturba-~
tion equations, along with the integration of the equations of motion.

A number of options are available for the determination of the
parameter set. The solution can be obtained with data from a single
spacecraft whenever the number of observations exceeds the number of
parameters in the solution. Any parameter in the parameter set can
be eliminated from the solution, as desired. Data from several spacecraft
can be combined to give a solution for the parameters common to the
several spacecraft. And, finally, some statistical information is
available as a byproduct of the solution, giving an estimate of the

standard deviations and correlations for the parameter set.
PRELIMINARY RESULTS ON THE GRAVITATIONAL FIELD OF THE MOON

Tracking data from the first three Lunar Orbiter spacecraft have
been used for this analysis. Five separate data arcs have been analyzed,

and these data arcs are summarized on slide k.
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The data are generally well distributed throughout the orbits,
except during occultations by the moon, which amount to about L5 minutes
during the orbital period of about 3-1/2 hours. The 2h-day data arc
of orbit configuration I-2 and the 2l-day data arc of II-1 represent
large fractions of complete revolutions of the moon, so the data are
well distributed in longitude. However, the orbital elements shown
on the slide do not represent a wide variation in these properties,
and this is one of the limitations on the data available for analysis
at this time. These elements were chosen for photographic purposes,
which is the reason for the low inclinations.

Where the early earth satellites had inclinations of 35° or more,
most of the data for this analysis are from lunar satellites with incli-
nations of 12° and 17-1/20. Thus the results obtained with these data
are strongly influenced by gravitational effects with origin in the
equatorial regions.

The lunar'gravitational field coefficients obtained in this
analysis are presented on slide 5. All the coefficients listed on the
slide were included in the solution except for 05,0, which is very
highly correlated with 03’0, and which was set to zero. The standard
deviations listed for the coefficients are more an indication of how
the solution fits these data arcs than of changes which may be expected
in future analyses.

There are a number of fairly high correlations between various
coefficients in this set. These high correlations were anticipated

from preflight analyses and were mentioned earlier, and they indicate
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that it is difficult at this stage of the analysis to obtain separation
of individual coefficients which produce similar orbital perturbations
on the spacecraft. The separations are best obtained through analysis
of tracking data from spacecraft with a variety of orbital parameters,
and particularly with higher inclination orbits, but such data are not
yet available.

Although the results presented on the slide are derived from
tracking data which have some inherent limitations, these are nevertheless
some of the first results which have become available through direct
analysis of the dynamics of lunar satellites. Therefore it is of interest
to apply these results to preliminary determinations of various physical
properties of the moon, and to compare this new information with that

which was previously available.

Comparison of FEarth and Moon Gravitational Field Results
On comparing the gravitational field coefficients for the moon
and the earth, the oblateness term, 02,0, is greater for the earth
(-1.08 x 10™2) than for the moon (-2.22 X 10‘4), as expected from
information which was previously available. For comparison of the
higher-degree and order terms the quantities shown on the bottom of
slide 5 are used as the basis for comparison. For the terms other than

02 0’ the quantities o for the moon are greater than those for the
)

n,m
earth, by factors of from about 10 to about 100. The comparisons indicate
that the gravitatibnal‘field of the moon is somewhat "rougher" than that

of the earth, but the higher-order effects decrease in about the same

proportion with increasing n for both the earth and the moon.
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Kaula has considered respective strqss implications in the moon
and the earth on the basis of the gravitational coefficients, taking
into account the difference in size and mass of the two bodies. He
finds that gravitational coefficients for the moon about 36 times those
of the earth could be supported by stresses in the moon comparable to
those in the earth. As mentioned above, the present results indicate
that the lunar gravitational coefficients are 10 to 100 times those
of the earth. However, there is no assurance that the coefficients for
the earth are necessarily the maximum which could be supported by the
strength of the materials in the earth. With the uncertainty in the
coefficients for both the earth and the moon, it appears that the factors
of 10 to 100 for the ratio of moon and earth coefficients are reasonable.
The conclusion from the present results is that the stresses supported
by the materials in the moon are probably comparable to those supported

by earth materials.

Application of Results to Orbit Prediction
One of the important applications of the gravitational field results
is for orbit prediction for lunar satellites, as mentioned earlier.

It is of interest to determine how well the present results predict
orbital variations over arcs beyond those for which the data were analyzed.
Some typical results are shown on slide 6, which is a plot of the
variation of pericenter radius with time for a 2-month period for Lunar
Orbiter I. Peficenter radius is the radius of closest approach of the

gspacecraft to the moon. The shaded boundary on the figure represents
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the mean radius of the moon, 1738 km. The circles are the values from
short-arc orbit determinations. The short-are orbit determinations
are based on fits to one or two orbits of data at each of the times
shown. These fits are relatively independent of the gravitational
coefficients and serve as a basis for comparison of the predictions.
The solid curve represents the predicted values using the coefficients
presented here. Whereas the data analyzed in the solution covered a
5-week period near the middle of this time period, the predictions
start with initial conditions on August 29 and are projected forward
through a 2-month period. The agreement between the predictions and
the short-arc results is considered to be good. Similar agreement is
obtained in comparisons of the other orbital elements and for the other
long-term results (for Lunar Orbiter II) which are available.

The dashed curve on the slide represents the predicted wvariation
in Tp obtained with use of information on two coefficients, C2,O
and 02,2, which was available prior to the Lunar Orbiter flights.

The differences between the dashed curve and the circles thus represent
the varlations in r, due to the modified values of CE,O and Co o
and to the other gravitational coefficients. The differences indicate
errors which would be obtained if the more complete results were not
included.

The variation in pericenter radius represents the change in the
eccentricity of the orbit. The other major effects produced by the
gravitational field coefficients are on the orientation of the orbit

in inertial space, through variations in the ascending node of the
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orbit, and in the argument of pericenter. For the orbit of Lunar
Orbiter I the regression of the node is about 1/2° per day, and the
progression of argument of pericenter is about 1° per day.

The perturbations produced by the gravitational field coefficients
become important when precise position and velocity information is
required for accomplishment of rendezvous, orbital transfer, or deboost
maneuvers. The present gravitational field results, or modified results
obtained in future analyses, will be used for orbit calculation and
orbit prediction for the Apollo missions and for other future manned

and unmanned lunar missions.

Comparison of Iumnar Orbiter Results With Luna-l10 Results

One additional comparison I would like to make is that of orbit
predictions using some recently published Soviet results which they
obtained from their Luna-10 spacecraft. The Soviet paper presented
a set of 11 coefficients from their analysis of the lunar gravitational
field.

For comparison of the Luna-10 and Lunar Orbifer results, these
same orbit prediction caléulations have been made. The results are
shown on slide 7 along with the short-arc data points from Lunar
Orbiter I used for the previous comparison. Two curves are shown for
the Soviet results because we think some of the signs of their
coefficients should be changed to correspond to the coordinate axes
we normally use. Whereas the predictions with the coefficients from

the present analysis showed good agreement with the circles, neither
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of the Soviet sets agrees well, as shown on the slide. The conclusion
is that the Soviet results do not correspond very well to experience
with Lunar Orbiter.

Possible reasons for the disagreements in lunsr gravitational
field models may involve: misinterpretation of the results presented
in the Soviet paper; or real differences in perturbations produced on
satellites with highly different orbital parameters, leading to different
sets of coefficients. The last possibility is a strong contender in
view of the large difference in the inclinations of the satellites,
129 for ILunar Orbiter I and 72° for ILuna-10. It is possible that the
gravitational field model given here, which fits the Lunar Orbiter
data fairly well, would not fit the data from Iuna-10. Unfortunately,
the data are not available with which to make a comparisbn. Perhaps
at some future date there may be better agreement or a better explanation
for the differences.

APPLICATION OF RESULTS TO DETERMINATION OF
PHYSTICAL PROPERTIES OF THE MOON

The second-degree gravitational field coefficients (that is, those
with n = 2) can be related to the moments and products of inertia of
the moon, to determine what the results of this analysis indicate with
respect to the mass distribution in the moon. Definitions of the‘moments
and products of inertia are shown on slide 8.

The equationé on the slide show the relations between the gravi-

tational coefficients and the moments and products of inertia of
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the moon. The quantities defined on the bottom of the slide, L, K,
and g, can also be related to the coefficients, particularly 02’0
and 02’2, and these quantities will be used in later discussion.

It is apparent that there are six quantities involved in the
moments and products of inertia, but there are only five second-degree
coefficients from which to determine these six quantities. While the
products of inertia are defined by particular coefficients, the moments
of inertia are defined only in terms of relations involving sums and
differences of the moments. Another relation is required to define
the individual values of the moments of inertia.

One possibility for the additioﬁal relation is to make use of
results obtained from previous earth-based analyses of the properties
of the moon. But before defining a relation and before showing the
application of the present results, we should digress for a few minutes
and discuss some of the previously available results. We will also
want to use the previous results as a basis for comparison with the

results from this analysis.

Previous Results on Mass Distribution in the Moon
Questions concerning the moments of inertia of the moon, the
differences in the moments of inertia, and the implications of these
results with respect to the dynamics of the rotations of the moon,
have occupied astronomers and mathematicians for more than 250 years.
Some indication Qf the mass distribution in the moon, in terms

of quantities related to its moments of inertia, can be obtained through
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two separate kinds of analyses. These are indicated on slide 9.

One approach is based on analyses pertaining to the theory of rotation

of the moon, and the other is based on perturbations in the orbit of

the moon. Both of these approaches have inherent difficulties. 1In

the rotational theory approach, there is a troublesome problem in not

being able to determine whether a particular parameter should be on

one or the other side of a resonance value, a situation which affects

the results. In the orbit perturbation approach, the differences between
observed effects and calculated effects provide extremely small residuals,
from which the parameters of the lunar moments of inertia must be determined.

Rotation and physical libration of the moon.- The first concise

statements regarding the rotational properties of the moon were put
forth in 1693 by J. D. Cassini in three emperical laws. These state
that: (1) the moon rotates uniformly about its polar axis with a
rotational period equal to the sidereal period of its orbit about the
earth, (2) the inclination of the lunar equator to the ecliptic is a
small constant angle (approximately 1-1/20), and (3) that the poles of
the lunar equator, of the ecliptic, and of the lunar orbit all lie in
a plane in the order given. As a consequence of these laws, and the
fact that the moon moves in an elliptical orbit, the moon appears to
oscillate in the east-west and north-south directions as seen from the
earth. These.apparent oscillations are called the optical librations
in longitude and latitude. With the diurmal libration, these oscillations
allow about 59 percent of the surface of the moon to be viewed from

the earth.
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Cassini's Laws in effect define a steady state of motion, to a
fairly high degree of precision. Only much later was it found that
the moon exhibits, in addition to its steady motion, small oscillations
about its center of mass, calied physical librations, which are at least
partially due to the forcing effects of the optical librations. The
physical librations are difficult to detect because of their small
amplitudes, which have a maximum of about 2 minutes of arec, as measured
about the lunar axes, and thus less than 1 second of arc as seen from
the earth.

As a consequence of mathematical developments with respect to the
optical and physical librations of the moon, the quantities B, f,
and Yy can be determined. These quantities are defined in terms of

the moments of inertia of the moon as shown on the slide.

Motion of the node and perigee of the moon's orbit.- The motions
of the node and perigee of the moon's orbit are influenced by the effects
of the sun, the earth, the other planets, and by the distribution of
mass in the earth and moon. The contributions to these motions due to
all known factors can be carefully calculated, and the remaining differences
between the calculated and observed quantities can be attributed to the
figure of the moon, plus unknown and unaccounted for effects. Results
obtained in the past few years from artificial satellites of the earth
have helped to remove uncertainties due to the figure of the earth.
The differences‘between the observed and calculated effects are quite
small relative to the observed motions, and the calculations accounting

for the wvarious effects regquire the most extreme care and accuracy.
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When the differences in observed and calculated values are related to
effects produced by the mass distribution in the moon, values can be
obtained for the parameﬁers I, and K defined on the slide. In these
relations M 1is the mass of the moon and a is its mean radius.

Comparison of results on mass distribution in the moon.- Various

typical results from previous analyses are shown on slide 10. For
comparison purposes, the results of Jeffreys for B and 7, and the
results of Cook and Jeffreys for L and K are taken as a set, and
the more recent results of Kozlel and Eckert are taken as separate set.
The earlier results for B and 7 correspond to values of the mechanical
ellipticity parameter, f, above the resonance value of 0.662, and the
later results correspond to values below the resonance value. Similar
remarks apply to the values of f derived from I and K, which are
independently obtained, and whose determinations thus are not directly
influenced by the discontinuity in f. The close agreement between
the values of f obtained by Koziel and by Eckert through independent
methods probably indicates that the true value of f 1is below the
resonance value, and that f of about 0.6k is a reasonable value to
be compared with values obtained from lunar satellite data.

The quantity g shown on the bottom part of the slide is a quantity
related to the polar moment of inertia of the moon. g can be derived
in two ways, from L and B, and from K and ¥, as indlicated on the
slide. For homogeneous density distribution in the interior of the

moon, g would be 0.6, and for a thin spherical shell, g would be 1.0.
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Three of the four values shown for g are considerably larger
than the 0.6 corresponding to homogeneous density distribution. In
fact, these values for g are close to the value of 1.0 corresponding
to a thin spherical shell, a situation which has been called the
"hollow moon" phenomenon. Both the fact that the values exceed 0.6,
and the amount by which they exceed this value are surprising.

The value of g for the earth is 0.50, and the value for the
moon suggested by Jeffreys on the basis of reasonable hypotheses is
about 0.6. The implication of values of g greater than 0.6 is of
course that the density of the moon is greater in regions near the
surface than it is deep in the interior. This is an area in which new
data and detailed explanations are especially needed, because of the
implications with respect to the internal composition, the origin, and
the history of the moon.

Comparison of Present and Previous Results on
Mass Distribution in the Moon

The previous results summarized on slide 10 can be used as a basis
for comparison with corresponding results obtained from the gravitational
field coefficients presented earlier. I have already mentioned that the
quantities L and K can be obtained from the coefficients 02,0 and
02,2, from the present analysis, so these quantities can be compared
directly with these previous results. Also, you recall that we need an
additional relation to derive the moments of inertia from the gravita-

tional field coefficients ~ we had only five coefficients to relate to
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six quantities. The additional relation* can be supplied by either one
of the quantities B or 7 from the physical libration results shown
here.

The present and previous results are compared on slide 11. The
information on the previous slide is repeated here and two additional
columns have been added. First we look at the next to last column,
which shows L; X, and 9% derived from the gravitational field results
presented in the table shown earlier. The two values of g are derived
from the gravitational results with Koziel's values for f and 7.

I is somewhat smaller than that in the previous results, K 1is
between the two values in the table but closer to the more recent value
obtained by Eckert, and f is smaller than all the values in the table.

The value for g obtained from %(0.68), is considered to be the
more relisble value and is considerably less than three of the previous
values. It is still rather large compared with the result of 0.6 for
homogeneous density distribution. The value of g obtained from K
is considerably larger.

I noted that f dis smaller than would be anticipated from the
previous results. On looking into the manner in which the gravitational
coefficients enter these calculations, the indication of these results

is that the value for one of the coefficients, 02,2 is probably too

*For the applications it is assumed that the principal moments of
inertia, involved in B and 7, can be taken as the moments of inertia
about the X, Y, and Z coordinate axes defined earlier.
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large, because of its correlations with other coefficients. Nevertheless,
the tentative conclusion is that the moments of inertia of the moon are
greater than that obtained for a homogeneous density distribution.

I have noted that the value for the coefficient 02,2 appears to
be too large. Upon examination of the correlations between the gravi-
tational coefficients, it is found that 02’2 is highly correlated with
another coefficient, Cu,a, as expected, and is essentially uncorrelated
with any of the other coefficients. This means that these two coeffi-
cients are very difficult to separate with the data currently available,
and it 1is possible that various linear combinationsof the two would
provide solutions which are equally as wvalid as the solution presented
earlier. If so, these other solutions could give additional information
on the mass distribution in the moon.

This pogsibility was investigated using some of the options built
into the computational procedures. Starting with the gravitational field
results from the next to last iteration, two additional solutions were
obtained, one with 02’2 fixed and another with CM,E fixed at their
next to last values, while solving for all the other coefficients in
the set. The results were as anticipated, and it was possible to establish
a linear relation between these coefficients.

Now, in applying the linear relation between the coefficients as
obtained from the additional solutions, we want the value of g to be
consistent. That is to say we want g to be the same value, whether

it is obtained from L and B, or from K and 7. I have used Koziel's
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values for B and 7, and with L equal to there is obtained a

B

second linear relation to be satisfied.

K
Y

The results from the additional solutions have been extrapolated
to where they intersect this second linear relation. With these
manipulations, the results shown in the last column of slide 11, for
L, X, and g, are obtained.

These quantities represent a combination of the results obtained
from analyses of optical and physical librations and the extrapolated
results obtained from the present analysis. These last results are
probably more reliable than the values for the set of quantities given
in the previous column.

As compared with the other values shown on the slide, the value
of 0.647 for g is less than the values in the next to last column
and less than three of the values from previous results. As compared
with g = 0.6, this value still indicates a moment of lnertia greater
than that corresponding to homogeneous density distribution in the
interior of the moon, and this is one of the conclusions of the present
analysis. This value for g will be used in some of the following

discussions.

Density Distribution in the Moon
As mentioned previously, if g 1is greater than 0.6, this indicates
that the density in the moon is greater near the surface than near the
center of the moon. Now I want to consider possible radial density

variations which correspond to these present results.
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The first possibility which might be considered to account for the
density distribution is that of temperature variations.

In a recent paper, a Soviet scientist, B. J. Levin has discussed
the influence of thermal effects on the distribution of density in the
moon. Ee indicates that the size of the moon is such that the increase
of density toward the center of the moon due to gravitational effects,
and the decrease due to thermal expansion effects are almost equal, and
that it is difficult to determine which of these two effects is more
important. - The answer depends on the values for the coefficients of
thermal expansion and compressibility of the lunar material, coefficients
which are not known very precisely. Levin presents typical values of
these coefficients derived from consideration of lunar materials.

With his smallest reasonable value of the compressibility poefficient

and his largest reasonable value for the thermal expansion coefficient,
the increase in density from the center of the moon to the surface is
about 6 percent. The maximum value of g obtained from such calcula-
tions is g = 0.60%. While this value is somewhat greater than the value
for homogeneous density distribution (0.6), it is considerably smaller
than the value of 0.647 shown on the slide. The conclusion from this
comparison is that thermal effects in the lunar interior cannot alone
account for the density variations indicated by the results obtained

in the present analysis. |

As an indication of the variation of density required for the values
of g obtained in this analysis, calculations have been made with various

two-layer models for the moon. A few typical results from these
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calculations are shown on slide 12. Here oy 1s the density of the
inner layer, % is the radius of the inner layer, d, is the density
required in the outer layer to give the proper mean density for the moon,
and g 1is the parameter related to the moment of inertia. The table on
the bottom of the slide gives some typical values of the density for
various materials.

The calculations show that various combinations of the inner and
outer densities, and radii of the layers, produce values of g around
0.647 or so.

For example, with inner layer density equal to that of the crust
of the earth (2.6), an outer layer of 20 percent of the radius of the
moon with density of 4.1 gives the desired value for g. In general,
the results indicate that outer layer densities between the values for
stony meteorites and stony-iron meteorites produce values for g
consistent with the results presented here.

It is somewhat premature at this stage of the analysis to advance
speculations concerning the internal composition of the moon and its
history, but some indications are available from the discussions given
here. Consider a model for the moon, with density deep in the interior
equal to or somewhat greater than that of the outer regions of the
earth, and with density in the outer regions of the moon comparable to
a combined value for the densities of the earth's crust and stony and
stony~iron meteorites. This model is consistent with the values of g
from the present anélysis. If the moon was originally composed of

material similar to that of the outer regions of the earth, and if in
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later stages of deve19pment it was bombarded with materials with even
a small iron content, then the outer regions would have a mixture of
the lower and higher density materials. These indications are somewhat
speculative, but the evidence from elementary observations of the large
maria on the moon, which may be the result of lsrge~scale impacts, is

perhaps consistent with this model.
APPLICATION TO THE TOPOGRAPHY OF THE MOON

The final application of the results presented here is for deter-
mination of the figure of the moon.

The coefficients of the spherical harmonics in the expansion of
the gravitational potential can be related to the coefficients of surface
harmonics, representing the figure of the moon, if we make assumptions
on the density distribution in the moon.

Contours of the topography of the moon, derived from the gravita-

tional field results, with the assumption of uniform density distribution

in the moon, are shown on slide 15. The contours represent differences
in radius of the moon from the mean value of 1738 km. The positive
contours represent regions of elevated surface, or regions of greater
mass than the average and the negative regions represent the opposite
effects. If the density distribution in the moon actually corresponded
to the assumed density distribution, the contours would represent the
actual figure pf the moon, but if not, the contours represent deviations
from the.mean in either mass or elevation, or a combination of the

two effects. The plots on the slide show that the maximum deviations
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from a spherical shape are about 2 km on the portion of the lunar surface
facing the earth, and they are about 2.5 km on the far side. The variations
in the topography are very much dependent on the values of the higher-
degree and order coefficlents, and thus are subject to the uncertainties

in these coefficients.

For comparison with the topography plots derived with the assumption
of homogeneous density distribution, an additional case has been calculated
with a density distribution corresponding to the value for g (0.647)
obtained from the present analysis. The additional contour plots are
shown on slide 1%. These plots show less variation from the mean value
of 1738 km than the previous plots, as expected with the demsity distri-
bution assumed. This plot indicates maximum deviations from the mean
radius of about 1 km on the near side and they are about 2 km on the
far side of the moon. The contours for both sets of figures generally
indicate the same kinds of bulges and depressions, but the contours are
shifted somevhat.

These topography plots do not have any recognizable correlations
with the topographical results obtained from analysis of earth-based
photographs, which is not surprising since the results from such analyses
do not themselves show much correlation among the several solutions.

The present results do not indicate a triaxial figure for the moon or
any particularly well defined bulge toward the earth. 1In general, the
results in these two slides are probably best interpreted as an indication

of the density or mass distribution over the various regions of the moon.
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On comparing either of the last two slides with photographs of
the hemisphere of the moon facing the earth, there is a slight indication
of correlations between the elevated contours and the maria regions on
the moon, and between the depressed contours and the highland regions
of the moon. This indication is not wholly consistent and is still
somewhat uncertain at this time. However, if it is true that the maria
regions represent regions of density greater than the mean density of
the moon, then this would be of considerable interest in support of
an hypothesis that the maria were formed by impact of higher density
materials on the lunar surface, accompanied by large-scale melting of
the surface material. And, as mentioned earlier, these higher density
materials near the surface of the moon could produce values for g

consistent with the values obtained in this analysis.
CONCLUDING REMARKS

The preliminary results for the gravitational field of the moon
presented here, and the applications of these results to the determination
of various properties on the moon, represent early efforts in a very
new field of research. WNew data are becoming available almost continuously,
and these analyses will be updated from time to time as sufficient
data are accumulated.

These results and the results from the continuing analyses, provide
new information for application to additional studies of the internal
and external proéerties of the moon, and to new theories and hypotheses

on the origin and history of the moon. With the research activity
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currently underway at Langley Research Center and at a number of other
organizations throughout the country, there is every reason to expect,
within the next few years, a considerable enhancement in knowledge of

these fundamental questions about the moon.
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PRELIMINARY LUNAR GRAVITATIONAL FIELD COEFFICIENTS

3,2 .1933 027 3,2 | .40 .025
3,3 -.0317 .028 3,3 .0831 .027
4,0 -.0418 .156 u - - -
4yl .0163 .055 4,1 ) 1908 .037
4,2 -.0276 0L, 4y2 | -.1035 .016
4,3 .0179 .008 4,3 | L0076 .009
A -.0014]  .005 byt § -.0147 .005
5,0 - - — - -
51 .27 .037 5,1 § .1951 .038

5,2 L0309 .007 5,2 | -.0015 .006
5,3 -.0102 .003 5,3 § .0058 .003
5,4 .0030 .0005 5,4 § -.0044 .0005
5,5 -.0009 .0005 . 5,5) .0017 .0005

Un,m \Jcn,m +Sn,m
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TOPOGRAPHY DERIVED FROM COEFFICIENTS

| S |
DEVIATIONS IN km FROM MEAN RADIUS OF 1738 km
HEMISPHERE FACING EARTH
(DENSITY VARYING WITH RADIUS)
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NASA-Langley, 1967



