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ABSTRACT 

This r epor t  considers longi tudinal  waves t rave l ing  i n  a cy l indr ica l  
rod. After  a review of the classical r e s u l t s  of wave propagation i n  
unbounded e las t ic  s o l i d s  and i n  e las t ic  cyl inders ,  the s u b j e c t  of thermal 
modification of e l a s t i c  propert ies  is undertaken. The r e s u l t a n t  e f f e c t s  
upon the purely e l a s t i c  wave motion cons is t s  of a change i n  the propaga- 
t i on  ve loc i ty  and the addi t ion  of a damping e f f e c t  upon the mechanical 
energy of the e las t ic  wave due t o  heat dondution. 
e f f e c t s  upon a longi tudinal  e l a s t i c  wave are shown t o  be small in  tenfis 
of the propagation ve loc i ty .  However, more s i g n i f i c a n t l y ,  the thenno- 
e l a s t i c  damping e f f e c t  i s  la rge  fo r  very high frequency waves t rave l ing  
i n  small diameter bars .  The behavior of the thermoelastic damping coef- 
f i c i e n t  is linked t o  a " thennoelast ic  bar number," developed herein.  
F ina l ly ,  approximations are developed, based upon the value of the 
thermoelastic bar  number, t o  pred ic t  the behavior of the thermoelastic 
damping coe f f i c i en t  as a function of frequency. 

The thermoelastic 
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INTRODUCTION 

The purpose of t h i s  repor t  is t o  a sce r t a in  the e f f e c t s  of thenno- 

e l a s t i c  damping on the propagation of longi tudinal  waves i n  cylin- 

d r i c a l  rods. 

As a wave propagates down the length of a rod, the va r i a t ion  of 

compressional s t r a i n  i n  the medium generates a small amount of hea t  

flow which increases the entropy of the bar and d i s s ipa t e s  a portion 

of the wave energy. This process is re fer red  t o  as thermoelastic 

damping. 

the magnitude of thermoelastic damping was  considered extremely 

small. Therefore, emphasis was  placed upon e l a s t i c  wave propagation 

In  the p a s t  h i s to ry  of the development of s o l i d  mechanics, 

while thermal wave propagation was  studied by thermodynamicists i n  

terms of the hea t  t r ans fe r  problem. Only recent ly ,  s t a r t i n g  i n  the 

l a t e  1950's, has the coupling of the thermal and e l a s t i c  waves been 

considered. Thermoelastic wave propagation has been s tudied mainly 

fo r  extended so l id s  by H. Deresiewicz (1957) and by Chadwick and 

Sneddon (1958) and i n  a review a r t i c l e  by Chadwick (1960), which 

a l s o  covers bounded so l id s .  In  pa r t i cu la r ,  Chadwick extended the 

Pochammer-Chree (1886) analysis  of longi tudinal  e l a s t i c  wave propa- 

gat ion i n  i n f i n i t e  c i r cu la r  rods t o  the thennoelast ic  case. 

However, the Pochammer-Chree e l a s t i c  so lu t ion  and the Chadwick 

thermoelastic extension a r e  unnecessarily complicated fo r  present 

engineering appl icat ions and therefore  present a problem t o  which 



t h i s  r epor t  is addressed, namely, an engineering understanding of 

thermoelastic wave propagation and damping. 

The approach t o  t h i s  problem taken i n  t h i s  repor t  is t o  f i n a  a 

s a t i s f a c t o r y  engineering approximation fo r  elas t i c  waves and then 

extend t h a t  so lu t ion  t o  incorporate the coupling due t o  the thermal 

wave. 

The l i t e r a t u r e  abounds with engineering solut ions of e l a s  t i c  

wave propagation. Several of these methods a r e  reviewed i n  

Chapter 11, and a pa r t i cu la r ly  s imple  one-dimensional so lu t ion  by 

Bishop (1952) is chosen as a bas is  f o r  fu r the r  work. A fur ther  cor- 

r ec t ion  t o  the Bishop approximation is developed t o  conform closely 

t o  experimental data. 

In  Chapter 111, an energy equation consis tent  with the assump- 

t ions used i n  the e l a s t i c  wave equation, coupled with the e l a s t i c  

equation of motion, is derived and is solved fo r  the thermoelastic 

phase ve loc i ty  and a t tenuat ion  coef f ic ien t .  

Several i n t e re s t ing  cases a r e  solved numerically. These solu- 

t ions ind ica te  t h a t  the e f f e c t s  of thermoelastic damping are very 

important a t  extremely high frequencies.  

d 

b 
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CHAPTER I 

WAV;E.PROPAGATION I N  AN INFINITE ELASTIC SOLLD 

A. The Equations of Motion 

The equations of motion of an i so t rop ic  e l a s t i c  medium are 

derived from bas i c  pr inciples  i n  terms of cy l ind r i ca l  coordinates 

which were chosen i n  view of l a t e r  appl ica t ions  t o  cy l indr ica l  rods. 

d 

Sta r t ing  with the s t r e s s  component equations of motion and with the 

s t r a i n  components i n  terms of p a r t i c l e  displacements, the displace- 

ment equations of motion a r e  der ived using Hooke's law. 

t ions a r e  then shown t o  correspond t o  two types of e l a s t i c  wave 

propagation i n  an unbounded so l id .  

These equa- 

The f i r s t  type consis ts  of a 

volumetric expansion-contraction wave f r o n t  cal led a d i l a t a t i o n  

wave. The p a r t i c l e  motion i n  t h i s  wave is along the d i r ec t ion  of 

propagation. The second type of wave is commonly re fer red  t o  as a 

d i s t o r t i o n a l  wave. 

takes place perpendicular t o  the d i r ec t ion  of propagation. I n  an 

unbounded s o l i d ,  only these two types of wave a r e  propagated. 

P a r t i c l e  motion i n  a plane d i s t o r t i o n a l  wave 

Figure 1 defines  the cy l indr ica l  coordinate system along with 

The mater ia l  of the rod is the usual Cartesian coordinate system. 

considered homogeneous and the sec t ion  is i n  dynamic equilibrium 

under the influence of s t r e s s e s  and r e su l t i ng  accelerat ions.  D i s -  

placements from the equilibrium condition a r e  U along the radial 

coordinate r ,  V along the angular coordinate e, and W along the 

3 
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x 

longi tudinal  coordinate z. The normal s t r e s s e s  a r e  denoted by ur, 

ae, and uz, and the shearing s t r e s s e s  are represented by T ~ ~ ,  zrZ, 

The mass per u n i t  volume is p. and T 

motion fo r  a n  elemental volume are 

The s t r e s s  equatxons of 
ez ' 

Next, the s train-displacement r e l a t ions  a r e  introduced. The 

and eZ, while the shearing s t r a i n s  a r e  normal s t r a i n s  are E E r '  0' 

Thus, the s t r a i n  displacement r e l a -  
ze * denoted by yrz, Yre, and Y 

t ionships a r e  

au 6 = -  
r ar 

6 = - + - -  u 1 av 
e r r a e  



Adding the normal s t r a i n  components y i e lds  the d i l a t a t i o n  

(3) 

- - Also useful  i n  l a t e r  der iva t ions  a r e  the ro t a t ions  CJ r '  *ey *z 
defined by 

Within an i so t rop ic ,  homogeneous mater ia l ,  each of the s i x  c m -  

ponents of s t r e s s  a t  any point  is a l i n e a r  funct ion of the s i x  

components of s t r a i n :  

6 

= hn + 2v6r 'r 

(5 = hn+ 2 p 6  
6 

= hn+ 21J.6, 
OZ 

'G r 6  = Pyre 

1J.Yr z z =  r z  

'G Z 6  = PYZ6, 



b 

x 

where h and p are Lame’s constants defined below. 

is denoted by v, and Young’s modulus is E. 

Poisson’s r a t i o  

E 
p = 2(1 + v) 

VE 
A = (1 + v)(1 - 2v) (7) 

The displacement equations of motion are derived from the stress 

equations of motion (1) by introducing the s t ress -s  t r a i n  r e l a t i o n s  

(5). Af te r  the appropriate  s u b s t i t u t i o n  of various der iva t ives  of 

the s t r e s s - s t r a i n  equations and a lgebra ic  manipulations, an i n t e r -  

m e d i a t e  form of the equations of motion can be wr i t ten :  

7 



The f i r s t  terms of these equations can be recognized as the  p a r t i a l  

der iva t ives  of the d i l a t a t i o n  A w i t h  respec t  t o  r ,  0,  and z. 

second terms can be shown t o  be the Laplacian of U, V, and W i n  

cy l indr ica l  coordinates,  

The 

The Laplacian i n  cy l ind r i ca l  coordinates is 

Thus, the equations of motion (8) can be s implif ied:  

A s  a bas i s  f o r  fu r the r  development, these equations a r e  r ecas t  by 

using the der iva t ion  of the r i g i d  body ro t a t ions  \, 08, and cz of 

equation ( 4 )  and by manipulating equation (8). 

motion i n  t h i s  form are known as the Pochammer-Chree equations: 

- 
The equations of 

aiiz aG8 .. 
+ 2 p - = p u  an 2J 

ar r ZT aZ (A + 21.1) - - 

8 



B. Wave Propagation 

The Pochammer-Chree equations a l low the determination of the  

propagation of two types of wave motion. 

Manipulation of equations (11) r e s u l t s  i n  the wave equation 

P F =  (A + 2p) F A ,  

i n  i t s  most general  form. 

A is  propagated throughout the e l a s t i c  medium with a v e l o c i t y  

This equation shows t h a t  the d i l a t a t i o n  

More s t r i c t l y ,  t h i s  wave should be termed i r r o t a t i o n a l .  

By d i f f e r e n t i a t i n g  ( l l b )  with respec t  t o  z ,  and by subt rac t ing  

a mul t ip le  of the d i f f e r e n t i a l  of ( l l c )  with respec t  t o  8 ,  the 

following form appears 

S i m i l a r  equations can 1 ikewise be obtained f o r  Go and &. 

has been shown that the r o t a t i o n a l  wave form is  propagated with a 

v e l o c i t y  

Thus, i t  

9 



The s t r i c t  term f o r  t h i s  wave is equivoluminal; however, the 

more popular term i s  d i s t o r t i o n a l  or  shear  wave. 

It has thus been shown that, i n  an e l a s t i c  s o l i d ,  waves may be 

propagated with a v e l o c i t y  C, f o r  waves involving no r o t a t i o n  and with 

v e l o c i t y  C2 f o r  waves involving no d i l a t a t i o n  t r ave l .  The ve loc i ty  

designat ions,  C1 and C2, a r e  used f o r  consistency with published 

l i t e r a t u r e .  

These r e s u l t s  w i l l  be applied when the e f f e c t s  of the s t r e s s  

conditions a t  the s o l i d  boundary a r e  introduced and the concept of 

d i spers ion  is revealed. 

h 

10 

t 
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CHAPTER 11 

LONGITUDINAL ELASTIC WAVE PROPAGATION I N  CYLINDRICAL RODS 

A. Elementary Theory 

It is possible ,  a t  l e a s t  t heo re t i ca l ly ,  t o  der ive the propagation 

of s t r e s s  waves i n  any bounded i so t rop ic  s o l i d  by solving the d i s -  

placement equations of motion f o r  the appropriate  boundary conditions. 

I n ' f a c t ,  because of the r e f l e c t i o n  of plane e l a s t i c  waves a t  f r e e  s u r -  

faces and because of the extremely complicated fashion i n  which the 

d i l a t a t i o n a l  and d i s t o r t i o n a l  waves a r e  re f lec ted  as they t rave l  up 

and down the bar ,  no exact solut ions have been obtained. 

introducing boundary conditions i n t o  the equations of motion produces 

dispers ion;  t h a t  is ,  the ve loc i ty  of wave propagation of a disturbance 

up and down the bar is a function of wavelength. 

Thus, 

The governing equations have been approximated by many i n  the 

f i e l d  of e l a s t i c i t y .  These approximations reduce t o  e i t h e r  of two 

types. The f i r s t  introduces approximations i n t o  the equation of 

motion, while the second uses the exact equations of motion and only 

approximately s a t i s d i e s  the boundary conditions. The f i r s t  method 

has been chosen f o r  review and extension. 

i 
u 

Basically,  three types of wave motion occur i n  th in  rods: longi- 

tudinal ,  to rs iona l ,  and l a t e r a l .  In  longi tudinal  motion, the elements 

of the rod extend and contract ,  but  there  is no l a t e r a l  o r  transverse 



motion of the axis of the rod. 

sec t ion  of the bar  remains i n  i t s  own plane and ro t a t e s  about i t s  

center ;  again the a x i s  of the rod is undisturbed. Lateral  waves 

correspond t o  bending of the rod, and elements of the bar axis  move 

I n  tors iona l  motion, each transverse 

l a t e r a l l y  during the motion, 

Only longi tudinal  wave motion w i l l  be considered i n  t h i s  repor t ,  

H i s to r i ca l ly  speaking, the f i r s t  treatment of longi tudinal  wave 

motion neglected the radial displacements a r i s i n g  from Poisson's 

e f f ec t .  As a r e s u l t ,  t h i s  f i r s t  treatment predicted a wave ve loc i ty  

independent of frequency. A second elementary treatment was  in t ro-  

duced by Lord Rayleigh, who shows that, by including the e f f e c t  of 

radial i n e r t i a ,  the wave propagation ve loc i ty  is a function of wave- 

length. These and fu r the r  invest igat ions,  including the e f f e c t s  of 

radial shear by Mindlin and Herrmann and by Bishop, a r e  compared i n  

th i s  chapter. 

The elementary theory of longi tudinal  wave propagation i n  a 

cy l indr ica l  rod assumes that the cross-sect ional  element faces remain 

plane and that the s t r e s s  d i s t r i b u t i o n  is constant across the faces.  

Thus, the equation of motion can be d i r e c t l y  wr i t ten .  

l a w  and introducing the mater ia l  densi ty  p and forces due t o  the 

s t r e s s e s  on both s ides  of the element, we can write 

Using Newton's 

II 

12 
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Thus, the equation of motion can be wr i t t en  

Equation (18) is the c l a s s i c a l  f i r s t  approximation f o r  longi- 

tudinal  wave motion i n  a rod. The ve loc i ty  of propagation is 

By ignoring the l a t e r a l  contract ion due t o  longi tudinal  s t r a i n ,  we 

obtain 

4 

The designation rlCOl' is  used i n  the l i terature  t o  d i s t ingu i sh  it 

from the d i l a t a t i o n a l  and shear v e l o c i t i e s ,  C, and C2. Notice, 

however, that the elementary treatment assumes t h a t  the plane t rans-  

verse  sec t ions  remain plane during the stress wave passage and t h a t  

s t r e s s  is uniform across the plane sec t ion .  However, we know t h a t  

longi tudinal  contractions and expansions w i l l  r e s u l t  i n  l a t e r a l  

expansions and contractions.  The r e su l t i ng  l a t e r a l  motion w i l l  

cause non-uniform d i s t r i b u t i o n  of stress across  the sec t ion  of the 

bar ,  and plane t ransverse sect ions become d i s t o r t e d ,  The l a t e r a l  

e f f e c t s  w i l l  be small, however, when the wavelength of the wave is 

very much l a rge r  than the diameter of the bar .  

any de ta i led  ana lys i s  of longi tudinal  v ibra t ions  t o  reduce t o  the 

wave ve loc i ty  Co f o r  very small r a t i o s  of the bar diameter t o  the 

wavelength. 

Thus we would expect 

13 



B. Rayleigh-Love Correction P 

14 

The next important development i n  wave propagation i n  e las t ic  
i 

rods was made by considering lateral  contract ion due t o  longi tudinal  

s t r a i n s .  

S t r u t t )  i n  1877 and la ter  by A.  E. H. Love. Rayleigh's der iva t ion  

This was f irst  published by Lord Rayleigh (John W i l l i a m  

was based on the pr inc ip le  that a frequency of f r e e  v ib ra t ion  of a 

conservative system can be obtained by equating the t i m e  average of 

the po ten t i a l  and k i n e t i c  energies of the motion. Love used 

Hamilton's p r inc ip l e  i n  obtaining the  equations of motion. The 

der iva t ion  used i n  this repor t  w i l l  be developed from the displace- 

ment equations of motion. 

Because the rod is axisymmetric, the normal s t r a i n  equations 

(2a), (2b), and (2c) s impl i fy  to: 

aU 
r br 

e = -  

U = -  e r  

bW E = -  
z az 

The shear s t r a i n  equations are a l l  zero by v i r t u e  of axisymmetry and 

an assumed independence of z upon U. 

The r a d i a l  s t r a i n  er simply is Poisson's r a t i o  v t i m e s  the 

longi tudinal  s t r a i n  cZ. Subs t i tu t ing  equations (20a), (20b) and 

(20c) i n t o  the s t r a i n  r e l a t i o n s ,  and in tegra t ing  wi th  respect  t o  r 

yield:  

I 

. 



Thus, equation (2Ob) becomes . 

Now subs t i t u t ion  of the above statements i n t o  the s t r e s s  s t r a i n  equa- 

t ions (5) y ie lds  

3W or = ?A - 21J.v 

3W CT = ? A -  2pv,, e 

3W 
CT = ? A -  2 p s .  z 

These equations a r e  then subs t i tu ted  i n t o  the r a d i a l  equation of 

motion ( l a )  which is  then solved f o r  the p a r t i a l  of radial stress with 

respect  t o  r: 

In tegra t ion  (24) with respect  t o  r from 0 t o  r yields  the radial 

s t r e s s :  

15 



Using equation ( 5 )  and the foregoing statements yields:  

Equation (23) is  solved f o r  the partial  of longi tudinal  stress with 

respect  t o  z ,  and is  then integrated Over the cross-sectional a r ea  of 

the bar t o  y ie ld  

Equation (27), subs t i tu ted  in to  the a x i a l  equation of motion (IC),  

r e s u l t s  i n  the wave equation 

A so lu t ion  of t h i s  partial  d i f f e r e n t i a l  equation is 

W = e  i-q ( z - c  t) 
Y 

where 17 = - *' , and L is the wavelength. The ve loc i ty  of wave propaga- L 
t ion  is then 

11 2 c = c 0 [ 1 + y ]  2 2 2  . 

Thus, we see that the ve loc i ty  of wave propagation is a function of 

the wavelength, known as "configurational dispersion." 

the wave speed is Coy corresponding t o  the elementary theory. 

For long waves 

However, 

L 
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equation (30) predic t s  zero wave ve loc i ty  a t  zero wavelength. This 
4 

is not borne out by experimental inves t iga t ions ,  which show the 

wave v e l o c i t i e s  f o r  sho r t  wavelengths t o  approach the s 

veloc i ty  f i r s t  discovered by Rayleigh. 

Mind1 i n  and 

i n  a cy l ind r i ca l  

4 

C. Mindlin and Herrmann's Method 

Herrmann#s method fo r  longi tudinal  wave propagation 

rod proceeds from the displacements: 

r u = z;: U(2,t)  

v =  0 

w = W(z,t), ( 3 1 4  

which a r e  then subs t i tu ted  in to  an incremental energy equation 

t v  

and integrated over the cross sec t ion .  The four r e su l t i ng  bar 

s t r e s s e s  a r e  then removed by in tegra t ing  the s t r e s s  equations of 

motion over the radius of the sec t ion  and by using Hooke's l a w  t o  

convert the s t r e s s  equations of motion i n t o  displacement equations. 

To make the wave v e l o c i t i e s  f i t  the exact theory, the constants K 

and K1 a r e  then introduced i n t o  the displacement equations. The 

r e su l t i ng  displacement equations cons is t  of two coupled partial  d i f -  

f e r  en t ia l  equa t ions : 

17 
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and 

where 

Mindlin and Herrmann assume the so lu t ions  t o  these equations t o  be: 

U = Ae i q  (2-C t )  ( 3 4 4  

i 7  (2-C t )  W = Be 

R = Z = O .  

A s  a r e s u l t  the d ispers ion  equation was  wr i t t en  as 

P (35) 

This equation represents  two modes of wave propagation i n  the bar .  

For long wavelengths, the wave v e l o c i t i e s  are 

and 

18 



c 

The f i r s t  branch (equation (36a)) agrees with the elementary theory, 

For sho r t  wavelengths, the wave v e l o c i t i e s  are 

C2 = K2 lA , ( 3 7 4  P 

and 

(37b) 
h + 2L c2 = 

P 

The f i r s t  parameter K2 is used t o  f i t  the  dispers ion curve t o  the 

Rayleigh surface wave veloci ty .  The second parameter K: is used t o  

f i t  the dispers ion curve t o  the Pochammer-Chree curve a t  a common 

point C2 = 2C5 f o r  a l l  values of Poisson's r a t i o  v .  The coupled 

equations of motion (33a) and (33b) are then wr i t t en  t o  e l iminate  U. 

Inspection of equation (38) shows that Mindlin and Herrmann's method 

improves the Rayleigh-Love d i f f e r e n t i a l  equation by adding the radial 

shear e f f e c t  and by improving the radial i n e r t i a  term. 

D. Bishop's Method 

Bishop's o r ig ina l  paper on the ve loc i ty  of wave propagation i n  

c i r cu la r  e l a s t i c  rods was prepared i n  1952 i n  an e f f o r t  t o  improve 

the predict ion of e l a s t i c  wave propagation ve loc i ty  as a function 

of wavelength. Bishop derived an approximation t o  the equations of 

19 



motion i n  Cartesian coordinates including the l a t e r a l  i n e r t i a  as 

Rayleigh and Love and a l s o  an approximation t o  the lateral  shear 

s t r e s s .  He used a theorem r e l a t i n g  t o  convex boundaries t o  remove 

geome'tric problems i n  describing the cross sec t iona l  boundary. How- 

ever,  fo r  c l a r i t y ,  we s h a l l  use Hamilton's pr inc ip le  and cy l indr ica l  

coordinates t o  der ive the equation of motion. 

The s t r a i n  r e l a t ions  fo r  er,  E ~ ,  and eZ are the same as t h a t  of 

Rayleigh and Love. 

the shear s t r a i n .  

Unlike Rayleigh and Love, Bishop d i d  not ignore 

Hamilton's pr inc ip le  states that the f i r s t  v a r i a t i o n  of the time 

in t eg ra l  of k i n e t i c  energy minus the poten t ia l  energy during a process 

is zero, as symbolically s t a t ed  below: 

B I ( T  - V) d t  = 0. 

t 

The s t r a i n  po ten t i a l  energy of an  e l a s t i c  mater ia l  (per un i t  volume) 

is the in t eg ra l  of the e l a s t i c  force over the displacement 

V = J F  d z  

where 

F = Ez. 

c 

I 

x 
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4 

In t eg ra t ing  from zero t o  E~ r e s u l t s  i n  the s t r a i n  energy per u n i t  

volume of 

V = 112 E€:. 

Likewise, the  shearing s t r a i n  energy is 

Thus, the  t o t a l  po ten t i a l  energy is 

r e z  

V = 112 l (E€: + py;,) rdrdedz, 

0 0 0  

o r ,  fo r  the  rod i n  question, 
Y 

I 

r z  r r l  
V = fi J J (EE; + py2 ) rdrdz.  r z  

0 0  

Subs t i t u t ion  of the s t r a i n  r e l a t i o n s  y i e lds  

The k i n e t i c  energy per u n i t  volume is 

(43 )  

(45) 
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Subs t i tu t ing  the strain r e l a t i o n s  and integrat ing,  we obtain 

r z  

1 T = pfl 1 [ [v2r2 (m)2 3% + rdrdz.  

0 0  
(49) 

When we s u b s t i t u t e  these forms i n t o  Hamilton's equation and in tegra te  

over the cross sec t ion  of the bar ,  we obtain (introducing subscr ip t  

notat ion f o r  partial der iva t ives)  

t 2  J 

6 1  $ [pv2 $ (Wzt )2  + P ( W , ) ~  - E(WZ)2 
- 

t, z=o 

2 - pv2 % (Wzz)2] dz d t  = 0. 

Forming the funct ional  

and using the Euler-Lagrange necessary condition of the v a r i a t i o n a l  

calculus ,  we obtain 

(aF/aWzt) = 0. +-  a2 

azat  
Af te r  we form and s u b s t i t u t e  the indicated p a r t i a l  der iva t ives ,  the 

r e su l t i ng  equation of motion i s  



2 2  +YW z z t t  - Wtt' 
- w  E _uv2a2w 
p zz 2p zzzz (53) 

By noting the elementary propagation ve loc i ty ,  Co, and the d i s to r -  

t i ona l  wave ve loc i ty  i n  an extended medium, C2, we can s implify 

equation (53): 

Again, assuming a so lu t ion  

iv(z-Ct) W = e  9 

yields  the dispers ion equation 

2 2 2  1 c2 [1 +y] 2 2 2  - pg +y c; = 0. 

( 5 5 )  

For long wavelengths (7 approaches zero),  the wave ve loc i ty  is the 

same as that fo r  the elementary theory. For shor t  wavelengths (7  

approaches i n f i n i t y ) ,  the ve loc i ty  of wave propagation approaches 

the ve loc i ty  of shear (d i s to r t iona l )  waves i n  an i n f i n i t e  medium. 

Thus, we observe, by comparing equation (56) with equation (30) ,  

that Bishop's contr ibut ion is the addi t ion  of the radial shear term 

t o  the Rayleigh-Love analysis .  
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E. Comparison of Bishop's Method and Mindlin and Herrmann's Method 

Comparison of the r e s u l t s  of these two methods begins by compar- 

ing t h e i r  d i spers ion  curves wi th  numerical approximations t o  the 

Pochammer-Chree equations by Bancroft and Hudson i n  f igu re  2. 

can be noted that both the  Bishop and the Herrmann and Mindlin d i s -  

pers ion equations r e s u l t  i n  wave v e l o c i t i e s  g r e a t e r  than the 

Pochammer-Chree numerical so lu t ions  f o r  a l l  wavelengths. 

the e r r o r s  r e s u l t i n g  from the Mindlin and Herrmann method a r e  general ly  

smaller ,  due i n  f a c t  t o  the use of the constants K and K, fo r  curve 

f i t t i n g .  

Mindlin and Herrmann method can be gained from a comparison of the 

equations of motion of the methods, 

It 

However, 

For our purpose an in s igh t  i n t o  the complexity of the 

Using Mindlin and Herrmann's one-dimensional equation of motion 

(38) and assuming that 

iT(z- Ct) W = Be 

and 

R = Z = O ,  

we obtain the  following form: 

c 



4 

0 
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which is t o  be compared with Bishop's equation of motion (53) 

2 2  _vau W - 0. 
E v2a ;; wzz - Wtt + 2 W t t z z  2 p  2222 

F. Improved Longitudinal Wave Equation 

( 5 9 )  

The simple form of the Bishop equation of motion suggests i t s  

use i n  an improved form as an engineering too l ,  

of motion a r e  reformulated here i n  terms of the s t r e s s  equations with 

constants K and KL used t o  f i t  the r e s u l t i n g  d ispers ion  curve t o  the 

The bas i c  equations 

numerical so lu t ion  of the Pochammer-Chree equations,  

S t a r t i ng  with the s t r e s s - s  t r a i n  r e l a t ionsh ips  of the Rayleigh- 

Love ana lys i s  (equation (23)) and the shear s t r a i n  r e l a t i o n  of the 

Bishop ana lys i s  (equation (39)) 

aW or = u- 2yv 

aW 
0 = A n -  2pv- 0 az 

aw 
0 = A n -  Zpv,, z 

and s u b s t i t u t i n g  i n t o  the radial s t r e s s  equations of motion (equa- 

t i o n  ( l a ) ) ,  we obta in  the following: 
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In tegra t ing  equation (61) with respec t  t o  r y ie lds  

2 

a% K,vpr2 K2Uvr2  a3w 
2 azg+ 2 azat2' (J I:- 

r 

Now using equation (59c) and the s t ra in  equation (2) and taking the 

de r iva t ive  with respec t  t o  z y ie lds  

Af te r  we i n t e g r a t e  over the cross sec t ion  and divide by the cross- 

s ec t iona l  a r e a  t o  f ind the t o t a l  bar  s t r e s s ,  and when we s u b s t i t u t e  

i n t o  the c l a s s i c a l  bar s t r e s s  equation of motion (equation (16)), 

we have the improved wave equation w r i t t e n  with previous notat ions:  

Introducing the so lu t ion  

W = e  i-q (z-Ct) 

y i e lds  the d ispers ion  equation 

For long wavelengths (7 + 0) ,  the wave speed equals the elementary 

wave speed, Co, For s h o r t  wavelengths, the wave propagation ve loc i ty  

is 
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The r a t i o  of the constants can be used t o  f i t  the  dispers ion 

curve t o  the Rayleigh surface wave veloci ty .  

percent of the shear (d i s to r t iona l  wave ve loc i ty  i n  an i n f i n i t e  

medium f o r  a Poisson's r a t i o  of 0.29, which is  typ ica l  of s t e e l .  

Then, i f  the dispers ion curve is f i t  a t  a / L  = 0.293 and C/C2  = 2, as 

i n  Herrmann and Mindlin, the r e s u l t s  can be p lo t ted  (see f igure  2). 

Also shown f o r  comparison are the Bishop curve and Mindlin and 

Herrmann curve (Pochamer - Chree numerical so lu t ion  by Hudson). 

Notice t h a t  the improved so lu t ion  l i e s  between the exact and Mindlin 

and Herrmann curves. Thus, we have a very simple improvement t o  the 

Bishop form of the longi tudinal  wave equation. 

This r a t i o  equals 92.6 

x 
L 
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CHAPTER I11 

THERMOELASTIC WAVES 

1 .. 

n 

A.  Thermoelastic Equations of Motion 

Chapter I reviews the bas i c  pr inc ip les  of e l a s t i c  wave propaga- 

t i on  i n  an unbounded so l id  and Chapter I1 examines the cha rac t e r i s t i c s  

of longi tudinal  wave propagation i n  cy l ind r i ca l  bars.  This chapter 

discusses the s a l i e n t  points of thermal modification of longi tudinal  

e las  t i c  waves. 

When a longi tudinal  wave passes through a bar ,  any given element 

is compressed and extended. These volumetric changes a r e  accompanied 

by heating and cooling. 

phase is  conducted through the bar.  

a f f e c t s  the s t a t e  of s t r a i n  by the coe f f i c i en t  of thermal expansion, 

The hea t  generated during the compressional 

The r e su l t i ng  temperature change 

The approach taken here is t o  combine these thermal e f f e c t s  with 

the improved wave equation developed i n  Chapter  11. The r e s u l t a n t  

e f f e c t s  upon the purely e l a s t i c  wave motion a r e  discussed i n  terms of 

a change i n  the propagation ve loc i ty ,  and the addi t ion of a damping 

e f f e c t  upon the mechanical energy of the  e l a s t i c  wave due t o  hea t  

conduction. 

The thermally coupled case of longi tudinal  harmonic wave propa- 

ga t ion  is derived from the s tress-displacement radial equation of 

motion developed f o r  the improved e l a s t i c  wave equation (62) coupled 

with the energy equation. 
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The thermoelas t i c  s t ress -s  t r a i n  re la t ionship  is  wr i t ten :  

where a = coe f f i c i en t  of volumetric thermal expansion. 

that or equals “8, we write 

By observing 

This equation is then integrated over the c i r c u l a r  cross sec t ion  t o  

yield:  

Equation (68) is introduced in to  the s t r e s s  equation of motion derived 

fo r  the elementary case, 

and, thus,  the following 

T -  E K2 v 2a u .L Plu - -  
wzzzz + 2  W z z t t  3p z - wtt* - w  - 

P z z  

equation of motion is  obtained: 

KTv2a2 n ̂ . 

The general  form of the energy equation is wr i t t en  most of ten  i n  the 

form 
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where 

C, = s p e c i f i c  hea t  a t  constant strain 

U = displacement vector  
- 

L 

Q = in te rna l  heat addi t ion  

and 

k = thermal conductivity. 

But div f is the d i l a t a t i o n  A, which is evaluated t o  be 

The Laplacian of temperature, P T ,  is evaluated by assuming that the 

temperature gradient  across  the cross sec t ion  is zero. Thus, the 

energy equation (with no in t e rna l  hea t  generation) becomes 

Equations (72) and (75) a r e  the coupled partial  d i f f e r e n t i a l  equa- 

t ions of thennoelast ic  disturbances i n  a cy l ind r i ca l  bar of i n f i n i t e  

length. Because we wish t o  f ind thermoelas t i c  damping a t tenuat ion  

coe f f i c i en t s ,  as well  as phase ve loc i ty ,  so lu t ions  of the type 

and 

i (72- ut )  W = Woe 

T = Toe i (7z-ut) 

a r e  most f i t t i n g .  I n  general wand 7 a r e  complex quan t i t i e s .  The 

wavelength of the plane harmonic waveform is 2~~ /*ea l .  
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Subs t i tu t ing  equations (76) i n t o  (72) and (75) y ie lds  the two 

r e  la t ions  : 

i 7  

K,v 2 2 2  a 

wo (- P 7 2  - 
and 

-ToWoEa 
7" =To ( kf - idE) . 

3 

(77) 

Eliminating T and W and multiplying by - i / C e  y ie lds  the thermoelastic 

wave equation fo r  longi tudinal  harmonic plane waves propagating i n  an 

i n f i n i t e  cy l indr ica l  rod 

(79) 

where 

and 

I f  w is chosen as a r e a l  quant i ty  represent ing waves of assigned 

frequency, the complex wave number 7 can be found as a function of 

frequency. By expanding the form i n  equation (76), we g e t  
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Thus, the wave ve loc i ty  equals W/qreal, and the a t tenuat ion  coe f f i c i en t  

q equals Timag. 

independent of time. 

Thus, the damping is  a function of wave t r ave l  and is 

Solutions of assigned wavelength can a l s o  be 

obtained from equation (79) but  were not found due t o  the general 

i n t e r e s t  of the assigned frequency solut ions.  

B. Uncoupled Solution 

The thermoelastic wave equation above cons is t s  of a pure thermal 

wave coupled through the constant E t o  the improved e l a s t i c  wave equa- 

t i on  found i n  the last  chapter. 

zero, the thermal and e l a s t i c  waves e x i s t  separately.  I f  equation 

(79) is uncoupled ( E  = 0) ,  the so lu t ions  are 

Thus, when the coupling constant is  

corresponding 

i- 

t o  the thermal mode, and 

v a  I-1 1 K 2 2 2  
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corresponding t o  the e l a s t i c  mode. 

is solved i n  terms of the wavelength L = 2 d w  and y ie lds  

The phase ve loc i ty ,  V = d q r e a l ,  

[1 + 2K:v2a2.x21 L2 

This equation is iden t i ca l  t o  the dispers ion curve re la t ionship  for 

the improved e l a s t i c  wave i n  Chapter I1 and represents  an imaginary 

mater ia l  f o r  which a = 0. However, a = 0 is not a va l id  physical 

approximation as we s h a l l  see i n  the following discussion. 

C.  Coupled Solution 

For a l l  mater ia ls  considered, the coupling coe f f i c i en t  is very 

small. This f a c t ,  along with the f a c t  that a computerized so lu t ion  

of the s i x t h  order roots  of equation (79) would be required,  sug- 

gested the use of a per turbat ion technique. 

we use a c h a r a c t e r i s t i c  frequency u* t o  def ine the nondimensional 

quan t i t i e s  as suggested by Chadwick (1962): 

To condense the notat ion,  
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Using these quan t i t i e s  defined i n  equation (79), we obtain 

(X + ifr2)[k2(1 - d2v2X2) + c2v2k4 - X2] + €s2X = 0, 

where 

K2a p p2C ECE 

2Ek2 
c2 e 

9 

and 

When X i s  regarded as a r e a l  constant (assigned frequency), equation 

(89) is of the four th  order i n  e .  However, i n  t h i s  discussion, the 

pa r t i cu la r  roo t  corresponding t o  the quasi-elas t i c  wave is desired,  

and therefore the form of 5 chosen is 

where Eo represents  the improved e las t ic  wave so lu t ion  when E = 0. 

The so lu t ion  of equation (88) under t h i s  condition is 

The pos i t ive  s ign  was  chosen by comparison with equations (84) and 

(85) 

When equation (92) is  subs t i tu ted  i n t o  equation (89) and i f  

higher order terms a r e  neglected, the r e s u l t  can be expressed as 
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where 

(1 - d2v2X2)2 + 4c2v2X2 = @, 

Equation (94) is of the form (when compared t o  equation (80) 

5 = co($ + i 

Therefore, the quas i - e l a s t i c  ve loc i ty  V is 

and the damping coe f f i c i en t  q is 

L 

Equations (96) and (97) represent  the main contr ibut ion of t h i s  

repor t  t o  wave motion i n  a bounded thermoelastic so l id .  

D. .Numerical Results 

A 

(95) 

(97 1 

When equations (91) and ( 9 4 )  a r e  solved numerically f o r  the 

r a t i o  of the thermoelastic ve loc i ty  t o  pure e l a s t i c  ve loc i ty  (z) 

as a function of the reduced frequency X, the r e s u l t s  may be plot ted 

as shown i n  f igure  3.  The d a t a  throughout this sec t ion  are typica l  
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of s t r u c t u r a l  aluminum and a r e  shown f o r  bar r a d i i  between loa3 and 

l o 2  centimeters. 

the e l a s t i c  wave ve loc i ty  by a small amount a t  low values of X, 

higher values of X, the modification becomes negl ig ib le ,  The f r e -  

quency a t  which the thermoelastic wave ve loc i ty  asymptotically 

approaches the pure e l a s t i c  ve loc i ty  is a function of the bar radius ,  

The cha rac t e r i s t i c s  of these curves a r e  the same as i n  Chadwick. The 

re la t ionship  of bar r a d i u s  can be eliminated from f igure  3 by changing 

the independent var iab le  t o  the r a t i o  of bar radius  to wavelength 

(a/L) (see f igure  4). Thus, f igure  4 shows that the thermoelastic 

modification of e l a s t i c  wave propagation ve loc i ty  is primarily depend- 

en t  upon the wavelength i n  r e l a t i o n  to  the bar radius .  

Figure 5 presents the behavior of the thermoelastic damping coef- 

f i c i e n t  (8) as a function of the reduced frequency (X) with bar  radius 

as a parameter. The damping coe f f i c i en t  (4) va r i e s  as the square of 

the reduced frequency a t  low frequencies and asymptotically approaches 

a f i n i t e  l imi t ing  value that is inversely dependent upon the square 

of the bar  radius.  It is c l ea r  then that very sho r t  waves t rave l ing  

i n  small diameter rods are severely at tenuated.  

a r e  p lo t ted  a s  a function of the r a t i o  of radius t o  wavelength (f ig-  

ure 6 ) ,  the breakover point  of the curves occurs when the wavelength 

is  roughly equal t o  one ha l f  of the bar diameter. 

Figure 3 makes c l ea r  that thermal coupling modifies 

A t  

When the same data 

The following is an example of the magnitude of t h i s  damping: 

a cm wave t ravel ing i n  a bar  of the same radius  would be damped 

M 

, 
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t o  half  amplitude i n  6.93 cm. 

meter wave i n  a bar of the same radius would decay t o  ha l f  amplitude 

i n  69.3 kilometers. 

As  a more p rac t i ca l  case, a one cent i -  

E. LimitinR Case fo r  a / L  Approaching Zero 

The above r e s u l t s  fo r  thermoelastic rods can be compared with 

Chadwick's r e s u l t s  fo r  an i n f i n i t e  thermoelastic s o l i d  by noting 

the behavior of equations (93), (96), and (97) a t  large wavelengths, 

When a / L  approaches zero, equations (90) and (91) approach zero and 

equation (89) becomes 

(X + i s )  (k2 - X2) + €i2X = 0, 

which is exact ly  Chadwick' s r e s u l t .  

The uncoupled so lu t ion  of equation (98) i s  

E; = x2 (99) 

and 

Equation (99) corresponds t o  the e las t ic  wave and equation (100) t o  

the thermal mode. Using equation (99) and the per turbat ion form, 

equation (921, and ignoring higher orders of E, we obtain 

and 
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When equation (101) is used with ( 9 5 ) ,  the thermoelastic ve loc i ty  

can be wr i t t en  as 

E 
= co 

+ 2(1 + F) * 

This form f o r  the wave ve loc i ty  can be shown t o  correspond with 

Chadwick's r e s u l t s  of the f i r s t  order i n  E. A t  l a rge  wavelengths 

(X 4 0),  equation (103) reduces t o  

E = C0(1 + ?)* vx + 0 

This r e s u l t  is e a s i l y  seen i n  f igures  3 and 4 i f  we r e a l i z e  that E 

f o r  aluminum is 0.0054. Likewise, equations (95) and (103) are used 

t o  solve f o r  the damping coef f ic ien t ,  

Equation (105) corresponds t o  the r e s u l t s  of Chadwick ( t o  the f i r s t  

order i n  E) and is shown i n  f igure  5. The reason that the damping 

coef f ic ien ts  predicted by the present theory exceed the value 

obtained f o r  the l imi t ing  case may be seen by taking the r a t i o  of 

equation (97) t o  equation (105). A t  small wavelength (X 4 w), equa- 

t i on  (105) reduces t o  

Jc - W E  - -  
qx 2co 
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The e l a s t i c  ve loc i ty  of the present so lu t ion  is C, instead of C 1  i n  

the Chadwick so lu t ion  because, i n  the present theory, the d i l a t a t i o n  

is expressed as 

instead of the form of equation (3). The thermoelastic behavior 

fo r  small values of r a d i u s  t o  wavelength r a t i o  is the same, with the 

exception of d i l a t a t i o n a l  ve loc i ty ,  as reported i n  Chadwick's ana lys i s  

of an i n f i n i t e  thermoelastic so l id .  

F. Thermoelastic Bar Number 

The general behavior of the damping coe f f i c i en t  can be more 

c l ea r ly  seen i f  we observe tha t ,  i n  prac t ice ,  X w i l l  be very much 

smaller than one, s ince  w'" is i n  the order of loL1 radians per 

second. Using t h i s  f a c t ,  we can approximate the behavior of q as a 

function of X. Consider the behavior of equations (93) and (94) when 

dvX (thus,  also CVX) is l e s s  than one. Equation (93) y ie lds  

E, = x, 

and equation (97) y ie lds  

W*€X2 
2C0 

4=-• 
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a 

Equation (105) nea t ly  expresses the behavior of the damping coef f i -  

c i en t  as a funct ion of X2. When dvX is g rea t e r  than one, equation 

(93) yields  

d 
E o = ; X ,  

and equation (97) y ie lds  

w* Ed 
4 = 2COC3V*' 

Equation (107) then predic t s  the value of q a t  very high frequencies.  

A t  the  pa r t i cu la r  value of X fo r  which dvX i s  iden t i ca l ly  one, equa- 

t i o n  (93) reduces t o  

P 

X = -  
50 cv e 

The damping coef f ic ien t ,  equation (97), is thus 

w*€ 
2 2 2 .  4c0c v 

q =  

This point corresponds t o  a maximum slope condition and can be used 

as a demarcation point  f o r  the approximations contained i n  equations 

(109) and (111). Thus, the behavior of the damping coe f f i c i en t  can 

be approximated by equations ( log) ,  (lll), and (113). A s p e c i f i c  

example is  shown i n  f igu re  7 f o r  an aluminum bar  of 1 centimeter 

radius .  Thus, the parameter dvX has been shown t o  be of primary 

importance t o  the behavior of the thermoelas t i c  damping coe f f i c i en t  

i n  a cy l indr ica l  rod. 
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CONCLUSIONS 

P 

This study considers longi tudinal  thermoelas t i c  wave propagation 

i n  cy l indr ica l  rods. More spec i f i ca l ly ,  the thermoelastic e f f e c t s  on 

an assigned frequency wave a r e  shown t o  be small i n  terms of the 

propagation ve loc i ty .  However, i n  comparison, the thermoelastic 

damping e f f e c t  is large f o r  very high frequency waves t rave l ing  i n  

small diameter bars .  

f i c i e n t  is  linked t o  the "thennoelastic bar number" dvX, developed 

herein.  F ina l ly ,  approximations a r e  developed, based upon the value 

of the thennoelast ic  bar number, t o  pred ic t  the behavior of the 

thermoelastic damping coe f f i c i en t  as a function of frequency. 

It is hoped that t h i s  ' report  provides a bas is  upon which 

invest igat ions i n t o  thermoelas t i c  e f f e c t s  on other s t r u c t u r a l  

elements w i l l  proceed. 

The behavior of the thermoelastic damping coef- 

n 
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