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PROBABILITY DISTRIBUTIONS FOR THE ERRORS IN THE
PARAMETERS OF NEAR-EARTH CIRCULAR ORBITS

WITH APOLLO APPLICATIONS

C. W. Murray, Jr.

ABSTRACT

A statistical technique is described for analyzing the effects of
ingertion errors (actual minus nominal) on the parameters of near-
earth circular orbits. Probability distributions are obtained
numerically using Keplerian two-body equations of motion, and it is
shown that the errors in perigee, apogee, and eccentricity are non-
Gaussian with non-zero means. The technique is applied to a nom-
inal Apollo earth parking orbit. The analysis indicates that the
actual near-earth parking orbit will be close to the nominal 100
n.mi. circular orbit. For example,there is 299.5% probability that
the actual perigee height will exceed 97.5 n.mi., and a99.5% prob-
ability that the actual apogee height will be less than 102.4 n.mi.
Insertion errors (actual minus nominal) and insertion ship tracking
errors (calculated minus actual) are combined as a further example.
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PROBABILITY DISTRIBUTIONS FOR THE ERRORS IN THE
PARAMETERS OF NEAR-EARTH CIRCULAR ORBITS

WITH APOLLO APPLICATIONS
C. W. Murray, Jr.

SUMMARY

A statistical technique is described for analyzing the effects of insertion
errors (actual minus nominal) on the parameters of near-earth circular orbits.
The error in the state vector (position and velocity) at insertion is assumed to
have a multivariate normal distribution with a zero mean and given covariance
matrix. Probability distributions for some of the errors in the parameters are
obtained numerically using Keplerian two-body equations of motion, and it is
shown that the error in perigee, apogee, eccentricity, and the angle between the
actual position vector and the nominal position vector at insertion are non-
Gaussian with non-zero means.

The technique is applied to a nominal Apollo earth parking orbit using an
expected covariance matrix of insertion errors typical of the performance of the
Saturn V Launch Vehicle at insertion into a near-earth nominally circular park-
ing orbit of 100 n.mi. The analysis indicates that the actual parking orbit will be
close to the nominal 100 n.mi. orbit. For example, there is a 99.5% probability
that the actual perigee height will exceed 97.5 n.mi., and also a 99.5% probability
that the actual apogee height will be less than 102.4 n.mi.

Insertion errors (actual minus nominal) and insertion ship tracking errors
(measured or calculated minus actual) are combined as a further example. Re-
sults indicate that under worst case conditions for the coefficients of correlation
between the tracking errors in insertion height, speed, and flight path angle (co-
efficients of +0.9), there is a 90% probability that the calculated perigee height
will exceed 91 n.mi. The three sigma values for the insertion ship tracking
errors in insertion height, speed, and flight path angle used in the analysis are
(Reference 1):

304, 1 = 2.4 n.mi. (4.44 km)
3op, | 16 ft/sec (4.87 m/sec)
3o, 1 0.16° (2.79 mrad).
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PROBABILITY DISTRIBUTIONS FOR THE ERRORS IN THE
PARAMETERS OF NEAR-EARTH CIRCULAR ORBITS
WITH APOLLO APPLICATIONS

INTRODUCTION

The near-earth orbit of a space vehicle can be determined from the position
and velocity vectors of the vehicle at insertion using Keplerian two-body equa-
tions of motion. Due to insertion errors (errors in the xyz components of these
vectors within an inertial Cartesian coordinate system at the time of insertion),
the actual orbit will deviate from the desired nominal.

The purpose of this report is two-fold: (1) to study the probability distribu-
tions of some of the errors in the parameters of near-earth circular orbits
assuming the insertion errors are correlated Gaussian errors with zero means;
(2) to demonstrate a statistical technique using numerical integration for deter-
mining the probability distributions of non-Gaussian errors.

By stating that the errors in the Cartesian coordinates of the vehicle's
position and velocity vectors at insertion are Gaussian, we are making a more
basic assumption—that these particular errors can be represented as linear
combinations of a number of error sources within the guidance and control sys-
tem of the launch vehicle (gyro drift, accelerometer errors, etc.) which are
Gaussian (but not necessarily independent).* The assumption of linearity is
reasonable if second order effects (and higher) of these error sources are quite

*A numerical procedure for determining the coefficients of the error sources in the linear expression
for each of the errors in the state (Ax, Ay, Az, Ax, Oy, AZ) is to take each error source one at a
time, and using its one sigma value, determine the error in the six-dimensional state vector
through a digital computer powered flight program which simulates the guidance system in the
launch vehicle. If there are N sources of error, N +1 computer simulations would have to be
made (one run for the nominal state). In matrix notation, if AX is a (6 x 1) vector representing
the error in the state (position and velocity) of the vehicle at insertion, Q is a (6 x N) matrix,
and AW is an (N x 1) vector of error sources,

AX = QAW

and the above procedure is equivalent to determining one column of the Q matrix at each step.
Then, the covariance matrix of the error in the state will be given by:

M - qpQT

where P is the correlation matrix (1’s down the main diagonal and the coefficients of correlation
as off-diagonal elements) of the (N x 1) error vector. If AW has mean vector £ (error sources
with biases), then AX will have mean vector Qf. Usually these error sources are taken to be
independent and to have zero mean.



small compared to first order effects (certainly this would be true in a well-
designed guidance system). The Gaussian assumption is reasonable if one con-
siders these error sources to be unpredictable—constant for one flight but varying
in a random fashion over many flights in accordance with a Gaussian distribution.
Even if this is not exactly true, the assumption that the error in the state (posi-
tion and velocity) vector at insertion has a multivariate normal distribution with
an associated covariance matrix and zero mean provides us with a working tool

to comparatively analyze the performance of one space vehicle with another and
to obtain bounds on the errors in the parameters of the orbit for a particular
mission.

It will be seen that some of the errors in the parameters of the orbit can be
expressed to a good approximation as linear combinations of the insertion errors,
and therefore, will be normally distributed (Gaussian). Others cannot, and the
probability distributions of these will be non-Gaussian, for which a numerical
technique is necessary to obtain the distribution.

An example will be given which applies the technique to a nominal Apollo
earth parking orbit.

Determination of the probability distribution of a random variable is im-
portant for two reasons: (1) It gives more information than just the mean and
standard deviation, in particular, for non-Gaussian distributions; (2) It may be
important for orbital parameters having critical upper or lower bounds such as
perigee height in the case of the Apollo parking orbit. (Reference 2).

1. GENERAL

Let X represent the nominal state vector (position and velocity) of a space
vehicle (within an inertial coordinate system) at insertion into a near-earth
orbit, and let  be one of the parameters of the orbit. Then, using Keplerian
two-body equations of motion, we can express n as a function of X

n = nX) M

Due to insertion errors, the actual state Xp will differ from the nominal
state X by an amount Ax

X, - X7t Ax (2)




We may therefore write an error An in the parameter 7 as
b= (X)) - Xy = X+ Ax) - n(X) (3)

Let AX be a random vector representing the error in the state vector at
insertion.

Then
M= (X +AX) - n(X) (4)

is a random variable* representing the error in 7.

In this analysis we will assume that the nominal orbit is circular and that
AX has a multivariate normal distribution with zero mean and a given covariance
matrix.

It will be seen that some of the errors in the parameters of the orbit can be
expressed to a very good approximation as linear combinations of the components
of AX, and, therefore, will be normally distributed. Other errors (e.g., perigee
error and apogee error) cannot be expressed as linear combinations, and for
these a numerical technique must be used to determine the distribution.

2. THE (U° V° ¥°) COORDINATE SYSTEM

The (U° VO W) system is a right-handed inertial Cartesian Coordinate Sys-
tem frequently used to define the position and velocity of a space vehicle at
insertion. It may be seen in Figure 1.

The U° vector is a unit vector in the R (position vector) direction. The W°
vector is a unit vector in the (R x V) direction (V is the velocity vector), and the
VO vector is a unit vector in the (W0 x U°) direction.

*It should be noted that Ax is a value which the random vector AX can take. Also, A7 is a value
which the random variable AH can take.
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Figure 1. The (U0 VOWO0) Coordinate System

In the (U° V° ¥°) System the Rand V vectors for a nominally circular orbit
are

R = 0 (5)

vV = K/T, )




where r is the radius at insertion (radius of the orbit) and w is the gravitational

constant. The perturbed (or actual) position and velocity vectors are then

where vy =

3. EXPRESSIONS FOR SOME OF THE ERRORS IN THE PARAMETERS*

Insertion Radius Error

- v

The error in insertion radius is

Ar

neglecting 204 order terms and higher. Or, in random variable notation

0

1

It

&0

(ro +0x,) < 1+ (—2/

*Throughout this Section capital letters will denote random variables. Bold letters represent
vectors and matrices.

+ Axs

Ax

rg (X+Ax) - r, = }/(?ow“Axl)z ¥ (Ax2)2 + (Ax3)2 -,

1\ (sz)z + (0x,)?

MR, %

(r0 +Ax1)2

AX,

(7)

(8)



Insertion Speed Error

The error in insertion speed is

Dvy = vy (X+Ax) - vy = }/(A’%)z * ("o +A"5)2 * (A"s)2 ~ Vo
i " . (_1_) (6x,)2 + (0x,)2 )
N AN (TN N
X Dxg
neglecting 29 order terms and higher. Or,
AVy N DX 9
The Error in Flight Path Angle at Insertion
The error in flight path angle at insertion is
RV,
Dy, = 7o (XHA4x) = sin”! LYW\
~ (ro_l)sz * (Vo—l) Ox,
or
o, x (rt)ax, v (vot) A%, (10)

neglecting 2" ¢ order terms and higher and noting that the flight path angle is .
zero for a nominally circular orbit.




The Error in Energy Per Unit Mass

The error in energy per unit mass is

~Dcy, T (X+Ax) - ¢c;(X)
|
_ 2u 2u
o) e )

or
AC, & 2vy BXg Tz &X (11)

neglecting 2 " order terms and higher.

Semi-major Axis Error

For ease in analysis let A = (r0 v02/pL). Then, the error in semi-major
axis may be written

(r0+Ar0 r,
ba = a(X+Ax) - a(X) = 2-(ATNy) T \2-A
t ’ \ 7/

\ £«



Aa

(fo"A’o) o) (v a2
SRR LR VY AR VY B
(ro> K'Az

2/ 1Tt \2)

But, for a circular orbit A = 1. Hence

Ba B Arg + (ro) M + higher order terms

But,

M = (2v0_1)Av0 + (r‘l)Ar

0 + higher order terms

0

Thus we can write

Nha =~ 20x, + (2r0v“1) Axg

or
M 28X, 4 (2r0 vo ') BXg

The Angle Between the Nominal and the Perturbed
Position Vector at Insertion

The Angle between R and Rp is

R ‘R
= = -1 (=
p = B(X X,) = cos <I“p| 1“1)

T, Arg, I, r,
2-x/t\2-x/) * 2_}\)2 M - \3=x/ * higher order terms

(12)



r, t Axl

}/(r0 +Ax1)2 + (Ax2)2 + (Ax3)2

= cos!

Viex)? + (o)

‘ (I‘O +Axl)

= tan"l

2

rg ! }/E‘z)2 + (0xy)?

or

B ~ rg! ‘/(sz)2 + (8X,)? (13)

The Error in Eccentricity

The eccentricity e is a function of Ty, V

o and y,

But for a circular orbit e = 0. Therefore, the error in eccentricity Ae is

Ne = e(r0+Ar0, v0+Av0,'y0+A'y0)



or

BE = e(ry +ORy, vy +4V,, y, +AT,) (14)

The Error in Perigee

The perigee radius r is a function of ry, v, and 7,

For a circular orbit 'rp = r,. Therefore, the error in perigee is

Ar, = rp(r0+Ar.0', vy +Av,, y0+Ay0) -1,

or

3 15
AR, = r, (rgt ARy, vo +AVg, v, +AT) - 1y (15)

The Error in Apogee

The apogee radius r, is a function of r;, v,, and Yo

10




For a circular orbit r, = r,. Therefore, the error in apogee is

a

Ar = ra(r0+Aro, v0+Av0, y0+A’yO) i

or

MR, = 1, (ry+8Ry, vy +AVy, vy T AT,) - 1y (16)

a

4, THE VARIANCES AND COVARIANCES BETWEEN THE ERRORS
IN INSERTION RADIUS, SPEED AND FLIGHT PATH ANGLE*

Using (8), (9), and (10) we may easily obtain expressions for the variances
of AR,, AV,, and Ay

o X L, (17)
By, ¥ bxg (18)
l
UA270 X (r0_2)0A2x2 + (‘60_2) O’A2x4 + 2(rO vo)'l Thx i, (19)

The covariances are

TAr Av. ~ PAx . Ax (20)

» R - . : ;

If AX; and AXi are random variables, TAxiAxj  PhxiBxC Ax; T Ax; 1S the covariance between
AX; and AXi » PAx; Ax; is the coefficient of correlation between them, and o Ax; and UAXi

are the standard deviations of AX; and AXi respectively.

11
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N, By, (ro 1) onn, an, * (Vo 1) oax, o, (21)

ey Byy & (Mo ) o eyt (Vo) i, Ax, (22)

5. THE CUMULATIVE DISTRIBUTION FUNCTIONS OF THE
ERRORS IN THE PARAMETERS*

The Cumulative Distribution Functions of the Errors in Insertion Radius,
Speed, and Flight Path Angle, the Error in Energy Per Unit Mass, and
the Error in Semi-Major Axis

From Equations (8), (9), (10), (11) and (12) we see that ARy, AV,, AL, AC,,
and MA (the errors in jnsertion radius, speed, and flight path angle, the error in
energy per unit mass, and the error in semi-major axis) are linear combinations
of the components of AX, and are therefore normally distributed.

The Cumulative Distribution Functions of the Errors in Eccentricity,
Perigee Radius, and Apogee Radius

From Equations (14), (15), and (16)

NE = e (ro + ARy, vyt AV, vy t L\I_'O) (14)

MR, - 1 (ro ARy, vy TAV, y t AI_‘O) -1, (15)

MR, © 1, (ro + ARy, vy tAVy, Vot AFO) -1, (16)

*The cumulative distribution function F = F(A7) of the random variable AH is a function of An

and gives the probability that AH is less than or equal to /7). Mathematically, we write

/\vy
F 7 F(Am) = POH < Ay = [ f(x0)dx

where f(x) is the probability density function of AH.

12




we see that AE, AR, and AR, are nonlinear functions of the components of AX,
and, therefore, are not normally distributed. However, the probability distribu-
tions of these variables can be calculated.

Since AR, AVy, and AI'j have a trivariate normal distribution, they can be
expressed as linear functions of three uncorrelated normal random variables

Y1’ Y2, Ys:

=}
0 a;, Y, ta,Y, ta,Y,

=
il

a, Y, *ay,Y, ta,Y, (23)

And, by the inverse linear transformation, we can express the Y. 's as func-
tions of AR, AV, A,

Y, = by ARy + by, AV, + b A

Y, - 24
2 by ARy + by, AV + by A (24)

Y; = by BRy + by, AV, + by Al

Thus, the variances of theY; 's (o, 's) can be calculated as functions of the
variances and covariances between'the correlated variables using (24). Since
uncorrelated normal random variables are independent, the joint density func-
tion of the Y, 's is given by the product of their marginal frequency functions.
This is the essence of the technique.

Each probability density function for Y, is approximated by a discrete dis-
tribution having probability mass points p; . over a range of values y/ . extending

13



from —Lay to Loy ~and spaced, (L/N) o, apart* Thus,

. L , L
Pi, ~ P[yik ) (2N> Ty, © Yoy ! (ﬁ)ayi] (25)

where

Ne]
-
H
—
N
3
Q
»
~—
|
w‘o—n
[¢']
!
——
«
-~
=
S
~
N
q
-
_—

’ L
Vi, (W)[HN*”} %

for (i=1,2 3 k=12 3--, 2N+1)

and
2N+ 1

k=1

The larger the integer N for a fixed L, the better the approximation in (25).

‘cry_ is the standard deviation of Y,.
1

14




Since there are ( N t 1) possible values for each density function approxi-
mation, there will be a total of (N + 1)3 possible combinations of values for the
joint density approximation to the Y,'s. Further, since the Y,'s are independent,
the probability of occurrence of p;,, of each combination of values for y, .

Y0 Y3, (i k,121,2,3, -+, 2N+1)is given by the product :

Pjkr ~ P1, Py P3 (26)

For each set of values for Y, Y y and Y 3, there is a corresponding set of
values for AR, AV,, and Al'; by the equations in (23), and a value for one of the
variables AE, AR, and AR, (by Equations (14), (15), and (16)) having the proba-
bility p,,, (i, k, 1 =1, 2,3, “**, 2N+ 1). Thus, the probability density func-
tion approximation for AE, AR, and AR, will each have (N +1)2 possible values.

For purposes of machine computation, the range of each random variable
AE, AR_, and AR, can be divided into a number of mutually exclusive intervals.
For all values of the variable falling within one of these intervals, the associated
probability as given by Equation (26) can be summed since all of the (2N + 1)3
possible combinations of values for AR, AV, and AT"; are mutually exclusive.
In this way we obtain an approximation for the probability that the random vari-
able (AE, AR ., AR, ) assumes values within the particular interval, and thus an
approximation for the probability density function.

The cumulative distribution function is obtained by summing the probability
density function.

The Cumulative Distribution Function of B

By Equation (13)

B x 15! ‘[(sz)z ¥ (AX3)2

we see that B is not a linear function of the components' of AX and therefore, not
normally distributed. The cumulative distribution function of B can be obtained
in similar fashion as for AE, AR, and AR,. However, in this case Bis a function
of only two components of AX, AX, and AX,.

15



6. AN EXAMPLE WITH APPLICATION TO A NOMINAL
APOLLO EARTH PARKING ORBIT

In order to illustrate the statistical technique described in Section 5, we will
consider a nominal Apollo earth parking orbit—a nominally circular orbit of
100 n.mi.

Reference 3 describes the dispersions in position and velocity of the Saturn
V Launch Vehicle at insertion due to 30 navigation parameters. Reference 4
describes how the covariance matrix of insertion errors shown in Table 1 and
obtained from Reference 5 was constructed from the uncertainties (standard
deviations) of these navigation parameters. The matrix, therefore, expresses
the deviation of the onboard estimate from the nominal insertion condition due
to errors in the onboard navigation during the launch phase. It can be considered
typical of the performance of the Saturn V Launch Vehicle for a nominal Apollo
Mission at insertion into a near-earth nominally circular parking orbit of 100
n.mi. as of the date of this analysis (Reference 6). The matrix is given in the
U° VO W0 Coordinate System (Figure 1). The elements along the main diagonal
are the variances of AX; (the components of AX) expressed in units of (ft)? and
(ft/sec) 2. The off-diagonal elements are the covariances between AX, and
AX, (i#j) and are expressed in units of (ft)2, (ft/sec)?, and (ft)2/sec. The
normalized covariance matrix or correlation matrix corresponding to the matrix
in Table 1 is shown in Table 2. It is also given in the U° Y? W° Coordinate System.
However, the elements along the main diagonal are unit variances while the off-
diagonal elements are the coefficients of correlation between AX, and AX; (i #j) -

It is necessary to mention at this point that we are assuming throughout this
analysis that AX has a multivariate normal distribution with zero mean and the
covariance matrix shown in Table 1.

Table 1

Expected Saturn V Insertion Covariance Matrix* ([° y° W0 Coordinate System)’
— —

977736.00 -745996.00 -3162.1120 3935.6520 -2060.5760 -15.106120
743820.00 1493.9920 -3123.1360 1961.3040 8.9479200

1180016.0 -18.365520 5.3787600 3499.8720

16.197720 -8.6568800 -0.0769048

Symmetric 5.2908400 0.02838016
L 11.023800

*The elements along the main diagonal are the variances of AX; expressed in units of (ft)? and
(ft/sec)z, the off-diagonal elements are the covariances between the L\Xi, expressed in units of

(f1)2, (ft/sec)?, and (ft)%/sec.
16
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One may ask, "What actually does a covariance matrix of insertion errors
represent?' And, "What is the usefulness of such a matrix?"

The covariance matrix is actually a measure of the uncertainty in the state
vector (position and velocity) at insertion due to uncertainties in the actual values
of navigation parameters. If the guidance and control system is working properly,
we could still expect this much variation or dispersion in the position and velocity
of the vehicle at insertion.

The usefulness of such a matrix can best be seen in its providing us with a
tool for determining expected variations and bounds (along with their associated
probabilities under the Gaussian assumption) of some of the parameters of the
orbit.

Using the expressions for the variances and covariances between AR, AV,
and["; in Equations (17) through (22) as well as the covariance matrix in Table 1,
the covariance matrix of ARy, AV, and AI'; can be obtained, and is shown in
Table 3. Table 4 shows a normalized matrix where the elements along the main
diagonal are the standard deviations of AR , AV, and A, and the off-diagonal
elements are the coefficients of correlation between these random variables.

Table 3

Covariance Matrix %, of AR;, AV,, and Al *

0.02644932 -0.33891053 -0.00100201
5.29084000 0.01588871
Symmetric (0.49300523)10- ¢

*The elements along the main diagonal are the vari-
ances of AR, AV, and Al'g, expressed respec-
tively in units of (n.mi.)2, (ft/sec)2, and (deg)2.
The off-diagonal elements are the covariances be-
tween ARy, AV, and Al'g, expressed in units of
(n.mi.)(ft/sec), (n.mi.}(deg), and (ft)(deg)sec).

The cumulative distribution functions for some of the errors in the parking
orbit are shown in Figures 2 through 10, and were obtained as described in
Section 5.

From these figures we can see that the angular error in the position vector
at insertion (Figure 7), the error in eccentricity (Figure 8), the perigee error
(Figure 9), and the apogee error (Figure 10), are non-Gaussian and do not have
Zero means.

18




Fl (A l’o)

Table 4

Normalized Covariance Matrix
of AR, OV, AFO*

0.16263246 -0.90597355 -0.87748401
2.30018258 0.98378570
Symmetric (0.70214331)10" 2

*The elements along the main diagonal are the
standard deviations of AR, AVg, and Al'g, ex-
pressed in (n.mi.), (ft/sec), and (deg). The off-
diagonal elements are the coefficients of correlation
between AR, AV, and Al
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Figure 2. The Cumulative Distribution Function of the Error in Insertion Radius ARy
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Figure 3. The Cumulative Distribution Function of the Error in Insertion Speed AVg
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Figure 4. The Cumulative Distribution Fun ction of the Error in Insertion Flight Path Angle Al'g
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Figure 5. The Cumulative Distribution Function of the Error in Energy Per Unit Mass AC3
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Figure 8. The Cumulative Distribution Function of the Error in Eccentricy AE
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Figure 10. The Cumulative Distribution Function of the Error in Apogee Radius ARg4
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Table 5

Lower and Upper 99.5% Probability Points for the Errors
in the Parameters of the Orbit

Error Lower 99.5% Point Upper 99.5% Point

AR, -0.7 km (-0.4 n.mi.) +0.7 km (+0.4 n.mi.)

AV, -1.8 m/sec (-6.5 ft/sec) +1.8 m/sec (+6.5 ft/sec)
A -0.018° (-0.3 mrad) +0.018° (+0.3 mrad)

AC, -0.016 (km/sec)? +0.016 (km/sec)?

AA - =1.7 km (~0.9 n.mi.) +1.7 km (+0.9 n.mi.)

B +0.0002° +0.0085°

AE +0.0001 (dimensionless) +0.00048 (dimensionless)
AR -4.7 km (-2.5 n.mi.) +0.2 km (+0.1 n.mi.)

AR, -0.2 km (-0.1 n.mi.) +4.5 km (2.4 n.mi.)

Table 5 summarizes the results of this analysis in tabular form, showing
both lower and upper 99.5% probability points for the errors in the parameters.
Thus, there is a 99% probability that the errors in these parameters will lie
between these indicated values.

It is significant to note that there is a 99.5% probability that perigee error
will exceed -2.5 n.mi. or that the actual perigee height will exceed 97.5 n.mi.
for the nominal 100 n.mi. circular parking orbit. Likewise, there is a 99.5%
probability that the actual apogee height will be less than 102.4 n.mi.

From the above we see that the actual parking orbit should be very close to
the nominal circular orbit of 100 n.mi. This is also evident from inspection of
Figure 8 where we see there is a 99.5% probability that the error in eccentricity,
and hence the eccentricity, will be less than 0.00048.

Figure 11 shows a comparison between the cumulative distribution function
of perigee error using Equation (15) and a cumulative normal distribution func-
tion having the same mean and standard deviation. The difference between the
curves is significant, For example, using the normal distribution, there is a
99.5% probability that the perigee error will exceed ~1.7 n.mi. and a 99.5%
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Figure 11. Comparison of the Cumulative Distribution Function of the Error in Perigee with a
Cumulative Normal Distribution Having the Same Mean and Standard Deviation

probability that the error will be less than 1.1 n.mi. From the calculated curve
the corresponding points are -2.5 n.mi and 0.1 n.mi.

Combining Tracking Errors and Insertion Errors

As a further example, we will show how insertion ship tracking errors (cal-
culated minus actual) can be combined with insertion errors (actual minus
nominal) to answer such questions as, "For a nominally circular parking orbit
of 100 n.mi., what is the probability that the calculated perigee height will exceed
a given amount? "

At insertion of the Apollo spacecraft, the following parameters:

~

radius ry
speed vy

flight path angle 7,
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will be determined from one minute of ship's tracking data. In Reference 1 it is
required that these parameters be determined to the following accuracies:

30, = 2.4 n.mi. (4.44 km)
1
30, =16 ft/sec (4.87 m/sec)
30, = 0.16° (2.79 mrad)
1
Let
AR,
AL, = AV, (27
AP

be an error vector representing the error or deviation of the actual insertion
radius, speed, and flight path angle from the nominal, and let

ARI
AZ = Avl (28)
A

be an error vector representing the deviation of the measured or calculated
insertion radius, speed, and flight path angle from the actual.

Then

AL = ALy + AZ, ‘ (29)

is an error vector representing the deviation of the measured or calculated in-
sertion radius, speed, and flight path angle from the nominal.

For this example, we will assume that AZ, and AZl are independent error
vectors each with a trivariate normal distribution, having zero mean vectors and
covariance matrices X and X, respectively. Then AZ has a trivariate normal
distribution with a zero mean vector and covariance matrix ¥

R R (30)




Since it is practically impossible to determine the actual coefficients of
correlation between the errors AR,, AV , and Ay, the analysis has been carried
out for coefficients of correlation of 0.0 (uncorrelated) and +0.9. That is, all
possible combinations of signs have been considered with the expection of those
for which the covariance matrix3, becomes singular. The possible combinations
are:

P, By, PAr, By, Py, Doy,
+0.9 0.9 ¥0.9
+0.9 - 0.9 -0.9
~0.9 +0.9 - 0.9 (31)
~0.9 - 0.9 +0.9

) The m%tr;xgzl is shown in Table 6 for the case ,oArl Do, = Phr| Dy,
- ’OAvl A'yl T

Table 6

Covariance Matrix 21 of

*
OR,, AV,, and A,

0.64 3.84 0.038400
28.4444 0.25600
Symmetric 0.002844

*The elements down the main diagonal are the
variances of AR], AV, and A} expressed in
units of (n.mi.)2, (ft/sec)2, and (deg)2. The off-
diagonal elements are the covariances between
ARy, AV, and Al'], expressed in units of
(n.mi.)(ft)/sec, (n.mi.)(deg), and (ft)(deg)/sec.

The matrix X obtained by adding 3 (Table 3) and £, (Table 6) is shown in
Table 7. Similar matrices can be obtained using other coefficients of correla-
tion indicated in (31) and Phe, A, = Ph:, Aoy, = PAe Ay = 0.0.

ikl Tl Sl Tt |

 Using these matrices and the method outlined in Section 5, the probability
distribution of the perigee error can be calculated.
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PROBABILITY THAT CALCULATED PERIGEE EXCEEDS IR

Table 7

Covariance Matrix % of (AR0 + ARI) ,
(8V, *AV,), and (A7, +AI,)*

0.66644932

Symmetric

3.50108947
33.73524000

0.03739799
0.27188871
0.00289330

*The elements along the main diagonal are the
variances of (ARg + AR ), (AVg + AV ), and
(AI'g + Al'y), respectively, expressed in units of
(n.mi.)2, (ft/sec)2, and (deg)2. The off-diagonal
elements are the covariances between these ran-
dom variables, expressed in units of (n.mi.)(ft)/

sec, (n.mi.) deg,

and (ft)X(deg)/sec.
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Figure 12. Probability That Calculated Perigee Height Exceeds *p,
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Figure 12 shows the cumulative distribution function of the calculated perigee
height for a 100 n.mi. parking orbit and several combinations of coefficients of
correlation between AR, AV, and A", .

In order to compare these curves, we note that if P, Dv, = + 0.9, and
PAr, Ny, = Phv, By, = +0.9, there is a 90% probability that the calculated perigee
height is greater than 90.8 n.mi. If the errors are uncorrelated, there is a 90%
probability that the calculated perigee will exceed 92.3 n.mi. If Pie, By, =~ 0.9,
Pie, Dy, = + 0.9, and pp, Dy, = $0.9, there is a 90% probability that the calcu-
lated perigee height will exceed 93.7 n.mi.

CONCLUSIONS

Distributions

A statistical technique has been described for analyzing the effects of in-
sertion errors (deviations of actual values from nominal values) on the param-
eters of near-earth circular orbits. The technique assumes that the error in
the state vector (position and velocity) of the vehicle at insertion has a multi-
variate normal distribution with zero mean and a given covariance matrix.
Probability distributions for some of the errors in the parameters are obtained
numerically using Keplerian two-body equations of motion. Results of the
analysis indicate:

(1) Perigee error, apogee error, the error in eccentricity, and the angular
error in the vehicle's position vector at insertion are non-Gaussian

with non-zero means.

The Apollo Parking Orbit

The technique has been applied to a nominal Apollo earth parking orbit using
an expected covariance matrix typical of the performance of the Saturn V Launch
Vehicle at insertion into a near-earth nominally circular parking orbit of 100
n.mi. Results of the analysis indicate that:

(2) The actual near-earth parking orbit will be close to the nominally cir-
cular 100 n.mi. orbit. For example, there is a 99.5% probability that
the actual perigee height will exceed 97.5 n.mi., and a 99.5% probability
that the actual apogee height will be less than 102.4 n.mi.

29



Combining Tracking Errors and Insertion Errors

As a further example, insertion ship tracking errors and insertion errors
have been combined. The analysis indicates that for 3 sigma values of

Il

3op, 2.4 n.mi. (4.44 km)
1
30y, = 16 ft/sec (4.87 m/sec)
A1

0.16° (2.79 mrad)

i

30Ayl

for the insertion ship's tracking errors (calculated minus actual) in insertion
radius r,, speed v,, and flight path angley,, and for coefficients of correlation
of +0.9 between these errors:

(3) There is a 90% probability that the calculated perigee height will exceed
91 n.mi. for the nominal 100 n.mi. parking orbit.
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