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A Review of Facilities and Test Techniques Used

in Low-Speed Flight

By Seth B. Anderson and Laurel G. Schroers

Ames Research Center, NASA

Moffett Field, California 94035

INTRODUCTION

4
New classes of aircraft being developed require new and improvea

flight test facilities and techniques. The high cost of designing novel

c.' 3.a

transport aircraft, in particular a supersonic transport, makes it

essential to be able to predict flight characteristics accurately. And

safety ib a major consideration, especially in flight testing new VTOL

dc-signs. For these reasons a number of new facilities have been devel-

oped to support flight test programs, and new flight test techniques

have been devised to help explore problem areas. This paper will dis-

cuss how these facilities and techniques have been applied. The rela-

tive merits and limitations of each facility and technique will be

pointed out, and future needs will be discussed.

Many phases of flight testing are normally involved in developing

a new aircraft; however, this paper will deal with facilities and test

techniques for Ptudying only low-speed problems of handling qualities,

stability and control, and performance.

The material for this paper has been gathered from flight tests

made by the NASA, other research organizations, and various aircraft

companies. The discussion is divided into two parts, the first dealing

with flight test facilities, and the second, flight test techniques.

A common problem has been chosen to illustrate the interrelationbhip

between facilitiec ) and the relative merits and limitations of each.

SOL	
-
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FLIGHT TEST FACILITIES.

In recent years a number of new facilities have been employed to

aid the development of new types of aircraft. Among these are;

Piloted ground-based simulators

Ground-test rigs

Flying-test rigs

Variable-stability aircraft

In the following discussion, examples are given to show how these

facilities are used in studying control power requirements in low-speed

flight .

Piloted Ground-Based Simulators

A number of simulators used in V/STCL research are reviewed in refer-

ence 1. The piloted simulator n<'xs become a valuable aid in Flight test

programs. For example, in an attempt, to reduce the roll control power

in hovering VTO1j aircraft , it wras planned to install a movable vane iii

the engine exhaust to vector the thrust, thereby producing sideward

translation without banking the aircraft. We needed to know (1) how to

control the vane from the cockpit (i.e., by a thumb controller or by

the stick deflection), and (2) how much to deflect the vane for satis-

f;	 °y maneuvering. To answer these questions a piloted simulator

sti .y was conducted on the NASA-Ames six-degree-of-freedom motion simu-

lator (fig. 1). The cab of this simulator is free to travel within a

cube approximately 18 feet on a side and with angular motion capability

of ±450 about all axes. According to pilots' comments, the overall

motion capabilities of the simulator closely corresponded to actual
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The results of the simulator study in which three methods of control

were used are presented in figure 2. Two points can be observed: (1) The

vane improved (lower number) pilot rating; (2) programing the vane as a

function of bank angle was not as desirable as actuating the vane by a

thumb controller on top of the stick. Both bang-bang and proportional

controller methods were evaluated for possible flight application. The

simulator tests indicated that a lateral acceleration of approximately

0.10 g would be the maximum desired for rapidly positioning a VTOL air-

craft. In addition, attitude stabilization in roll was desired to

reduce the effects of inadvertent upsets caused either by the pilot or

by gusts .

Flight tests with the vane on the X--14A VTOL aircraft (fig. 3)

have borne out trends shown by the simulator. The flight tests also

emphasized the need for attitude stabilization when the vane is used

for control. The thumb controller method of regulating the vane, estab-

lished by the 60 simulator studies, was adequate and remained essentially

unchanged for the flight program.

In ,summary, the foregoing is only one of many examples of the vital

support of flight ,search provided by simulators. It is expected that

the piloted simulator will become more valuable in flight research in

the future ^ :htdications are that cab motion contributes significantly

to the realism of the simulation, thereby producing more accurate

results, which in turn, can simplify research, increase safety, and

reduce -;he amount of actual flight time required to prove a new design.

Even when sophisticated, multimotion piloted simulators are used,

experience has shown the need for flight validation.
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Ground-Based Test Rigs

Ground-based test rigs have recently become popular with the advent

of VTOL aircraft. They are used

To provide a functional check of the control systems used in

hovering flight including SAS failure and engine out.

To study ingestion and recirculation problems due to engine

exhaust or lift system.

To measure hover performance in and out of ground effect.

To check engine operation, calibration of various equipment,

and initial pilot familiarization.

An example of the use of a ground-based test rig for checking control

systems is given for the XV-5A fan-in-wing VTOL aircraft shown mounted on

the NASA Ames Research Center adjustable height test rig in figure 4.

Before flight the aircraft was tested on the stand at various heights

above the ground. These tests revealed that close to the ground, an

erratic rolling oscillation was produced by recirculation of the nose

fan exhaust. The XV-5A aircraft is controlled laterally by means of

louvers at the wing fan exit which close off the fan exhaust differen-

tially to produce a rolling moment. Measurements of the available

control moment indicated that lateral control would be only marginal.

Subsequent checks indicated that the control system mechanism deflected

under dynamic pressure from the fan exhaust. Therefore, a more rigid

system was installed before flight tests were begun. The flight tests

confirmed the unsteady flow behavior in ground effect; but the diffi-

culty of operating in this region had been alleviated by making the

roll control power adequate and by use of attitude stabilization.
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The foregoing was an example of a ground test rig adjustable only

in height. More sophisticated ground-based rigs with more motion freedom

have been used, particularly In West Germany. The rig shown in figure 5

for testing the VJ--101-X2 is a telescope type with a mounting capable of

angular freedom in roll, pitch, and yaw. It is desirable, of course, to

mount the pivot as close to the center of gravity of the aircraft as

possible to avoid large static moments when the aircraft is tipped. The

maximum free movement, which is restricted by cable, is X25 0 in pitch

and roll and t8° in yaw. It is possible to "fly" the aircraft on the

telescope and this is done subsequent to any changes or maintenance

performed on the control system including the SAS (stability augmenta-

tion system). By this means it is possible to check such items as the

time constants of the control system (thrust modulation is used for

pitch and roll), hardover failures in the SAS, the effect of one engine

thrust loss, and the difficulty of flying as the system fails progres-

sively from an attitude command, to a rate damped, and finally an

acceleration system. It is ironic that the VJ-101-XI was not checked

on the telescope prior to the loss of that aircraft. The crash resulted

from a yaw gyro which was installed with the wrong polarity. The flight

was made as a conventional flight with no hovering intended; howErer,

the yaw gyro which in conventional flight serves as a yaw damper,

caused a divergent Dutch roll oscillation.

In summary, ground test rigs have been extremely useful not only

for examining potential control problems for hovering flight, but also

for the-king the functioning of the entire aircraft in a partial-flight

environment. Because of their inherent limited motion capabilities,

However, this type of equipment cannot be used for determining the

.	 ,.. .. .. t, 	 .., CIA	 ..	 .. _.... _. .-. ^.	 ^...., _-.,.	 _	 ..	 .. ... ... ....-..-... _....	 ..	 _	 ...	 .,	 _. .. .	 ....	 ._.. ..	 _.	 ._._... __._._...	 .
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I	 desired values of control power needed for hovering, The ground test

rig needs to continue to grow in sophistication as VTOL aircraft become

more complex.

Flying Test Rigs

Airborne test rigs were first used in the 1950 1 x; the Rolls-Royce

Flying Bedstead in the U.K. and the Coleopter in France proved the

practicability of attitude control for VTOL flight. Recently, the air-

borne test rig has been used (1) as a flying simulator in the develop-

ment of hover and low-speed handling qualities requirements, and (2) as

a test bed for the propulsion and control systems hardware which will

ultimately be installed in a specific aircraft.

An example of the former is the Worth American FS-1 "Hoverbuggy"

shown in figure 6. This vehicle has a cruciform shape, has a 22-foot

span, and is powered by two GE-YJ-85-1 turbojet engines. its gross

weight at take-off is approximately 3,400 lb. Compressor bleed air is

ducted to the cruciform extremities for a continuous flow reaction con-

trol system. A:1 electronic package provides variable stability and con-

trol features: which allow control power, control sensitivity, rate

damping, and attitude stabilization to be studied systematically in a

real world environment.

Tests to determine hover and low-speed control power requirements

for various control systems have just recently been completed at North

American Aviation. Since the FS-1 has essentially no aerodynamic

surfaces (pilots report essentially neutral stability about all axes),

it has been suggested that this type of vehicle could be used to define

control power requirements for maneuvering. Much larger =Ll.tiengined

_....^4^-..r ate ]. .	 .., ..	 a..^.' -_•'^	
____—...	 .... _.... .._	 .....--	 _,. ......	 tl	 kj`	 ..	 v.—i.	 _	 _	 _ ..w ..	 _.	 ..	 _ -.	 ..	 ._ .	 ... ...__	 .. -
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rigs of this type have been proposed to help answer the controversial

question of the effect of aircraft size and inertia on control power

requirements. Initial results with the FS-1 rig indicate that it can

be very useful as a flying simulator for comparing the effect of various

control syetem parameters on a specific maneuvering task. Its small

size, however, limits its usefulness for settling the aircraft size-

control power question for at least two reasons: First, it does not

take into account the control requirements for offsetting the effects

of upsets and gusts acting on the aerodynamic surfaces, and second, even

though inertia can be increased by adding weights, there are unknown

effects of angular acceleration on the pilot. Since the pilot is usually

displaced farther from the e.g. as aircraft grow in size, the amount of

control power desired for pitch and yaw will undoubtedly be influenced

by this factor. The roll, axis, which has been of greatest interest from

the designers standpoint, would be influenced to a lesser extent since

the pilot is usually located close to the roll axis regardless of aircraft

size. Exceptions to this occur in specialized aircraft, such as the

Sikorsky S-64 where the pilot is relatively far below the c.g.

An example of a more sophisticated airborne test rig is the DO-31

described in reference 2. It is typical of those used in West Germany

for developing such aircraft as the VJ-101, DO-31, and VAK 191B. It

is large (fig. 7) and is used essentially for research on the control

systems hardware and the propulsion system which ultimately will be

installed on the actual aircraft. The systems tested on this rig will

have encountered the real life environment of noise and vibration in

free flight, and such items as control system gains and time constants

will have been -,djusted for optimum performance. Both the VJ-101 and

DO-31 test rigs have proved to be extremely valuable in the development
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of the actual. aircraft. These rigs, particularly the DO-31 rig, have

broader potential, uses for research on control,- systems requirements for

a large jet VTOL transport. The DO-31 rig is in essence an aerodynamic

duplication of the flight vehicle and would have realistic trim, upset,

and ground effect disturbances typlical of a large jet-lift transport.

In summary, airborne test rigs are valuable mainly for assisting

In the development of complex VTOL aircraft. Because of safety con-

siderations, however, they are limited in their capability, as are air-

craft, to investigate control requirements in areas of low control power,

hardover SAS failures, and engine failures. These: requirements are best

investigated on a multimoti.on, ground-based, piloted s:Amulator. The

upper limits of hovering flight (i.e., the transition to aerodynamic

flight from engine-supported flight) also cannot be studied with air-

borne test rigs,

Variable-Stability Aircraft

This type of aircraft has been used in varying degrees of sophisti-

cation for many years, contributing strongly to the establishment of

handling qualities criteria. Recently, new generations of transport

aircraft have created new low-speed problems. Included are the landing

approach characteristics of the supersonic transport with a wi,,ng plan

form designed primarily for high speed ,, and very large, high inertia

subsonic transports, such as the Boeing 747 and the Lockheed 05-A.

The handling qualities of these new aircraft are expected to be quite

different from those of present airplanes, and existing specifications

for military aircraft can sei-ve only as a general guide. Some require-

ments, such as dynamic longitudinal stability, which has been based

9
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chiefly oa fighter experience have been undaly restrictive; others

have not been .restrictive onough.

Examples of variable-Etability aircraft used for examining low-speed,

problems of large aircraft are the Cornell B-26 aircraft ,3 the Lockheed

Jetstar,4 and the Boeing 367-80 (707 prototype). s These variable sta-

bility aircraft differ in type and size, ranging from the propeller

driven B-26 of 35,000 lb gross weight to the jet transport 707 of

175,000 1b. The question np.turally arises as to the validity of the

results when a, small aircraft is used to simulate the low-frequency

longitudinal dynamics of a large high inertia SST or C-^A type aircrwf{^.

The small aircraft must be forced to a much lower frequency than its

natural frequency, and providing a valid long period response is tied-in

with the type of variable-stability system used.

Variable-stability systems have been mechanized by either; (1) a

response feedback, or (2) a model--controlled system, With the response

feedback technique the aircraft response variables are sent as commands

to control surface actuators. Thus the aircraft's aerodynamic stability

paramet-rs can be changed artificially by generating forces and moments

proportional to the aircraft responses. The model-controlled technique

uses an on-board computer programed to simulate the model aircraft's

aerodynamic parameters. In effect, the pilot flies the model, and the

feedback loops force the airplane responses to match those of the model.

There are limitations in the use of each variable -stability tech-

nique. The response feedback system, although the earliest in use, has

limitations which include (1) accurate knowledge of the basic aircraft's

aerodynamic characteristics, and (2) frequent in-flight calibration to

check the values of the aerodynamic parameters being simulated.. The

_ - .mom ; _^. `. r ^ ^ ^:<-r „: --•^-^ 	^-^:- .—^--„ . _.. _._.,,,.,— ,: ; _̂---T--^--	 ^	 ^	 _..	 _ ..	 _._	 _. - _	 _	 _	
. -- -_. _
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process for evaluating the aerodynamic parameters from the aircraft

responses is tedious and in certain cases inherently inaccurate, although

an analog computer can relieve this somewhat. In simulating the large

inertia, long period 03ST, for example, the gains of -she response feed-

back system must be maintained with great accuracy to cancel the basic

aircraft's chore period as gross weight and e.g. change due to fuel use.

The model-following teohniqu►'. on the other hand. for simulating the short

period, modes requires higher i`eed`r,ck gains to keep the errors between

the basic aircraft response and the model, output small,. Using high

gains is limited, howeve gz , by system noise, instabilities, and non-

linearities. In addition, in applying the model-following system to a

flexible aircraft, the gains must be 11mited to avoid exciting struc-

tural modes. Limiting the gains would., of course, reduce the accuracy

of the simulation.

Another aspect of using variable-stability aircraft in flight simu-

lation has to do with cost. Large aircraft with comp1r., systems are

inherently expensive to operate and one must limit the number of flight

hourc devoted to a program. Ames Research Center has taken the view

that flight simulation must be complemented largely by ground-based

simulation. The ground-based studies cap- Lover °?. broader range of

' ' , rameters including those in the "unsafe 30tOr f` ,ght" areas such as

failures (augmentation, hardover, etc.). The flight simulator then is

used to validate the trends established by the ground-based tests.

An example of the use of this approach is given in reference 6

where the Boeing 367-80 was used to study the longitudinal control

requirements for a large aircraft such as the C5-A. The results in

figure 8 illustrate the point that the ground--based simulator results

covered a broad range of pitching moments due to angle of attack and
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the flight test points served as validation of the trends established

by ground-based simulators. The lack of flight test points in the region

of low stability (long periods) reflects the difficulty of operation in

this area.

Variable-stability aircraft have proved valuable in aiding the

development of new aircraft designs but they are limited in their capa-

bility to define the effects of aircraft size including the aerodynamic

parameters peculiar to large aircraft and the effect of pilot position.

Small variable-stability aircraft, in particular, fail to produce real-

istic translational accelerations and again one must look to ground-based

simulators to study this effect.

VLIGHT TEST TECHNIQUES

Various flight test tochr.11 aes have been devised for exploring spe-

cialized flight problems, such as

Measuring hover control power for VTOL aircraft.

Measuring the ground effect on delta winged aircraft.

Studying stalling behavior.

Studying recirculation and ingestion.

In the following paragraphs the relative merits of various testing tech-

niques are discussed with the objective of indicating required refinements

and future needs.

Measurements of Control Power in Hover

The amount of control power needed to hover VTOL aircraft has been

controversial. VTOL aircraft are particularly sensitive to control power

requirements because there is usually a direct trade between performance

a
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and the amount of control power needed to hover. Of interest here are

the flight test techniques used to measure control power. Control power

can be evaluated by (1) measuring attitude changes directly with an atti-

tude gyro, (2) integrating angular rate, and (3) measuring angular

accelerat! . It is important to include all methods since angular

acceleration measurements will give only the moment available and not

include the effects of time constant. Of the various techniques used

to measure angular acceleration, the control reversal method illustrated

in figure g is preferred. For measurements of rolling acceleration the

aircraft is initially banked in a direction opposite to that for the

measured respoases to assure that the lateral control input is constant

at the time angular acceleration is measured, and to reach high angular

accelerations at smaller bank angles. A chain stop is usually used at

the stick grip to aid in holding control inputs constant and to provide

a means of obtaining prescribed partial control positions.

Even with the reversal technique large bank angles can occur for

high response systems and the use of the chain stop on the control

stick can make control power measurements somewhat hazardous when

hovering near the ground. Ames therefore has measured control power

values on the X-14A VTOL aircraft at approximately 2,000 feet above

the ground. Another advantage of hovering at altitude is that a con-

ventional take-off can be made thereby allowing a new hover control

system to be checked in an environment where SAS or hardover failures

are not catastrophic. Hovering at altitude has limitations, however.

Without good position information, it is difficult to avoid sideward or

fore and aft translation. This not only affects the accuracy of the

control power measurements, but in a ,number of cases, has resulted in
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upsets for ` the X-14A aircraft when too large sideward or backward

velocities were reached inadvertently. Large and higher wing loading

aircraft would have to be hovered at higher altitudes to afford safe

recovery from possible upsets. This would, of course, be unattractive

from performance aspects.

Measurement of Ground Effect

The effect of ground proximity on the lift and pitching-moment

characteristics of low-aspect-ratio wings is a significant design con-

sideration for take-off and landing. The increase in lift due to ground

effect is beneficial in reducing ground roll for these wings; however,

pitching-moment changes may adversely affect the pilot's precision of

control in a landing flare or rotation in take-off. Further, it is

important to measur? ground effect precisely on existing low-aspect-

ratio designs in order to compare with wind-tunnel results and theory.

Two flight test techniques have been developed for measuring ground

effect. One method ? is to make level "fly-by" runs at various heights

above the ground and at various speeds. This method relied upon on-board

measurements of aircraft acceleration, thrust, and attitude for calculat-

ing lift and drag. A special camera (Lockheed Location Orientation

Recording Instrument (LORI)) facing downward from the uynxder surface of

the fuselage measures aircraft height, rate of change in height, ground

speed, and pitch attitude.

The T'fly-by" method has two inherent deficiencies. First, it requires

a large number of passes, one for each height and airspeed of interest;

second, repeatability is poor because of inaccuracies in measuring such

items as angle of attack and thrust. Interpreting the data from the

camera is time consuming and'tedious.
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Another technique for measuring ground effect is the external

tracking of the aircraft while it makes a steady descent at a constant

angle of attack and power setting. Ground effect will cause the aircraft

to flare, the change in drag will cause a change in speed, and the change

in pitching moment will require longitudinal control to hold a constant

angle of attack. Results of using this technique to test the B-70 are

shown in figure 10 and are reported in reference 8. The results obtained

with this method show a nonlinear variation of CB with ground proximity.

Although this method holds promise of improved accuracy because it

does not require on-board measurements, it has a number of limitations.

First, the initial sink rate and power setting must be established care-

fully with no wind, and thermal effects of the atmosphere must be small

so that the aircraft can maintain an equilibrium glide slope. Second,

the pilot must maintain a constant angle of attack usually from an

indicator which may be difficult to track and may have a flow induced

error as a function of ground height. The data reduction is again

tedious and subject to the usual errors in reading the aircraftis

position and attitude on each film.

In summary, experience has shown that both methods lack repeatabil-

ity and are greatly subject to the effects of atmospheric turbulence

and to pilot proficiency in performing the required maneuvers. Improve-

ments are needed in data reduction and more experience is needed,

particularly with higher aspect ratio aircraft, to prove the techniques.

Studies of Stalling Behavior

A primary consideration in the design of new aircraft is stall

behavior. New aircraft designs, such as the T-tail and supersonic
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the Concorde SST wac designed primarily for low drag at high speed;

however, tests have shown that its high lift characteristics at low

speed are better than those of plan forms of low aspect ratio. Studies

of this type of wing, the Ogee  on the FS-D aircraft, revealed that the

high lift benefits result from a stable vortex flow which is associated

with the sharp, highly swept leading edge. Although this plan form had

relatively high lift, its stalling behavior was manifested by a pitch 	 ,

up and small amplitude rolling motion.

To obtain a better understanding of the stall behavior, the flow

separation pattern on the wing was examined by two flight test techniques.

One technique was the well-known method of tufting the upper wing surface

with nylon; the other consisted in observing the condensation trails of

the vortex. The changes in location of the vortex were visible in all

but the driest air. Photographs (figs. 11 and 12) show that in steady

flight, the vortex core passes above the leading edge and at a sweep

angle higher than the wing.

It is of interest to correlate the location of the vortex with

sketches of tuft patterns, such as those shown in figure 13. The

sketches, derived from the photographs taken by the tail mounted

camera, show an increase in unsteady flow as angle of attack increases.

The tuft patterns indicate that flow separation occurs on the wing tips

outboard of the vortex core. At an angle of attack of 15 0 the F5-D

airplane exhibits a lateral oscillation, and as angle of attack increases

further, a mild pitch up.

It was considered possible also that the vortex affected the flow

over the vertical tail which, in turn, improved the lateral-directional

behavior over that of the original aircraft. The pilot of the chase
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aircraft observed that during flights in this high angle-of-attack

region, the vortex appeared to be high off the wing and to flow to an

area near the tail,

Another means of observing the vortex without relying on the con-

densation was used by the RAE, Bedford, U.K. on the HP115 slender delta-

wing research airy,*raft. They used a smoke generator to emit smoke at

the leading edge of the wing at the junction of the fuselage. The

smoke entrained in the vortex could easily be observed.

Studies of Recirculation and Ingestion

Several V/STOL aircraft have encountered unsteady flight behavior

when operating at low airspeeds in close proximity to the ground. Ref-

erence 10 describes the unsteady flight behavior of the XC -142 tilt wing

aircraft in the landing approach at speeds of the order of 25 knots.

This unsteady behavior was characterized by a strong loss of lift and

weakened directional and lateral controllability; it was attributed

to flow splitting where the deflected propeller slipstream begins to

precede the aircraft, and limited aircraft performance capabilities to

wing angles of 350 . A similar type of unsteady flight behavior had been

noted on the Ryan VZ-3 deflected slipstream aircraft." Although this

ground effect phenomenon was predicted, having shown up in wind-tunnel

tests, it is difficult to establish the limitation of low-speed opera-

tion, in fact, the XC-142 aircraft was damaged in attempting to do so.

In order to gain a better understanding of the flow characteristics

in ground effect, and thereby attempt to predict the aircraft behavior,

pictorial studies were made with the Ryan VZ-3 deflected slipstream

E^
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aircraft. The results, shown in figure 14.t were obtained by dusting the

runway with Ansul fire extinguishing powder and flying over at a constant

altitude and airspeed. In figure 14(a), the velocity of the aircraft

exceeds the velocity of the recirculated slipstream and the disturbed

area, shown by the dust cloud, proceeds somewhat ahead of the recircu-

lated slipstream regardless of proximity to the ground. In figure 14(c)
M

the aircraft entered the ground effect at too low an airspeed to prevent

a landing even though power was applied as rapidly as possible. The

results show that as airspeed is decreased the deflected slipstream is

recirculated through the propeller disc as turbulent air, causing a

partial loss in thrust and turning effectiveness. By flying ever the

Ansul powder at gradually reduced airspeeds, it would be possible to

predict when the recirculated flow would affect the lift of the aircraft.

Jet lift VTOL aircraft have also encountered ground effect problems;

both induced flow effects, similar to recirculation problems for propeller

aircraft, and ingestion effects in which the engine exhaust enters the

engine inlet. The X-14A was flown over Ansul powder in an attempt to

study flow patterns, but the high velocity of the jet exhaust dispersed

t-h, e powder too rapidly and flow patterns were not visible. A heavier

substance, crushed nut shells, commonly used for cleaning compressor blades

of turbojet engines, was tried also without success. Injecting Corvis

oil into the tail pipe has been successful for flow visualization in a

study of in-flight thrust reverser operation. When this was tried on

the X-14A in hover, the aircraft was immediately engulfed in a cloud

of smoke and flow patterns were not discernible. By intermittently

injecting discrete amounts of oil into the tail pipe, some improvement

4
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was noted, however, the flow patterns were still unclear. The best

picture of flow patterns for jet aircraft has been obtained over a wet

runway.

In summary, an improved testing technique is needed to explore more

safely STOL limitations of V/STOL aircraft. Plow visualization methods

are not a good solution because they have not proved successful for all

types of aircraft.

CONCLUDING REMARKS

Novel aircraft configurations introduce new types of stability and

control and handling qualities problems making it more difficult to

accurately predict flight characteristics and assure safety of flight.

A variety of test facilities have been shown to be necessary to aid in

solving problems. For example, multi-motion piloted simulators cannot

by themselves completely answer all questions; therefore flight valida-

tion is necessary. While considerable progress has been made, existing

facilities and test techniques will not be adequate as new aircraft

grow in complexity and cost; therefore continued emphasis must be

placed on further improvements and refinements.
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FIGURE LEGENDS

Figure 1.- View of six-degree-of-freedom motion simulator.

Figure 2.- Effect of lateral acceleration vane on control power.

Figure 3.- Vane installation on X-14A VTOL aircraft.

Figure 4.- View of XV-5A. VTOL aircraft mounted on the Ames ground test rig.

Figure 5.- View of VJ-101 VTOL aircraft mounted on M ground test rig.

Figure 6.- View of the North American flying test rig.

Figure 7.-- View of DO-31 flying test rig mounted on Dornier ground test rig.

Figure 8.- Pilot rating of static stability showing correlation of flight

and ground based simulator results.

Figure 9.- Time history-showing technique for measuring lateral. response,

Sa = aileron deflection; rp = bank angle; p = rolling angular velocity;

c rolling velocity.

Figure 10.- Ground effect results obtained with constant angle of attack

approach method.

Figure ll.- V1 of the F5.5-D in flight showing vortex and tuft pattern.

Figure 12.- View of F5-D in flight shoydng vertical location of vortex.

Figure 13.- Wing tuft flow patterns from F5-D aircraft.

Figure 14, Pictorial indication of slipstream recirculation of Ryan VZ-3RY

deflected--slipstream test vehicle with flap deflected 650; surface

wind calm. (a) 24 knots; 1.8 propeller diameters above ground; power

for level flight; out of ground effect. (b) 8 knots; 1.8 propeller

diameters above ground; maximum power; out of ground effect.

(c) 8 knots; l propeller diameter above ground; maximum power; in

ground effect.
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