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By
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ABSTRACT

This report considers longitudinal waves traveling in a cylindrical
rod. After a review of the classical results of wave propagation in
unbounded elastic solids and in elastic cylinders, the subject of thermal
modification of elastic properties is undertaken, The resultant effects
upon the purely elastic wave motion consists of a change in the propaga-
tion velocity and the addition of a damping effect upon the mechanical
energy of the elastic wave due to heat condution., The thermoelastic
effects upon a longitudinal elastic wave are shown to be smgll in terms
of the propagation velocity. However, more significantly, the thermo-
elastic damping effect is large for very high frequency waves traveling
in small diameter bars. The behavior of the thermoelastic damping coef-
ficient is linked to a '"thermoelastic bar number,'" developed herein.
Finally, approximations are developed, based upon the value of the
thermoelastic bar number, to predict the behavior of the thermoelastic
damping coefficient as a function of frequency.
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INTRODUCTION

The purpose of this report is to ascertain the effects of thermo-
elastic damping on the propagation of longitudinal waves in cylin-
drical rods.

As a wave propagates down the length of a rod, the variation of
compressional strain in the medium generates a small amount of heat
flow which increases the entropy of the bar and dissipates a portion
of the wave energy. This process is referred to as thermcelastic
damping. In the past history of the development of solid mechanics,
the magnitude of thermoelastic damping was considered extremely
small. Therefore, emphasis was placed upon elastic wave propagation
while thermal wave propagation was studied by thermodynamicists in
terms of the heat transfer problem. Only recently, starting in the
late 1950's, has the coupling of the thermal and elastic waves been
considered. Thermoelastic wave propagation has been studied mainly
for extended solids by H. Deresiewicz (1957) and by Chadwick and
Sneddon (1958) and in a review article by Chadwick (1960), which
also covers bounded solids. 1In particular, Chadwick extended the
Pochammer~-Chree (1886) analysis of longitudinal elastic wave propa~
gation in infinite circular rods to the thermoelastic case.

However, the Pochammer-Chree elastic solution and the Cﬁadwick
thermoelastic extension are unnecessarily complicated for present

engineering applications and therefore present a problem to which



this report is addressed, namely, an engineering understanding of
thermoelastic wave propagation and damping.

The approach to this problem taken in this report is to fina a
satisfactory engineering approximation for elastic waves and then
extend that solution to incorporate the coupling due to the thermal
wave,

The literature abounds with engineering solutions of elastic
wave propagation, Several of these methods are reviewed in
Chapter II, and a particularly simple one-dimensional solution by
Bishop (1952) is chosen as a basis for further work. A further cor-
rection to the Bishop approximation is developed to conform closely
to experimental data.

In Chapter III, an energy equation consistent with the assump-
tions used in the elastic wave equation, coupled with the elastic
equation of motion, is derived and is solved for the thermoelastic
phase velocity and attenuation coefficient,

Several interesting cases are solved numerically. These solu~
tions indicate that the effects of thermoelastic damping are very

important at extremely high frequencies.
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CHAPTER 1

WAVE. PROPAGATION IN AN INFINITE ELASTIC SOLID

A. The Equations of Motion

The equations of motion of an isotropic elastic medium are
derived from basic principles in terms of cylindrical coordinates
which were chosen in view of later applications to cylindrical rods.
Starting with the stress component equations of motion and with the
strain components in terms of particle displacements, the displace-
ment equations of motion are derived using Hooke's law. These equa-
tions are then shown to correspond to two types of elastic wave
propagation in an ﬁnbounded solid. The first type consists of a
volumetric expansion-contraction wave front called a dilatation
wave. The particle motion in this wave is along the direction of
propagation. The second type of wave is commonly referred to as a
distortional wave. Particle motion in a plane distortional wave
takes place perpendicular to the direction of propagation. In an
unbounded solid, only these two types of wave are propagated.

Figure 1 defines the cylindrical coordinate system along with
the usual Cartesian coordinate system. The material of the rod is
considered homogeneous and the section is in dynamic equilibrium
under the influence of stresses and resulting accelerations., Dis-
placements from the equilibrium condition are U along the radial

coordinate r, V along the angular coordinate 6, and W along the
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longitudinal coordinate z.

Ogs and > and the shearing stresses are represented by T,

and Tez.

motion for an elemental volume are

oo ot ot

The normal stresses are denoted by Ops

The mass per unit volume is p.

r o, 1l " 'ro + L2 o %
or r o9 oz
Brre +4l 509 . Brez+2 T
or r 00 Oz
a'crz . 1 BTGZ . Bcz . Try
or r o0 dz r

T
g’ ‘rz’

The stress equations of

oU ‘ (la)

(1b)

(1c)

Next, the strain-displacement relations are introduced. The

normal strains are €. ee, and €,> while the shearing strains are

denoted by Yez® Tro’ and 720" Thus, the strain displacement rela-

tionships are

X
r Or
0, 1lov
S rtrde
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€2 %
_ld, W
Tre T 00 T ot
LW,
720 " Toe T2
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Hl<
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(2d)
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Adding the normal strain components yields the dilatation

JL3W L L, W
A=r S  tz 3 Tz (3)

Also useful in later derivations are the rotations &r, 69, &z

defined by

20 == - (4a)

- _ U _ oW

Zwe = az ar (4b)
- _1i3@v U

26, = ¢ [—é;—l ) 891 ’ (4e)

Within an isotropic, homogeneous material, each of the six com-
ponents of stress at any point is a linear function of the six

components of strain:

o, = M + Zuer (5a)
Oy = M + Zuee (5b)
o, = M + ZHGZ (5¢)
Tre - “7re (54)
Trz T Wiy e)

Tze = H’)’Zea (Sf)
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where A and  are Lame's constants defined below. Poisson's ratio

is denoted by v, and Young's modulus is E.

E

S ) (®)
_ vE
AT THa - @

The displacement equations of motion are derived from the stress

equations of motion (1) by introducing the stress-strain relations
(5). After the éppropriate substitution of various derivatives of
the stress-strain equations and algebraic manipulations, an inter-

mediate form of the equations of motion can be written:

%y 13U U 1V 1 v W
A+ [ar‘?*’r i e T e+5raz}
2 1 2 .
R RIS RS




The first terms of these equations can be recognized as the partial
derivatives of the dilatation A with respect to r, 8, and z, The
second terms can be shown to be the Laplacian of U, V, and W in

cylindrical coordinates, The Laplacian in cylindrical coordinates is

Thus, the equations of motion (8) can be simplified:
(7\+p)g—f+uveu-f—2(u+z—gle’-)=pﬁ (10a)
Qrw L, oyvsde 0 v = (10b)
(A + ) -g-zé + pB = oW. (10c)

As a basis for further development, these equations are recast by
using the derivation of the rigid body rotations &r, &e, and GZ of
equation (4) and by manipulating equation (8). The equations of

motion in this form are known as the Pochammer-Chree equations:

ow o .
(7\+2p,)'g§-grg—é£+2p§;—a'=pU (11a)
Q_+_2H)_§_£_\_2 ..a.a._)?..;.z ?EE:V (11b)

r 08 H Sz B Sr e
oW
(N + 2p) gA - Zrli—aa-; (rae) +%—‘-—-é£ =pW. (11c)



B. Wave Propagation

The Pochammer-Chree equations allow the determination of the
propagation of two types of wave motion.
Manipulation of equations (11) results in the wave equation
2
A
P _gta = (A + 2p) VR, (12)

in its most general form. This equation shows that the dilatation

A is propagated throughout the elastic medium with a velocity

. 1/2
3 Cq = [ﬁl.i.ggl] ] (13)
P
More strictly, this wave should be termed irrotational.
By differentiating (11b) with respect to z, and by subtracting

a multiple of the differential of (llc) with respect to g, the

following form appears

o/
8I\J
H.I

q

_u -
= pv2 w. (14)

Similar equations can likewise be obtained for &e and ,. Thus, it
has been shown that the rotational wave form is propagated with a

velocity

Co = [ pl*2, (15)
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The strict term for this wave is equivoluminal; however, the
more popular term is distortional or shear wave.

It has thus been shown that, in an elastic solid, waves may be
propagated with a velocity C, for waves involving no rotation and with
velocity Co for waves involving no dilatation travel. The velocity
designations, C, and Cy, are used for consistency with published
literature,

These results will be applied when the effects of the stress
conditions at the solid boundary are introduced and tﬁe concept of

dispersion is revealed.




CHAPTER II

LONGITUDINAL ELASTIC WAVE PROPAGATION IN CYLINDRICAL RODS

A. Elementary Theory

It is possible, at least theoretically, to derive the propagation
of stress waves in any bounded isotropic solid by solving the dis-
placement equations of motion for the appropriate boﬁndary conditions,
In fact, because of the reflection of plane elastic waves at free sur-
faces and because of the extremely complicated fashion in which the
dilatational and distortional waves are reflected as they travel up
and down the bar, no exact solutions have been obtéined. Thus,
introducing boundary conditions into the equations of motion produces
dispersion; that is, the velocity of wave propagation of a disturbance
up and down the bar is a function of wavelength.

The governing equations have been approximated by many in the
field of elasticity. These approximations reduce to either of two
types. The first introduces approximations into the equation of
motion, while the second uses the exact equations of motion and only
approximately satisfies the boundary conditions., The first method
has been chosen for review ang extension,

Basically, three types of wave motion occur in thin rods: longi-
tudinal, torsional, and lateral. 1In longitudinal motion, the elements

of the rod extend and contract, but there is no lateral or transverse

11
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motion of the axis of the rod. In torsional motion, each transverse
section of the bar remains in its own plane and rotates about its
center; again the axis of the rod is undisturbed. ZLateral waves
correspond to bending of the rod, and elements of the bar axis move
laterally during the motion,

Only longitudinal wave motion will be considered in this report,
Historically speaking, the first treatment of longitudinal wave
motion neglected the radial displacements arising from Poisson's
effect. As a result, this first treatment predicted a wave velocity
independent of frequency. A second elementary treatment was intro-
duced by Lord Rayleigh, who shows that, by including the effect of
radial inertia, the wave propagation velocity is a function of wave-
length. These and further investigations, including the effects of
radial shear by Mindlin and Herrmann and by Bishop, are compared in
this chapter,

The elementary theory of longitudinal wave propagation in a
cylindrical rod assumes that the cross-sectional element faces remain
plane and that the stress distribution is constant across the faces.
Thus, the equation of motion can be directly written. Using Newton's
law and introducing the material density p and forces due to the

stresses on both sides of the element, we can write

do
OFwW _ Yz
P32~ 3z (16)



By ignoring the lateral contraction due to longitudinal strain, we

obtain

e '}
o, = E  * 17

Thus, the equation of motion can be written

Equation (18) is the classical first approximation for longi-

tudinal wave motion in a rod. The velocity of propagation is
c, = [E/p]¥/2. (19)

The designation "C," is used in the literature to distinguish it
from the dilatational and shear velocities, C; and C,. Notice,
however, that the elementary treatment assumes that the plane trans-
verse sections remain plane during the stress wave passage and that
stress is uniform across the plane section. However, we know that
longitudinal contractions and expansions will result in lateral
expansions and contractions. The resulting lateral motion will
cause non-uniform distribution of stress across the section of the
bar, and plane transverse sections become distorted. The lateral
effects will be small, however, when the wavelength of the wave is
very much larger than the diameter of the bar. Thus we would expect
any detailed analysis of longitudinal vibrations to reduce to the
wave velocity C, for very small ratios of the bar diameter to the

wavelength.
13
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B. Rayleigh-Love Correction

The next important development in wave propagation in elastic
rods was made by considering lateral contraction due to longitudinal
strains. This was first published by Lord Rayleigh (John William
Strutt) in 1877 and later by A. E. H. Love. Rayleigh's derivation
was based on the principle that a frequency of free vibration of a
conservative system can be obtained by equating the time average of
the potential and kinetic energies of the motion, Love used
Hamilton's principle in obtaining the equations of motion. The
derivation used in this report will be developed from the displace~
ment equations of motion.

Because the rod is axisymmetric, the normal strain equations

(2a), (2b), and (2c) simplify to:

e
T (20a)
¢ =7 (20b)
, = %2—’ : (20c)

The shear strain equations are all zero by virtue of axisymmetry and
an assumed independence of z upon U.

The radial strain e, simply is Poisson's ratio v times the
longitudinal strain ¢,. Substituting equations (20a), (20b) and
(20c) into the strain relations, and integrating with respect to r

yield:



U=-vr%‘;-’. (21)

Thus, equation (20b) becomes

ee = -y %g . (22)

Now substitution of the above statements into the stress strain equa-

tions (5) yields

2 - 2uy & (23a)

Q
]

M -2y & (23b)

Q
"

-m- S (23¢)

Q
|

These equations are then substituted into the radial equation of
motion (la) which is then solved for the partial of radial stress with

respect to r:

Jo 3
TR e - @

Integration (24) with respect to r from O to r yields the radial

stress:

8; T Ve y atE 5 . (25)

15
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Using equation (5) and the foregoing statements yields:

E %% =0, - vr2p 5%;%; . (26) .

Equation (23) is solved for the partial of longitudinal stress with
respect to z, and is then integrated over the cross~sectional area of

the bar to yield

.

o0 2.2
SE-E Sk rge A (27)

Equation (27), substituted into the axial equation of motion (10),

results in the wave equation

E OW , v3a2 W 3w
cxE T T PR T e (28)

A solution of this partial differential equation is

W = etn(zct) (29)
where 1 = %F , and L is the wavelength. The velocity of wave propaga-
tion is then

5 o o 1/ 2
C=Co[1+ﬂ—-——;a] . (30)

Thus, we see that the velocity of wave propagation is a function of
the wavelength, known as "configurational dispersion." For long waves

the wave speed is C,, corresponding to the elementary theory. However,



equation (30) predicts zero wave velocity at zero wavelength., This
is not borne out by experimental investigations, which show the
wave velocities for short wavelengths to approach the surface wave

velocity first discovered by Rayleigh.

C. Mindlin and Herrmann's Method

Mindlin and Herrmann's method for longitudinal wave propagation

in a cylindrical rod proceeds from the displacements:

U= i— U(z,t) (31a)
V=0 (31b)
W= W(z,t), (31c)

which are then substituted into an incremental energy equation

AU=fdtf§aE(T-V)dv, (32)
t v

and integrated over the cross section. The four resulting bar
stresses are then removed by integrating the stress equations of
motion over the radius of the section and by using Hooke's law to
convert the stress equations of motion into displacement equations.
To make the wave velocities fit the exact theory, the constants K
and K, are then introduced into the displacement equations. The
resulting displacement equations consist of two coupled partial dif-

ferential equations:

17
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2 2
a%k2,2 %z-g - 8k? LA+ U - 4aK A gw + 4aR = pa? -ng (33a)

and
2
ZaX-%u + a2(\ + 2p) Qfg + 2aZ = x2 %Eg ) (33b)
where
R = or] and Z = Tzr] . (33c)
r=a r=a

Mindlin and Herrmann assume the solutions to these equations to be:

U = Aein(z-Ct) (34a)
W = Beln(z-Ct) (34b)
R=2Z=0. (34c¢)

As a result the dispersion equation was written as

8Kl(7\ + H}_ \:7\ + 2“ - C2J _ BKE?\Z =0 35
{ o a=n“p J p a=nop° ) G3)

This equation represents two modes of wave propagation in the bar.

For long wavelengths, the wave velocities are

c2 = % = ¢2 (36a)
and

C2 5 o, (36b)



The first branch (equation (36a)) agrees with the elementary theory.

For short wavelengths, the wave velocities are

c2 = g2 1;‘ , (37a)
and
o2 = Al (37b)

The first parameter K2 is used to fit the dispersion curve to the
Rayleigh surface wave velocity. The second parameter Ki is used to
fit the dispersion curve to the Pochammer-Chree curve at a common
point C® = 202 for all values of Poisson's ratio y. The coupled

equations of motion (33a) and (33b) are then written to eliminate U.

E O°W _ O%W , 2z 2 S92 A+ 2w) OFW L 22 _ OFW
ER i -l T Slerms. 2.5l
20+ W
) a2K2) 822 [(A + 24) W BZW } + ____2;____,_5 =0
8K (A + ) ot P 322 ” 3c? pKi(A + ) 2

(38)
Inspection of equation (38) shows that Mindlin and Herrmann's method
improves the Rayleigh-Love differential equation by adding the radial

shear effect and by improving the radial inertia term.

D. Bishop's Method

Bishop's original paper on the velocity of wave propagation in
circular elastic rods was prepared in 1952‘in an effort to improve
the prediction of elastic wave propagation velocity as a function
of wavelength. Bishop derived an approximation to the equations of

19
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motion in Cartesian coordinates including the lateral inertia as
Rayleigh and Love and also an approximation to the lateral shear
stress. He used a theorem relating to convex boundaries to remove
geometric problems in describing the cross sectional boundary. How-
ever, for clarity, we shall use Hamilton's principle and cylindrical
coordinates to derive the equation of motion.

The strain relations for €rs €go and €, are the same as that of

Rayleigh and Love. TUnlike Rayleigh and Love, Bishop did not ignore

the shear strain.

U9
Tre "2 - T F %2 (39)

Hamilton's principle states that the first variation of the time
integral of kinetic energy minus the potential energy during a process

is zero, as symbolically stated below:

5f(T-V) at = 0, (40)
t

The strain potential energy of an elastic material (per unit volume)

is the integral of the elastic force over the displacement

vV = \/“F dz (41)

where

F = Ez. (42)



Integrating from zero to €, results in the strain energy per unit

volume of
V = 1/2 EeZ.
Likewise, the shearing strain energy is
= 2
V=1/2 py .

Thus, the total potential energy is

r 0 2z
= 2 2
V=1/2 f f f (Be; + uyz,) rdrdedz,

0 0 O

or, for the rod in question,

r z ;
= 2 2
V=ox ff(Eez + |J,7rz) rdrdz.
0 O

Substitution of the strain relations yields

r Z
V= :ﬂ:f f \:E(BW/BZ)2 + uver® (%;2%)2] rdrdz,
0O O

The kinetic energy per unit volume is

T=1/2p [(au/at>2 + (aw/at)z} ]

(43)

(44)

(45)

(46)

(47)

(48)

21
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Substituting the strain relations and integrating, we obtain

r z
T = pn f f [var2 (g:gt)z + (Bw/at)a] rdrdz, (49)
0 0

When we substitute these forms into Hamilton's equation and integrate

over the cross section of the bar, we obtain (introducing subscript

notation for partial derivatives)

ts 4

27 2
Ja- 2 a_ 2 2 . 2
Sf f 5 \-pv 5 (W, )=+ o(W,) E(W,)
tl z=0
> aZ
- wE 5 (sz)2 dz dt = 0, (50)

Forming the functional
2 > a2 2 2 2 > a2 2
F=- o025 0,02+ o2 - EWDZ - w2 & w )2, (1)

and using the Euler-Lagrange necessary condition of the variational

calculus, we obtain

F _ 2 ap/aw ) - S @I + S @F/ ) + Ln (OF/W_)
MW - Oz z ot t Dz zz ot tt
32
+ Bzat (BF/BWzt) = 0. (52)

After we form and substitute the indicated partial derivatives, the

resulting equation of motion is



Ey - wh? vZa?
* o 2z 2p szzz 5 sztt = Wy 3

By noting the elementary propagation velocity, Coo and the distor~
tional wave velocity in an extended medium, C,, we can simplify

equation (53):

2 y352 v2a® =
Cngz C2 2 szzz + 2 wzztt th' (%)
Again, assuming a solution
W= ein(z-Ct) (55)
yields the dispersion equation
2,2 2 2,22
c2 [1 +.lL%rﬂ_J - [Cﬁ +.lL§§ﬂ_ Cg] = 0, (56)

For long wavelengths (1 approaches zero), the wave velocity is the
same as that for the elementary theory. For short wavelengths (7
approaches infinity), the velocity of wave propagation approaches
the velocity of shear (distortional) waves in an infinite medium.
Thus, we observe, by comparing equation (56) with equation (30),
that Bishop's contribution is the addition of the radial shear term

to the Rayleigh-Love analysis.

23
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E. Comparison of Bishop's Method and Mindlin and Herrmann's Method

Comparison of the results of these two methods begins by compar-
ing their dispersion curves with numerical approximations to the
Pochammer~-Chree equations by Bancroft and Hudson in figure 2. It
can be noted that both the Bishop and the Herrmann and Mindlin dis-
persion equations result in wave velocities greater than the
Pochammer-Chree numerical solutions for all wavelengths, However,
the errors resulting from the Mindlin and Herrmann method are generally
smaller, due in fact to the use of the constants K and K; for curve
fitting. For our purpose an insight into the cdmplexity of the
Mindlin and Herrmann method can be gained from a comparison of the
equations of motion of the methods.

Using Mindlin and Herrmann's one-dimensional equation of motion

(38) and assuming that

W = Beln(z-Ct) (57a)
and

R=2-=0, (57Db)

we obtain the following form:

E a® [ 2
=W =-W. A +-— (7\+2p)+Kp,ilW
p zZ tt 8Ki(% + W ttzz
2 22
e —R W _aKou(h+ 2 W= 0 (58)
sRE(A+ ) ST eI+ wo
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which is to be compared with Bishop's equation of motion (53)

E v2a 2 via?y
o} sz th + 2 thzz - 25 szzz =Y. (39)

F. Improved Longitudinal Wave Equation

The simple form of the Bishop equation of motion suggests its
use in an improved form as an engineering tool, The basic equations
of motion are reformulated here in terms of the stress equations with
constants K and K; used to fit the resulting dispersion curve to the
numerical solution of the Pochammer-Chree equations,

Starting with the stress-strain relationships of the Rayleigh-
Love analysis (equation (23)) and the shear strain relation of the

Bishop analysis (equation (39))

- M
o, = N = 2y 3z (60a)
5 == 2y X (60b)
8 BV 3z
o, = n - 2uy & (60c)

and substituting into the radial stress equations of motion (equa-

tion (la)), we obtain the following:

do 3 3
'Sr_r = R2,r %;% - KZ vrp —a-i—a‘gg . (61)




Integrating equation (61) with respect to r yields

KZyar2
1 oW ‘
2 dzot=2 * (62)

2 2 N3
- _ Kuvr® 3%
% 2 Ozo +

Now using equation (59c) and the strain equation (2) and taking the

derivative with respect to z yields

do
EEE = E %S% - sz.vzr2 %s%'+ Kivgpr2 5%2%;5 . (63)

After we integrate over the cross section and divide by the cross-~
sectional area to find the total bar stress, and when we substitute
into the classical bar stress equation of motion (equation (16)),

we have the improved wave equation written with previous notations:

Q/

2 2,2 2,2
cggz—‘*é-xacgl;‘—-%g‘%ﬂﬁ”; a—agg-gz-gg=o. (64)

~ Introducing the solution
W= eln(=-Ct) (65)

yields the dispersion equation

2
KIvZa2y2 2,2 2
1
-Co + 2 [1 + 5 ] - k%2 20 = o, (66)

For long wavelengths (1 — 0), the wave speed equals the elementary

wave speed, C,. For short wavelengths, the wave propagation vélocity

is
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2
2 . K- .2
¢2 = 75 Cz (67)

1

The ratio of the constants can be used to f£it the dispersion

curve to the Rayleigh surface wave velocity. This ratio equals 92.6

percent of the shear (distortional wave velocity in an infinite

medium for a Poisson's ratio of 0.29, which is typical of steel,
Then, if the dispersion curve is fit at a/L = 0.293 and C/C5 = 2, as
in Herrmann and Mindlin, the results can be plotted (see figure 2).
Also shown for comparison are the Bishop curve and Mindlin and
Herrmann curve (Pochammer - Chree numerical solution by Hudson).
Notice that the improved solution lies between the exact and Mindlin
and Herrmann curves. Thus, we have a very simple improvement to the

Bishop form of the longitudinal wave equation.



CHAPTER III

THERMOELASTIC WAVES

A. Thermoelastic Equations of Motion

Chapter I reviews the basic principles of elastic wave propaga-
tion in an unbounded solid and Chapter II examines the characteristics
of longitudinal wave propagation in cylindrical bars. This chapter
discusses the salient points of thermal modification of longitudinal
elastic waves.

When a longitudinal wave passes through a bar, any given element
is compressed and extended. These volumetric changes are accompanied
by heating and cooling. The heat generated during the compressional
phase is conducted through the bar. The resulting temperature change
affects the state of strain by the coefficient of thermal expansion.

The approach taken here is to combine these thermal effects with
the improved wave equation developed in Chapter II. The resultant
effects upon the purely elastic wave motion are discussed in terms of
a change in the propagation velocity, and the addition of a damping
effect upon the mechanical energy of the elastic wave due to heat
conduction,

The thermally coupled case of longitudinal harmonic wave propa-
gation is derived from the stress-displacement radial equation of
motion developed for the improved elastic wave equation (62) coupled
with the energy equation.
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The thermoelastic stress-strain relationship is written:

1 1
e, =30T+% [cr - 1/(cre + orz)] (68)

where ¢ = coefficient of volumetric thermal expansion. By observing

that o, equals Og, We write

do

This equation is then integrated over the circular cross section to

yield:

o0 2 2 2 2

z _ O _ o afuy® W | .2 a%%® W _ Ex OT

® CER TSN T OSBE T3 % (70)

Equation (68) is introduced into the stress equation of motion derived

for the elementary case,

S0
=S 7D

and, thus, the following equation of motion is obtained:

E K2y2a2 Ky vFa® E
-4 LY ai = e’ =
/o) W,z 2 Wonzz T 7 Waatt 3p T = Ve (72)

The general form of the energy equation is written most often in the

form

a(dé‘é D+ oc_ %E’ = KV2T + Q, (73)

3(1 - 2v)



where

Ce = specific heat at constant strain
U = displacement vector
Q = internal heat addition
and
k = thermal conductivity.

But div U is the dilatation A, which is evaluated to be

A= (1L = 2v) %‘;1 ) | (74)

The Laplacian of temperature, V2T, is evaluated by assuming that the
temperature gradient across the cross section is zero. Thus, the

energy equation (with no internal heat generation) becomes

Or . EaT _k
CoSe ™3 Vo T3 Ty (75)

Equations (72) and (75) are the coupled partial differential equa-
tions of thermoelastic disturbances in a cylindrical bar of infinite
length. Because we wish to find thermoelastic damping attenuation
coefficients, as well as phase velocity, solutions of the type

W= woel(“z"”t) (76a)
and

T = 7 et (12700) (76b)

are most fitting. In general w and 1 are complex quantities. The

wavelength of the plane harmonic waveform is 27/uwyregl-
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Substituting equations (76) into (72) and (75) yields the two

relations;
K v3a® Eol
_E 2 _ KEZEEEH 4 L 22 2\ o 8
Wo<p'rl 20 n- o+ 2 W< + w - 3p in 77)
and
-T W _EQ
0o ~r (k02 _
3 W T0 < iwC€> . (78)

Eliminating T and W and multiplying by =-i/C. yields the thermoelastic
wave equation for longitudinal harmonic plane waves propagating in an

infinite cylindrical rod

K222

<w+1—n—>[C22+——-§-“—02n4- nawg-w:l+ecowq2=0

(79)
where
ozzfro
€ = —————"—, (80)
2¢ k3¢
PTC Ky
and
3
==, 81
Kp = % (81)

If w is chosen as a real quantity representing waves of assigned
frequency, the complex wave number 7 can be found as a function of

frequency. By expanding the form in equation (76), we get



ei(nz-wt) - ei[nreal'l-inimag)-wt] - e-nimagz cos < ) t)
Mreal

(82)

Thus, the wave velocity equals uynreal, and the attenuation coefficient
q equals Nimag: Thus, the damping is a function of wave travel and is
independent of time. Solutions of assigned wavelength can also be
obtained from equation (79) but were not found due to the general

interest of the assigned frequency solutions.

B. Uncoupled Solution

The thermoelastic wave equation above consists of a pure thermal
wave coupled through the constant € to the improved elastic wave equa=-
tion found in the last chapter. Thus, when the coupling constant is
zero, the thermal and elastic waves exist separately, If equation
(79) is uncoupled (e = 0), the solutions are

ipC

2 <€

T]ima.g Tk @ (83)

corresponding to the thermal mode, and

B K22222 /2
(-25)e
. 0" T2 RV
e = [-1 1+ 5] (84)
real k2,222, 2 K2y2a®y
p fe] 2
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corresponding to the elastic mode, The phase velocity, V = “Vnreal’

is solved in terms of the wavelength L = 2x/w and yields

2.2.2 2 C2
C: [1 + 2K z a7t Eg]
o)

VE = . (85)
ZKivzaaﬁa]

1+ TZ
This equation is identical to the dispersion curve relationship for
the improved elastic wave in Chapter II and represents an imaginary
material for which o = 0. However, 0 = 0 is not a valid physical

approximation as we shall see in the following discussion.

C. Coupled Solution

For all materials considered, the coupling coefficient is very
small, This fact, along with the fact that a computerized solution
of the sixth order roots of equation (79) would be required, sug-
gested the use of a perturbation technique. To condense the notation,

%

we use a characteristic frequency w”* to define the nondimensional

quantities as suggested by Chadwick (1962):

X = -(;‘;; (86)

t = .‘% (87)
oc ¢2

W = ; 9 (88)
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Using these quantities defined in equation (79), we obtain

(X + 1E2)[E2(1 - d3v3X3) + cZvBE* - XB] + et®X = 0, (89)
where
KZaEP.pECZCZ
2 = S (90)
2EkZ
and
k2222022
PER = o | (91)

When X is regarded as a real constant (assigned frequency), equation
(89) is of the fourth order in §, However, in this discussion, the
particular root corresponding to the quasi-elastic wave is desired,

and therefore the form of £ chosen is

£ = &, + Bt (92)

where £ represents the improved elastic wave solution when € = O,

The solution of equation (88) under this condition is

_(1 - d2V2X2) +J(1 - d2.v2x2) + 4c2V2X2
£ = . (93)

o
202V2

The positive sign was chosen by comparison with equations (84) and
(85).
When equation (92) is substituted into equation (89) and if

higher order terms are neglected, the result can be expressed as
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-2¢£ X2(BM 2 + €) + 12e£2xpH/ 2

E=¢ + (94a)
° wxeEEz s ez + 4e2p?
where
(1 - d2V2x2)2 + 4C2V2X2 = ﬁ' (94‘b)
Equation (94) is of the form (when compared to equation (80)
tE=c &+ 1% (95)
oy W'’
Therefore, the quasi-elastic velocity V is
A 40 XIXP(BY 2 + €)2 + £2467] 06
= " = 9
§real £ IL - 2ex2(pY/ 2 + ¢€)]
and the damping coefficient q is
WE, ew*es pi/2
q = __%m_gg = 2 . (97)
o 2C [X3(BM2 + ) + £2p°]

Equations (96) and (97) represent the main contribution of this

report to wave motion in a bounded thermoelastic solid.

D, _Numerical Results

When equations (91) and (94) are solved numerically for the
ratio of the thermoelastic velocity to pure elastic velocity (1)
as a function of the reduced frequency X, the results may be plotted

as shown in figure 3. The data throughout this section are typical
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of structural aluminum and are shown for bar radii between 10~2 and
102 centimeters. Figure 3 makes clear that thermal coupling modifies
the elastic wave velocity by a small amount at low values of X. At
higher values of X, the modification becomes negligible, The fre=~
quency at which the thermoelastic wave velocity asymptotically
approaches the pure elastic velocity is a function of the bar radius.
The characteristics of these curves are the same as in Chadwick. The
relationship of bar radius can be eliminated from figure 3 by changing
the independent variable to the ratio of bar radius to wavelength
(a/L) (see figure 4), Thus, figure 4 shows that the thermoelastic
modification of elastic wave propagation velocity is primarily depend-
ent upon the wavelength in relation to the bar radius.

Figure 5 presents the behavior of the thermoelastic damping coef-
ficient (8) as a function of the reduced frequency (X) with bar radius
as a parameter. The damping coefficient (q) varies as the square of
the reduced frequency at low frequencies and asymptotically approaches
a finite limiting value that is inversely dependent upon the square
of the bar radius. It is clear then that very short waves traveling
in small diameter rods are severely attenuated. When the same data
are plotted ;s a function of the ratio of radius to wavelength (fig-
ure 6), the breakover point of the curves occurs when the wavelength
is roughly equal to one half of the bar diameter.

The following is an example of the magnitude of this damping:

a 1072 cm wave traveling in a bar of the same radius would be damped
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Thermoslastic Damping Coefficient, q
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Thermoelastic Damping Coefficient, q
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to half amplitude in 6.93 cm. As a more practical case, a one centi-

meter wave in a bar of the same radius would decay to half amplitude

in 69.3 kilometers.

E. Limiting Case for a/L Approaching Zero

The above results for thermoelastic rods can be compared with
Chadwick's results for an infinite thermoelastic solid by noting
the behavior of equations (93), (96), and (97) at large wavelengths,
When a/L approaches zero, equations (90) and (91) approach zero and

equation (89) becomes
(X + 18) (EZ - XB®) + et = 0, (98)

which is exactly Chadwick's result.

The uncoupled solution of equation (98) is

t2 =2 (99)
and

2 .

g, = iX. (100)

Equation (99) corresponds to the elastic wave and equation (100) to
the thermal mode. Using equation (99) and the perturbation form,

equation (92), and ignoring higher orders of ¢, we obtain

- X1 - ¢) -
Ereal =~ 2[( + 20) + X2 (101)

and

_ eXe
imag 2[(1 + 2¢) + XZ] °

£ (102)



When equation (10l1) is used with (95), the thermoelastic velocity

can be written as

= ] g
V=0 1+ g - (103)

This form for the wave velocity can be shown to correspond with
Chadwick's results of the first order in e. At large wavelengths

(X - 0), equation (103) reduces to

- £
Ve Lo = S +%). (104)

This result is easily seen in figures 3 and 4 if we realize that ¢
for aluminum is 0,0054, Likewise, equations (95) and (103) are used

to solve for the damping coefficient,

_ W ex2
= c. [ﬁmzﬂ (105)

Equation (105) corresponds to the results of Chadwick (to the first
order in €) and is shown in figure 5. The reason that the damping
coefficients predicted by the present theory exceed the value
obtained for the limiting case may be seen by taking the ratio of
equation (97) to equation (105). At small wavelength (X — «), equa-
tion (105) reduces to

qX S 2c ‘ (106)
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The elastic velocity of the present solution is C, instead of C; in
the Chadwick solution because, in the present theory, the dilatation

is expressed as

A= (1 - 2v) -g—ﬁ (107)

instead of the form of equation (3). The thermoelastic behavior
for small values of radius to wavelength ratio is the same, with the
exception of dilatational velocity, as reported in Chadwick's analysis

of an infinite thermoelastic solid.

F. Thermoelastic Bar Number

The general behavior of the damping coefficient can be more
clearly seen if we observe that, in practice, X will be very much
smaller than one, since «* is in the order of 10 radians per
second. Using this fact, we can approximate the behavior of q as a

function of X. Consider the behavior of equations (93) and (94) when

dvX (thus, also cvyX) is less than one., Equation (93) yields

£ =%, (108)

and equation (97) yields

% o2
= WEX" (109)
2Co




Equation (105) neatly expresses the behavior of the damping coeffi-
cient as a function of X2, When dvX is greater than one, equation

(93) yields
d
€ =2 %> (110)
and equation (97) yields

w¥ed

- e (111)

Equation (107) then predicts the value of q at very high frequencies.
At the particular value of X for which dvX is identically one, equa=-

tion (93) reduces to
o= (112)

The damping coefficient, equation (97), is thus

i
q=—4e (113)

2.2 5L
4C°c VT g

This point corresponds to a maximum slope condition and can be used
as a demarcation point for the approximations contained in equations
(109) and (111), Thus, the behavior of the damping coefficient can
be approximated by equations (109), (111), and (113). A specific
example is shown in figure 7 for an aluminum bar of 1 centimeter
radius. Thus, the parameter dvX has been shown to be of primary
importance to the behavior of the thermoelastic damping coefficient

in a cylindrical rod.
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CONCLUSIONS

This study considers longitudinal thermoelastic wave propagation
in cylindrical rods. More specifically, the thermoelastic effects on
an assigned frequency wave are shown to be small in terms of the
propagation velocity. However, in comparison, the thermoelastic
damping effect is large for very high frequency waves traveling in
small diameter bars. The behavior of the thermoelastic damping coef~
ficient is linked to the '"thermoelastic bar number" dvX, developed
herein. Finally, approximations are developed, based upon the value
of the thermoelastic bar number, to predict the behavior of the
thermoelastic damping coefficient as a function of frequency.

It is hoped that this ‘report provides a basis upon which
investigations into thermoelastic effects on other structural

elements will proceed,
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