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INTRODUCTION 

The transport properties of dilute monatomic gases at low to moderate 
temperatures are now well-understood; the rigorous Chapman-Enskog 
Theory appears to provide an entirely adequate description for these gases. 
The theory applies to molecules with spherically symmetrical intermolec- 
ular force fields and hence is not strictly applicable to polyatomic gases. 
In practice, however, it turns out that theory gives a good account of the 
viscosities and diffusion coefficients of polyatomic gases and gas mixtures. 
The thermal conductivity poses a special problem, however, because in- 
ternal energy modes - rotation, vibration, etc. - make a contribution to the 
heat flux. Here there has been recent progress - notably the work of Mason 
and Monchick'' 
problem, sufficient for most practical purposes. For example, if we know 
the viscosity of a gas and something of its molecular properties (heat capac- 
ity, moments of inertia, dipole moment, if any) we should be able to pre- 
dict its thermal conductivity within a few percent (except, perhaps, for 
strongly polar gases). 
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- so that we now have an improved understanding of the 

Consequently in this paper I take the position that we have an adequate 
theoretical framework for predicting transport properties of high tempera- 
ture gases, and that differences from room temperature gases arise as a 
consequence of phenomena not usually encountered at modest temperatures - 
for example, the presence of mobile chemical equilibria, o r  the presence of 
atoms or  f ree  radicals which are valence unsaturated. A s  a starting point 
the next section discusses briefly transport properties of gases at moderate 
temperatures. That will be followed w i t h  a section on heat conduction in 
chemically reacting gas mixtures, and then a section on the effect of the "un- 
usual?' intermolecular forces between labile atoms and/or f ree  radicals. 
The paper concludes with a discussion of some of the unique phenomena in 
ionized gases (plasmas). 
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TRANSPORT PROPERTIES AT MODERATE TEMPERATURES 

The rigorous Chapman-Enskog theory leads to the following expres- 
sions for the transport properties of dilute monatomic gases3: 
Viscosity 

Thermal conductivity 

= -( 25 J- 7rmkT )(:) 
2 32 To 51 

Self-diffusion coefficient 

I)=-( 3 7 i  T m k T )  
8 &+1, I)* P 

(3) 

These formulas involve well-known quantities such as the atomic mass m, 
the Boltzmann constant k, the temperature T, the heat capacity c V ( 7  k), 3 

. -  

and the density p. In addition the formulas contain cross  sections, (or 
collision integrals) o 51 (2,2)* a d  0 (19 ')* and to compute these the in- 
termolecular force law must be known. However, the potential appears 
explicitly in an integrand which is then averaged by three integrations. 
Consequently the collision integrals are not very sensitive to the details of 
the intermolecular potential. 

Figure 1 compares experimental and calculated viscosity data for ar- 
gon over a wide temperature range. The curve has been computed for the 
potential energy function shown in  the inset in Fig. 1 (a combination of an 
inverse sixth power attractive potential, which has a theoretical basis in 
the dispersion forces, with an exponential repulsion). The potential has 
been chosen to take account of equation-of -state and crystal properties as 
well as viscosity coefficients. For example, the interatomic distance in 
solid argon is 3.8 
at 3.866 A. And the depth of the attractive well - 123.2' K - is consistent 
with argon's heat of sublimation of O°K. The same potential successfully 
describes the thermal conductivity (Fig. 2) and self -diffusion coefficients 
(Fig. 3) for argon. 

4 

- just inside the minimum of the potential energy curve 
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For gas mixtures the expressions for the viscosity and thermal con- 
ductivity a r e  algebraically complicated and contain cross sections charac - 
teristic of interactions between unlike molecules e In principle this requires 
a knowledge of the intermolecular potential between the unlike species; how- 
ever, in practice, rough estimates based on empirical combination rules 
which average potential parameters of the pure components work reasonably 
well for the valence-saturated gases encountered at  ordinary temperatures. 
With mixtures of polar and nonpolar gases the polar -nonpolar interactions 
a r e  essentially of a nonpolar nature; hence the unlike cross sections are 
smaller than might be inferred from a simple averaging of the cross  sec- 
tions of the pure components. 

5 6 Experimental viscosities of nitrogen-hydrogen and ammonia-hydrogen 
mixtures are shown in figure 4. The solid lines have been computed using 
empirical combination rules to estimate the N2 - H2 and NH3 - Ha inter- 
molecular potentials. The agreement between theory and experiment is gen- 
erally good (although for  NH3 - H2 mixtures  the accord is even better if 
experimental diffusion coefficients are analyzed to estimate the NH3 - H2 
potential ). The dashed curve for NH3 - H2 mixtures was calculated as- 
suming the NH3 - H2 cross section to be the geometric mean of the NH3 - 
NH3 and H2 - H2 cross sections. This procedure (which works reasonably 
well for nonpolar mixtures) overestimates the cross section so that the pre- 
dicted viscosities are too low. 

7 

8 Experimental thermal conductivities for these same mixtures a r e  
9 shown in figure 5. The curves, calculated using Hirschfelder's Eucken- 

type approximation for gas mixtures, agree reasonably well with experi- 
ment, although the e r ro r s  are larger than in the case of viscosity. This is 
in part due to larger experimental errors, but may also be due to approxi- 
mations in the theory. (But a more sophisticated theory for gas mixtures 
seems scarcely better ) 2 

Thus we have adequate theory for predicting transport properties of 
dilute gases. The remainder of the paper will be devoted to the phenomena 
which do not usually arise in room temperature gases. 
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HEAT CONDUCTION IN CHEMICALLY REACTING GASES 

At high temperatures many gases a r e  partially dissociated and undergo 
a variety of chemical reactions. In reacting gases, heat transport may be 
considerably larger than in  vfrozen* (nonreacting) mixtures ~ Large amounts 
of heat can be carried as chemical enthalpy of molecules that diffuse be- 
cause the gas composition varies with temperature. For example, in a gas 
that absorbs heat by dissociating a s  the temperature is raised heat is trans- 
ported when a molecule dissociates in the high-temperature region and the 
fragments diffuse toward the cooler region, In the low-temperature region 
the fragments recombine and release the heat absorbed at high temperature. 

When chemical reaction rates are. very high, chemical equilibrium can 
be assumed to exist locally throughout a gas mixture. It is then possible, 
by differentiating the equilibrium relations, to relate the concentration grad- 
ients to the temperature gradient. In this event one can define an equilibrium 
thermal conductivity Xe independent of apparatus geometry and scale: 

Xe = Xf + Xr (4 1 

where Af is the conductivity in the absence of reaction (the 'frozen? ther- 
mal conductivity) and hr is the augmentation due to the reactions. 

A general expression for the thermal conductivity due to chemical re- 
actions has been developed '7 '' that is applicable to mixtures involving any 
number of reactants, inert diluents, and chemical equilibria, provided chem - 
ical equilibrium exists locally in  the temperature gradient. For a simple 
dissociation of the type A z nB the thermal conductivity due to chemical re -  
action is 

D ~ ~ p  -  AH^ X ~ X ~  A, = (5) 

Here DAB is the binary diffusion coefficient between components A and 
B, AH is the heat of reaction, and xA, xB are the mole fractions of the 
components. Note that unless both species are present, Xr is zero, Fur-  
thermore, since in a dissociating gas the composition varies with pressure, 
we expect the heat conductivity to vary with pressure also, This is in con- 
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trast to the behavior of nonreacting gases, for  which the heat conductivity 
is independent of pressure. 

Experimental" and theoretica1l2 conductivities for the N204 z 2N0, - - -  
system at one atmosphere a re  shown in figure 6. The dashed curve indi- 
cates the frozen conductivity. Thus Xr is the major contribution to the 
heat conductivity; at the maximum (where the mass fractions of N204 and 
NO2 are equal) the conductivity is comparable to that of a light gas such as 
helium, and an order of magnitude greater than in the chemically frozen 
gas mixture. 

The theoretical expression for a system involving two reactions has 
been tested13 for the case of hydrogen fluoride vapor. At moderate pres- 
sures the PVT behavior of hydrogen fluoride can be described in terms of 
a monomer -hemmer equilibrium, while low pressure data suggest a dimer 
as well. Although the actual state of the vapor is uncertain, it appears that 
at low and moderate pressures the equilibria 

2HF z (HF)2 AH2 = 7 . 4  kcal 

6HF z (HF)6 AH6 = 40. 5 kcal 

serve to specify the system rather well. 

Computed and experimental l4 thermal conductivities are compared in 
Fig. 7. The solid line was computed assuming both dimer and hexames 
equilibria, whereas the dashed line was computed considering only the hex- 
amer equilibrium. Note the extreme pressure dependence of the thermal 
conductivity. The maximum conductivity is more than three times that of 
hydrogen at the same temperature and some 33 times the frozen thermal 
conductivity expected in the absence of reaction. The inclusion of a dimer 
equilibrium markedly improves the agreement between theory and experi- 
ment in the low-pressure region. 

The experimental studies on nitrogen tetroxide and hydrogen fluoride 
prove the validity of the theoretical expressions for thermal conductivity 
of reacting gases in chemical equilibrium, The theory has also been SUC- 

cessfully applied to data for  the Pel5 z PC13 + C12 equilibrium 15 . 
Thus far we have considered systems where the chemical reactions 
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a re  so rapid that chemical equilibrium prevails locally at all points in the 
gas mixture. Let us now consider the reduction of heat transport caused 
by reduced reaction rates. A general expression has been derived16 for 
the apparent thermal conductivity of reacting mixtures in which a single re- 
action proceeds at a finite rate. In contrast to systems where reaction rates 
are either very high or very low, it is found that heat conduction depends on 
the geometry and scale of the system and also the catalytic activity of the 
surf aces. 

For a plane parallel plate geometry, with one surface noncat.alytic and 
the other surface a perfect catalyst, the effective thermal conductivity is 

where 

Here 6i is the chemical reaction rate at equilibrium (that is the total sate 
in either direction - not the net rate, which is zero, of course), and Q is 
the distance between the plates. For simple systems it can be shown that 

2 'e 7Diff cp = -  

'f 7Chem 
(7) 

If the diffusion time TDiff is short in  comparison with the chemical relax- 
ation time TChem, q + 0, tanh q/q - I, and A* + xf. In other words, 
the concentration gradients are washed out by diffusion and the frozen con- 
ductivity is obtained. On the other hand if the chemical time is short, the 
concentration gradients a r e  maintained, q - a 9 tanh q/q  - 0, and A* + 

'e 

N204 z 2N02 system, as shown in figure 8. The upper and lower dashed 
curves are respectively, the computed equilibrium and frozen conductivities. 

The theory can be applied to low-pressure measurements" on the 
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The solid curve has been fitted to the data assuming negligible surface reac- 
tion and assuming that the rate constant for the dissociation reaction 

N204 + M - 2N02 + M I 
9 3  is 5.3X10 cm mole-lsec-' at 296' K 

values derived from ultrasonic absorption measurements by Sessler 17 

(4.7~10') and by Cher18 (4. lxlO9). 

Thus we seem to have an adequate understanding of the effects of chemical 
reaction on heat conduction. This is fortunate, because these mobile chem- 
ical equilibria a r e  frequently encountered in high temperature gas mixtures. 

This is in reasonable agreement 

MULTIPLE INTERACTION CURVES AND THE PROPERTIES OF 

LABILE ATOMS AND FREE RADICALS I 
The discussion thus far has been concerned with systems in which it is 

assumed that a pair of colliding atoms or  molecules can interact along only 
one potential energy curve. However, in collisions between atoms or free 
radicals possessing unpaired electron spins multiple interaction curves are 
possible. For example if two hydrogen atoms collide with spins opposed they 

1 follow the attractive potential (which corresponds to the H2 molecule); 
this occurs on one collision in four. On the otherhand in three out of four col- 
lisions the spins are parallel and the atoms follow the antibonding repul- 
sive potential. With other atoms these interactions can be much more com- 
plex - two ground state oxygen atoms can follow any of eighteen di€ferent po- 
tential energy curves1g., It has been shownao that when there a r e  multiple in- 
teraction curves the transport property formulas of classical kinetic the theo- 
ry  remain valid, but the collision integrals must be averaged over the differ- 
ent curves, with each one weighted according to its statistical weight. 

3 

These interactions between labile atoms or free radicals a r e  usually I 

much stronger than the interactions between valence saturated species, and 
this in turn has an effect on the transport properties. This is illustrated in  
Fig. 9 where the viscosities of atomic and molecular hydrogen are compared. 
The experimental viscosities for  hydrogen atoms have been deduced by Brow- 
ning and Fox21 from their measurements on hydrogen atom-molecule mixtures, 
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assuming an appropriate fit. to Margenau's calculation22 of the H - H2 inter- 
action. The experimental atom viscosities a r e  in near -perfect agreement 
with the accurate quantal calculations of Buckingham, Browning, and Gal 23 , 
shown as a solid line. 

1 3 On the otherhand, if one were to naively overlook the Z= and Z poten- 
tials and assume weak forces analogous to the H2 - H2 and H - H2 interac- 
tions a considerably smaller H atom cross section would be predicted. The 
dashed curve in figure 9 shows such a prediction based on Lennard-Jones 
(12-6) potentialforce constants of oHWH = 2.53 A, (E/k)H - = 31.3' K. (There 
values were obtained from the force constants oH = 2 . 7 5 4  ( E / ~ ) H , H  - - 

n r) - 
6 ' 25 = 33.3' K by inverting the 24 32.2'7' K and OH H = 2.968 K ,  (€/k)H H 

2- 2 2- 2 clc 

usual combining rules for the potential parametersLo. ) 

Thus the effects due to multiple interaction curves seem well-understood 
and we find a satisfying agreement between theory and experiment in the case 
of atomic hydrogen. Of course in high temperature gas mixtures involving 
many different atoms and radicals the situation may be complex indeed, and 
it might be necessary to consider hundreds of interactions for a truly rigor- 
our calculation of transport properties., (A reasonably complete treatment 
for the nitrogen-oxygen system, for high temperature air, includes more 
than thirty interactions2', ) The potential curves for many interactions a r e  
known only poorly, if at all - especially some of the repulsive interactions. 
And the repulsive interactions play an important role because of the high 
multiplicities which are frequently associated with such states 

TRANSPORT PROPERTIES O F  IONIZED GASES 

At temperatures in the neighborhood of 10 OOOOKand moderate pressures 
almost all gases are to some extent ionized. Such gases possess unusual 
properties because of the presence of the very light electrons and because of 
the very long range Coulomb interaction between the charged species. 

The precise experimental determination of the transport properties of 
plasmas is extremely difficult; hence the usual interplay between theory and 
accurate experimentation is lacking 
oped with sophistication and care. 

Consequently the theory must be devel- 
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For unionized gases the lowest non-zero Chapman-Enskog approxima- 
tion provides a generally adequate description of the transport properties 
(with the possible exception of the coefficients of thermal diffusion). Con- 
sequently some have applied these lowest approximations to ionized gases, 
although calculations28 for the Lorentzian gas should have suggested the 
possibility of slow convergence in the case of plasmas. Ahtye” realized 
that higher approximations were required and the matter has been further 
and extensively explored by deVoto 30,31 

Some of d e V ~ t o ’ s ~ ~  results fo r  argon at atmospheric pressure a r e  pre- 
sented in Fig. 10, which shows the ratios of the lowest non-zero Chapman- 
Enskog approximations to the highest approximations calculated by deVoto. 
The ratios are plotted against temperature, with a secondary scale showing 
the degree of ionization cy, The ratio of the first to second approximation 
for viscosity, [dl /[d2, is within one percent of unity at low temperatures 
and drops off to about 0.89 as the gas approaches complete ionization, This 
is about the same as the ratio deVoto calculated30 for a fully ionized hydro- 
gen plasma (0,883) and indicates that the first approximation is not sufficient 
for accurate calculations at high degrees of ionization, The accuracy of ?.he 
second approximation is not known, but it is probably within one ai- two per - 
cent, if the result for the Lorentzian gas  is any guide 28 

The ratio of the second to fourth approximation for the translational 
thermal conductivity, [AI2[AL, (the first Chapman-Enskog approximation 
is zero) drops to about 0,43 at high temperature, showing that [AI2 is seri- 
ously in e r ror  (pI2/[g4 for fully ionized hydrogen is 0,438 
finds [q3/[~l4 within 3 percent of unity, so that [AI4 must be accurate in- 
deed. 

30 ). DeVoto 

The ratio [u],/C.1, indicates that the first approximation to the electri- 
cal conductivity is inadequate under any circumstances. At high tempera- 
tures the higher approximations converge rapidly - at 10 000’ K the second 
approximation is within 5 percent of the fourth - but at low temperatures 
even the fourth approximation seems not to have converged on the true val- 
ue. For example at 4000’ K , [0]~/c.3~ = 0.63 and [uI3/[d4 = 0.82. 

Thus it seems that accurate calculations for  ionized gases require the 
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higher Chapman-Enskog approximations, which are algebraically compli - 
cated. It would be very desirable to develop simpler expressions; deVoto 31 

has done some work in this direction. 

I' 
I .  

A partially ionized gas contains at least three species - ions, electrons, 
and the parent atoms. In order to describe the transport properties cross 
sections for all the pair-wise interactions must be obtained. Let us  consid- 
er argon as an example. The interactions are A r  - Ar ,  A r  - e, Ar - Ar*, 
Ar+  - Ar', e - e, and Ar' - e. 

If we regard the argon-argon cross section as v~normal 'v ,  all the other 
cross sections are in one way or another abnormal or peculiar. Argon atoms 
a re  very transparent to electrons s o  the atom -electron cross section is umsu- 
ally small (about 0 ,5  to perhaps 7 A2 compared to 13 - 15 for the Ar-Ar 
cross section32). On the otherhand the argon atom-ion cross sections ap- 
pear unusually large. One might at first  assume that the atom-ion cross 
section would be comparable to the atom-atom cross section. However, when 
an ion encounters its parent atom resonant charge transfer occurs; this gives 
r i se  to an exchange force which increases the elastic collision cross secttons 
(by about 80 percent in the case of argon ) o  But charge exchange has a h r -  
ther effect on the diffusion or mobility of ions. This resonant exchange is 
probable on grazing collisions between ions and their parent atoms, and a 
grazing collision with charge transfer is equivalent to a head-on collision 
without charge transfer insofar as the transport of charge is concerned, 

32 

To a good approximation the contribution of the ionization equilibrium to 
9,33 the heat conductivity is 

DAr-Ar+ AH XArXAr+ xr - 
l2 RT 2 

RT (xAr+xAr+ 

Here AH is now the heat of ionization while xAr, xAr+ are the mole frac- 

small because of the large charge transfer cross  section, 
tions of atoms and ions; the atom-ion diffusion coefficient DAr - Ar+ is 

The consequences of the small atom-electron cross  section and large 
atom-ion cross section are apparent in Fig. 11, where the thermal conduc- 
tivity of argon at atmospheric pressure is plotted as a function of temper- 
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ature. An auxiliary scale shows the degree of ionization, a. The curves 
for the equilibrium and translational heat conductivity were computed by 
deVoto3l while the curve for  atomic argon was  calculated by Amdur and 
Mason34. The experimental data below 5000' K (filled symbols) a r e  der- 
ived from shock tube heat transfer studies359 36, while the data in the 8000 
- 12 000' K range (open symbols) were deduced from arc temperature pro- 

37 files . 
Note that the heat conductivity in slightly ionized argon is considerably 

larger than in the unionized gas. For  example at 9300' K where the gas is 
only 1 percent ionized the heat conductivity is about 80 percent higher than 
in atomic argon. This is in part due to the small electron mass, and in  
part due to the small argonielectron cross section. 

to the heat conductivity - for example at 13 500' K the equilibrium conduc- 
tivity, he,  is about 75 percent larger than the translational conductivity, 

. However, this is a rather small increase, in comparison with the 'trans 
eight-to tenfold increase in heat conductivity caused by the dissociation of di- 
atomic molecules . Thereason, of course, is the very small ion-atom dif- 
fusion coefficient which is in turn a consequence of the large resonant charge 
transfer cross  section. 

Note too that at higher temperatures the ionization reaction contributes 

9 

The ion-ion, electron-electron, and ion-electron interactions a r e  all 
coulombic, an extremely strong and long range interaction, which makes 
these cross  sections very large; in fact if the collision integrals are evalu- 
ated for the simple coulomb potential they are found to diverge38, This 
difficult is most easily circumvented by cutting off the integration for  the 
cross section at some large distance such as the mean interparticle dis- 
tance, o r  better yet, at the Debye length 

(ne is the number density of electrons and e is the electronic charge). 
This procedure is justified by the argument that the electrical charge of 
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distant particles is effectively screened or  neutralized by nearby particles 
1 of opposite charge . 

However, it seems preferable to introduce the assumption of screening 
at the outset and describe the charged particle interactions by the screened 
coulomb potential, 

2 
exp(-r/d). e 

% = *-- r 

(The plus sign applies for  ion-ion and electron-electron interactions, and 
the minus sign applies for the ion-electron interaction. ) Liboff3' has devel- 
oped analytic expressions for the collision integrals for this potential which 
a r e  valid at high temperatures, and recently Mason, Munn, and Smith 40 

have done the necessary numerical work to evaluate the integrals for low 
temperatures as well. 

Normally intermolecular potentials depend on intermolecular distance, 
and, in the case of polyatomic molecules, on the angular orientation of t h e  
molecules. The screened coulomb potential is unique, however, in that the 
potential itself depends on both temperature and pressure, since the Debye 
length d is a function of temperature and the charged particle density. 

This leads to pressure-dependent cross sections, which is also unique 
For example, Liboff's expression for the cross section which is important 
in determining viscosity is 

1 

(11) 1 2 1  
4 

(2) 1- ln(kT/e ) - - ln(8sne) + In 2 - y 

(y = 0.577 = Euler's constant); the other cross sections are similar, but 
with different numerical constants. When the degree of ionization is small, 

'Following Ahtye and DeVoto, Eq. (9) considers both electrons and ions ef - 
fective in screening; if electrons only a re  considered, then d = (kT/4me 
e2)ll2* It would seem reasonable to include screening by the ions in  calcu- 
lating a property such as viscosity, which is determined largely by the heavy 
ions. On the otherhand, for the heat conductivity, determined mostly by the 
rapid motions of the electrons, the slow-moving ions probably do not screen 
effectively . (Private communication from Dr . F . A. Lyman. ) 
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is proportional to the square root of the pressure, whereas in the fully "e 
ionized gas ne varies directly with the pressure. In either case, the cross 
sections increase as the pressure is lowered SO that the viscosity and trans- 
lational thermal conductivity should increase with increasing pressure. 

This effect is shown in Fig. 12, where the viscosity of argon is plotted 
as a function of temperature for a number of pressures. Most of the calcu- 
lations are due to Ahtye" (solid curves); his results at atmospheric pres- 
sure agree reasonably closely with d e V ~ t o ' s ~ ~  computations (dashed curve). 
Two features a r e  noteworthy. First of all, at high temperatures the viscos- 
ity is pressure dependent, due to the dependence of the shielded coulomb 
cross  sections on electron density. Second, the high temperature viscosities 
are low, a consequence of the enormous size of the shielded coulomb cross 
sections 

Two concluding observations about the transport properties of ionized 
gases are in order. First, what about quantum effects? Mason, Munn and 
Smith4' have considered this question and conclude that quantum corrections 
are important in high density plasmas (say, ne > lo2' ~ m - ~ )  at all tempera- 
tures; above lo6 OK quantum effects are important in low density plasmas 
too. Finally, Mason and Sherman41 have made estimates of cross sections 
for symmetric resonant charge exchange between ions differing by one in 
electronic charge - processes such as Ar" + AT+' - Ar+* 4 A r  . They 
find that at most temperatures and electron densities of interest these cross 
sections are negligible in comparison to the screened coulomb cross sections 
for diffusion. This means that resonant charge transfer between ions will 
not affect the thermal conductivity of plasmas by depressing the rate of dif- 
fusive transport of ionization energy. This is in contrast to the situation in 
partially ionized gases, where, as we have already seen, ion-neutral ex- 
change is important. Thus it appears that theory is adequate for calculating 
properties of multiply ionized plasmas, provided only that quantum effects 
are negligible, and the shielded coulomb potential is appropriate for  describ- 
ing interactions between charged particles [T /ne > lo-' ("K/cm)9. 

4- 

3 

CONCLUDING REMARKS 

I hope the foregoing sections convince the reader that we do indeed have 
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the theoretical tools for  estimating high temperature transport properties. 
We must be certain that we consider all important aspects - effects due to 
chemical reactions, multiple interaction curves, and, in partially ionized 
gases, charge transfer and the long range coulomb forces. In ionized gases 
we must also take account of the higher Chapman-Enskog approximations, 
and in this regard algebraic simplifications would be most welcome. Then 
too, for many interactions between valence unstaturated atoms or f ree  rad- 
icals the multiple intermolecular potentials are unknown. But this is a pro- 
blem of quantum chemistry, and not a concern of transport theory per se. 
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Fig. 1. - Viscosity of argon. Comparison of theory 
and experiment. 
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Fig. 2. - Thermal conductivity of argon. Comparison of 
theory and experiment. 
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Fig. 3. - Self-diffusion coefficient of argon. 
Comparison of theory and experiment. 
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Fig. 4. - Viscosity of gas mixtures. Comparison of theory and 
experiment. 
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Fig. 5. - Thermal conductivity of gas mixtures, 253" C. Com- 
parison of theory and experiment. 
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Fig. 6. - Thermal conductivity of nitrogen tetroxide - nitrogen 
dioxide system. P = 1 atm. (ref. 12). 
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Fig. 7. - Thermal  conduct iv i ty of hydrogen f luor ide  vapor at 
267.7' K. 
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Fig. 8. - Effect of chemical reaction rate on thermal  con-  
ductivity of N204= 2N02 system. T = 296" K. (Ref. 16). 
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Fig. 10. - Comparison of lowest Chapman Enskog approximations 
w i t h  h igher  approximations. (Argon, 1 atmosphere). 
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Fig. 11. - Thermal conductivity of partially ionized argon, (1 atm). 
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Fig. 12. - Viscosity of partially ionized argon as a function of 
temperature. 


