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PROBABILITY DISTRIBUTIONS FOR THE ERRORS IN THE . 
PARAMETERS OF NEAR-EARTH CIRCULAR ORBITS 

WITH APOLLO APPLICATIONS 

C. W. Murray, Jr. 

ABSTRACT 

A statistical technique is described for analyzing the effects of 
insertion e r r o r s  (actual minus nominal) on the parameters of near- 
earth circular orbits. Probability distributions are obtained 
numerically using Keplerian two-body equations of motion, and it is 
shown that the e r ro r s  in perigee, apogee, and eccentricity a re  non- 
Gaussian with non-zero means. The technique is applied to a nom- 
inal Apollo earth parking orbit. The analysis indicates that the 
actual near-earth parking orbit will be close to the nominal 100 
n.mi. circular orbit. For example, there is a 99.5% probability that 
the actual perigee height will exceed 97.5 n.mi., and a99.5% prob- 
ability that the actual apogee height will be less  than 102.4 n.mi. 
Insertion e r r o r s  (actual minus nominal) and insertion ship tracking 
e r ro r s  (calculated minus actual) are combined as a further example. 

iii 



PROBABILITY DISTRIBUTIONS FOR THE ERRORS IN THE 

PARAMETERS OF NEAR-EARTH CIRCULAR ORBITS 

WITH APOLLO APPLICATIONS 

C. W. Murray, Jr. 

SUMMARY 

A statistical technique is described for analyzing the effects of insertion 
e r r o r s  (actual minus nominal) on the parameters of near-earth circular orbits. 
The e r ro r  in the state vector (position and velocity) at insertion is assumed to 
have a multivariate normal distribution with a zero mean and given covariance 
matrix. Probability distributions for some of the e r ro r s  in  the parameters are 
obtained numerically using Keplerian two-body equations of motion, and it is 
shown that the e r ro r  in perigee, apogee, eccentricity, and the angle between the 
actual position vector and the nominal position vector at insertion are non- 
Gaussian with non-zero means. 

The technique is applied to a nominal Apollo earth parking orbit using an 
expected covariance matrix of insertion errors typical of the performance of the 
Saturn V Launch Vehicle at insertion into a near-earth nominally circular park- 
ing orbit of 100 n.mi. The analysis indicates that the actual parking orbit will be 
close to the nominal 100 n.mi. orbit. For example, there is a 99.5% probability 
that the actual perigee height will exceed 97.5 n.mi., and also a 99.5% probability 
that the actual apogee height will be less than 102.4 n.mi. 

Insertion errors (actual minus nominal) and insertion ship tracking errors 
(measured or calculated minus actual) are combined as a further example. Re- 
sults indicate that under worst case conditions for the coefficients of correl a t' ion 
between the tracking e r ro r s  in insertion height, speed, and flight path angle (eo- 
efficients of +0.9), there is a 90% probability that the calculated perigee height 
will exceed 91 n.mi. The three sigma values for the insertion ship tracking 
e r ro r s  in  insertion height, speed, and flight path angle used in the analysis are 
(Reference 1): 

3 O A r  

3 U A v  16 ft/sec (4.87 m/sec) 

3% 1 0.16" (2.79 mrad). 

= 2.4 n.mi. (4.44 km) 
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PROBABILITY DISTRIBUTIONS FOR THE ERRORS IN THE 

WITH APOLLO APPLICATIONS 
PARAMETERS OF NEAR-EARTH CIRCULAR ORBITS 

INTRODUCTION 

The near-earth orbit of a space vehicle can be determined from the position 
and velocity vectors of the vehicle at insertion using Keplerian two-body equa- 
tions of motion. Due to insertion e r rors  (errors  in the xyz components of these 
vectors within an inertial Cartesian coordinate system at the time of insertion), 
the actual orbit will deviate from the desired nominal. 

The purpose of this report is two-fold: (1) to study the probability distribu- 
tions of some of the e r ro r s  in the parameters of near-earth circular orbits 
assuming the insertion e r ro r s  a re  correlated Gaussian e r ro r s  with zero means; 
(2) to  demonstrate a statistical technique using numerical integration for deter- 
mining the probability distributions of non-Gaussian e r rors .  

By stating that the e r rors  in the Cartesian coordinates of the vehicle’s 
position and velocity vectors at insertion a r e  Gaussian, we a r e  making a more 
basic assumption-that these particular e r ro r s  can be represented as linear 
combinations of a number of e r ro r  sources within the guidance and control sys- 
tem of €he launch vehicle (gyro drift, accelerometer e r rors ,  etc.) which a re  
Gaussian (but not necessarily independent) .* The assumption of linearity is 
reasonable if second order effects (and higher) of these e r ro r  sources are quite 

- 

*A numerical procedure for determining the coefficients of the error sources in the linear expression 
for each of the errors in the state (Ax, ny, Az, &, A?, &) is to take each error sou t r e  one at a 
time, and using its one sigma value, determine the error in the six-dimensional state vector 
through a digital computer powered flight program which simulates the guidance system in the 
launch vehicle. If there are N sources of error, N + 1 computer simulations would have to be 
made (one run for the nominal state). In matrix notation, i f  AX is a (6 x 1) vector representing 
the error in the state (position and velocity) of the vehicle at insertion, Q is a (6 x N )  matrix, 
and AW is an (N x 1) vector of error sources, 

AX = QAW 

and the above procedure is equivalent to determining one column of the Q matrix a t  each step. 
Then, the covariance matrix of the error in the state will be given by: 

M = Q P Q ~  

where P is the correlation matrix (1’s down the main diagonal and the coefficients of correlation 
a s  off-diagonal elements) of the (N x 1) error vector. If AW has  mean vector 6 (error sources 
with biases),  then AX wi l l  have mean vector Qt. Usually these  error sources are taken to be 
independent and to have zero mean. 

1 



I small compared to first  order effects (certainly this would be true in a well- 
designed guidance system). The Gaussian assumption is reasonable if one con- 
s iders  these e r ro r  sources to be unpredictable-constant for one flight but varying 
in a random fashion over many flights in accordance with a Gaussian distribution. 
Even if this is not exactly true, the assumption that the error in the state (posi- 
tion and velocity) vector at insertion has a multivariate normal distribution with 
an associated covariance matrix and zero mean provides us with a working tool 
to comparatively analyze the performance of one space vehicle with another and 
to obtain bounds on the e r ro r s  in the parameters of the orbit for a particular 
mission. 

I 

It will  be seen that some of the errors in the parameters of the orbit can be 
expressed to a good approximation as linear combinations of the insertion e r rors ,  
and therefore, will be normally distributed (Gaussian). Others cannot, and the 
probability distributions of these will be non-Gaussian, for which a numerical 
technique is necessary to obtain the distribution. 

An example will be given which applies the technique to a nominal Apollo 
earth parking orbit. 

Determination of the probability distribution of a random variable is im- 
portant for two reasons: (1) It gives more information than just the mean and 
standard deviation, in particular, for non-Gaussian distributions; (2) It may be 
important for orbital parameters having critical upper or lower bounds such as 
perigee height in the case of the Apollo parking orbit. (Reference 2). 

I 1. GENERAL 

Let Xrepresent the nominal state vector (position and velocity) of a space 
vehicle (within an inertial coordinate system) at insertion into a near-earth 
orbit, and let q be one of the parameters of the orbit. Then, using Keplerian 
two-body equations of motion, we can express as a function of X 

Due to insertion e r rors ,  the actual state Xp will differ from the nominal 
state X by an amount Ax 

x, -- x + Ax 

2 



We may therefore wri te  an e r r o r  A? in the parameter q as 

Let AX be a random vector representing the e r r o r  in the state vector at 
insertion. 

Then 

is a random variable* representing the e r r o r  in 77. 

In this analysis we will assume that the nominal orbit is circular and that 
AX has a multivariate normal distribution with zero mean and a given covariance 
matrix. 

It will be seen that some of the errors  in the parameters of the orbit can be 
expressed to a very good approximation as linear combinations of the components 
of M;, and, therefore, will be normally distributed. Other e r ro r s  (e.g., perigee 
error and apogee e r ror )  cannot be expressed as linear combinations, and for 
these a numerical technique must be used to determine the distribution. 

2. THE (Uo Vo Wo)  COORDINATE SYSTEM 

The ( U o  Vo Wo) system is a right-handed inertial Cartesian Coordinate Sys- 
tem frequently used to define the position and velocity of a space vehicle at 
insertion. It may be seen in Figure 1. 

The Uo vector is a unit vector in the R (position vector) direction. The Wo 
vector is a unit vector in the (R 
Vo vector is a unit vector in the ( ?Wo x UO) direction. 

V) direction (V is the velocity vector), and the 

*It should be noted that Ax i s  a value which the random vector AX can take. Also,  AT is a value 
which the random variable &I can take. 

3 
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Figure 1. The (UOVOWO) Coordinate System 

In the (Uo Vo wo)  System the R and V vectors for a nominally circular orbit 
are 

R [1 

4 

(5) 

L 



. 

where r, is the radius at insertion (radius of the orbit) and pis the gravitational 
constant. The perturbed (or actual) position and velocity vectors a r e  then 

R, = 

where v, = ix. 
3 .  EXPRESSIONS FOR SOME OF THE ERRORS IN THE PARAMXTERS* 

Insertion Radius Error 

The e r r o r  in insertion radius is 

neglecting Fd order terms and higher. Or,  in random variable notation 

*Throughout t h i s  Section capital letters will denote random variables. Bold letters represent 
vectors and matrices. 

5 



Insertion Speed Error  

The e r ro r  in insertion speed is 

= (vo +Axs) 4 ’ (+) ) - ..} - v o  
2 +  A AX^)^ 

neglecting 2 n d  order terms and higher. Or, 

AVO 2 AX, 

The Error in Flight Path Angle - at Insertion 

The er ror  in flight path angle at insertion is 

or 

neglecting 2 
zero for a nominally circular orbit. 

order terms and higher and noting that the flight path angle is . 

6 



The Error  in Energv Per Unit Mass 

The e r r o r  in energy per unit mass is 

, 
Ac, = C, ( X + A x )  - c ,  (X) 

or 

2 2v0 Ax, + ( - )  Ax, 

nc, 2 2v0m5 + (%)Axl 

neglecting 2 order terms and higher. 

Semi-maior Axis Error 

For ease in analysis let h = (r,, v;/p). Then, the e r ro r  in semi-major 
axis may be written 

7 



r t Ar 
Aa = ( ') {I t (i t %)t (% t%)* t - a * }  

- t$ ( . Y +  ..] 
= (A)+(&) + [&) M - (A) t higher order terms 

But, for a circular orbit h = 1. Hence 

Aa Ar, f (r,,) M t higher order terms 

But, 

A4 = (2v,,-') Avo t ( r i l )  Ar,  t higher order terms 

Thus we can write 

Aa % 2Ax1 + (2ro v0-l) Axs 

or 

The Angle Between the Nominal and the Perturbed 
Position Vector at Insertion 

The Angle between R and R, i s  

8 



r o  +Ax, 
- 

+Ax$ + (Ax2)2 + (Ax3)2 
- c o s - ,  

or 

The Error in Eccentricity 

The eccentricity e is a function of ro , v o ,  and yo 

- 

But for a circular orbit e = 0. Therefore, the e r ro r  in eccentricity A e  is 

A e  = e ( ro  +Are, vo + A v o *  Y o  +A?',) 

9 



or 

The Error  in Perigee 

The perigee radius rp i s  a function of r o t  vo, and yo 

For a circular orbit rp = ro. Therefore, the e r r o r  in  perigee is 

o r  

A R ~  = r ( ro  + A R , ,  vo +AVO, Yo f r o )  - ro 
P 

The Error  in Apogee 

The apogee radius r a  is a function of ro , v 0 ,  and yo 

10 



For a circular orbit r a  ro . Therefore, the error in apogee i s  

- Ara - ra(ro + Ar, ,  v, +Avo,  yo + Dr,) - ro  

o r  

r O  ( i6 )  

4 .  THE VARIANCES AND COVARIANCES BETWEEN THE ERRORS 
IN INSERTION RADIUS, SPEED AND FLIGHT PATH ANGLE* 

Using (€9, (9), and (10) we may easily obtain expressions for the variances 
of AR,, AVO, and w, 

2 2 
anro 2 O a x ,  

The covariances are 

'. *If AXi and AX. are random variabies, Q A ~ ~ A ~ ~  - p ~ , i ~ x i ~ ~ x i ~ ~ x j  i s  the covariance between 
I 

xi 
AXi and A X j ,  ,OA,;A,~ is the coefficient of correlation between them, and O A  
are the standard deviations of AXi a d  AXi respectively. 

and U A  
X i  

11 



5 .  THE CUMULATIVE DISTRIBUTION FUNCTIONS OF THE 
ERRORS IN THE PARAMETERS* 

I where f(x) is the probability density function of &I 

The Cumulative Distribution Functions of -_ the Er ro r s  in Insertion Radius, 
Speed, and Flight Path Angle, the -___ Erro r  in Energy Per Unit Mass, and 
the Error in Semi-Major - Axis 

From Equations (8), (9), ( lo) ,  (11) and (12) we see that /So, AVO, r,, AC,, 
and AA (the e r rors  in jnsertion radius, speed, and flight path angle, the e r r o r  in 
energy per  unit mass, and the e r ro r  in semi-major axis) are linear combinations 
of the components of AX, and are therefore normally distributed. 

The Cumulative Distribution .____ Functions of the Er ro r s  in Eccentricity, 
Perigee Radius, and Apogee Radius 

From Equations (14), (15), and (16) 

mP - r ( r o  + AR,, vo  +AV,,  y o  two)  - ro  
P 

- .___ 

*The cumulative distribution function F 
- F(/li7/) of the random variable i s  a function of AT 

and g ives  the probability that & is less than or equal to AT. Mathematically, we  write 



we see that AE, AR,, and AR, are nonlinear functions of the components of AX, 
and, therefore, are not normally distributed. However, the probability distribu- 
tions of these variables can be calculated. 

Since ARo, AVO, and m, have a trivariate normal distribution, they can be 
expressed as linear functions of three uncorrelated normal random variables 
Y,, Y 2 ,  Y3: 

mO ' a 1 2 Y 2  ' 

AVO = a 2 1  '1 ' a 2 2 Y 2  ' a 2 3  '3 

- 
nro - '1 ' a 3 2 Y 2  ' 

And, by the inverse linear transformation, we can express the Yi 's as func- 
tions of AR,, AVO, nr, 

Y ,  = b , , A R o  + b l 2 A V 0  + b, ,W, 

y 2  b2, AR, + b 2 2 A V ,  + b2, Or, 

Y ,  - - b,, ARo -t b,2nV, f b,, A r ,  

Thus, the variances of the Yi 's uY , 's can be calculated as functions of the 
variances and covariances between the correlated variables using (24).  Since 
uncorrelated normal random variables a re  independent, the joint density func- 
tion of the Y Is is given by the product of their marginal frequency functions. 
This is the essence of the technique. 

( 1 )  

Each probability density function for Yi is approximated by a discrete dis- 
tribution having probability mass points p i  over a range of values y; extending 

k k 

13 



I f rom -La to Lo and spaced, (Lm) a apart.* Thus, 
Y i  Y i  Y i  

( i  = 1 ,  2 ,  3; k = 1, 2 ; . - ,  2N t.1) 

Y i ' t  = (+) [k -(N + u3 a Y i  

and 

for ( i  = 1, 2, 3; k = 1, 2, 3;*-, 2 N +  1) 

2N+ 1 

si = q i k  
k =  1 

The larger the integer N for  a fixed L, the better the approximation in  (25). 

*o. is the standard deviation of Yi.  
Y i  

14 



Since there a re  ( 2 N  + 1) possible values f o r  each density function approxi- 
mation, there will be a total of ( 2N f possible combinations of values for the 
joint density approximation to the Y its. Further, since the Y its a re  independent, 
the probability of occurrence of P k of each combination of values for Y 
y i k ,  y i l ,  ( j ,  k, 1 

j 1, 2, 3,  * . . )  2 N +  1) i s  givenby the product 

For each set of valses for Y,, Y,; and Y,, there is a corresponding set of 
values for ARo , AVO, and Wo by the equations in (23), and a value for one of the 
variables AE, mP and ma (by Equations (14), (15), and (16)) having the proba- 
bility p j  
tion approximation for  AE, ARp, and ma will each have ( + possible values. 

( j , k, 1 = 1, 2, 3, * * * 2 N f 1) . Thus, the probability density func- 

For purposes of machine computation, the range of each random variable 
AE, 
For all values of the variable falling within one of these intervals, the associated 
probability as given by Equation (26) can be summed since all of the ( 2 N f 1 )  
possible combinations of values for AR,, , AVO, and KO a re  mutually exclusive. 
In this way we obtain an approximation fo r  the probability that the random vari- 
able (AE, ARp , ARa) assumes values within the particular interval, and thus an 
approximation for  the probability density function. 

, and ma can be divided into a number of mutually exclusive intervals. 
P 

The cumulative distribution function is obtained by summing the probability 
density function. 

The Cumulative Distribution Function of B 

By Equation (13) 

15 

we see that B is not a linear function of the components’ of AX and therefore, not 
normally distributed. The cumulative distribution function of B can be obtained 
in similar fashion as for  AE, ARpI and ARa. However, in this case B is a function 
of only two components of AX, AX, and AX,. 



6 .  AN EXAMPLE WITH APPLICATION TO A NOMINAL 
APOLLO EARTH PARKING ORBIT 

In order to illustrate the statistical technique described in Section 5 ,  we will 
consider a nominal Apollo earth parking orbit-a nominally circular orbit of 
100 n.mi. 

Reference 3 describes the dispersions in position and velocity of the Saturn 
V Launch Vehicle at insertion due to 30 navigation parameters. Reference 4 
describes how the covariance matrix of insertion e r ro r s  shown in Table 1 and 
obtained from Reference 5 was constructed from the uncertainties (standard 
deviations) of these navigation parameters. The matrix, therefore, expresses 
the deviation of the onboard estimate from the nominal insertion condition due 
to e r rors  in the onboard navigation during the launch phase. It can be considered 
typical of the performance of the' Saturn V Launch Vehicle for a nominal Apollo 
Mission at insertion into a near-earth nominally circular parking orbit of 100 
n.mi. as of the date of this analysis (Reference 6) .  The matrix is given in  the 
U o  Vo Wo Coordinate System (Figure 1). The elements along the main diagonal 
a r e  the variances of AXi (the components of AX) expressed in units of (ft)2 and 
(ft/sec) 2 .  The off-diagonal elements a re  the covariances between AX, and 
AX, ( i  4 j )  and a re  expressed in units of (ft)*, (ft/sec)2, and ( f t ) 2 / s e c .  The 
normalized covariance matrix or  correlation matrix corresponding to the matrix 
in Table 1 is shown in Table 2.  It is also given in the U o  Vo Wo Coordinate System. 
However, the elements along the main diagonal a r e  unit variances while the off- 
diagonal elements a re  the coefficients of correIation between AX, and AX, ( i  + j ) . 

It is necessary to mention at this point that we are  assuming throughout this 
analysis that AX has a multivariate normal distribution with zero mean and the 
covariance matrix shown in Table 1. 

Table 1 

Expected Saturn V Insertion Covariance Matr ix*  ( U O  v0 W O  Coordinate System) ' - 
977736.00 -745996.00 -31.62.1120 3935.6520 -2060.5760 -15.106120 

743820.00 1493..9920 -3123.1360 1961.3040 8.9479200 

1180016.0 -18.365520 5.3787600 3499.8720 

16.197720 -8.6568800 -0.0769048 

Symmetric 5.2908400 0.02838016 

11.023800 
- 

2 *The elements along the main diagonal are the variances of A X i  expressed in units of (ft) and 
(ft/sec)2,  the off-diagonal clcmenrs arc the covariances between the A X ; ,  expressed in units of 
(ft)2, (ft/sec)*, and (ft)'/sec. 

16 
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One may ask, "What actually does a covariance matrix of insertion e r ro r s  
represent?" And, Wha t  is the usefulness of such a matrix?" 

The covariance matrix is actually a measure of the uncertainty in the state 
vector (position and velocity) at insertion due to uncertainties in the actual values 
of navigation parameters. If the guidance and control system is working properly, 
we could still expect this much variation or  dispersion in the position and velocity 
of the vehicle at insertion. 

The usefulness of such a matrix can best be seen in its providing us with a 
tool for determining expected variations and bounds (along with their associated 
probabilities under the Gaussian assumption) of some of the parameters of the 
orbit. 

Using the expressions for the variances and covariances between AR,, AVO, 
and ro in Equations (17) through (22) as well as the covariance matrix in Table 1, 
the covariance matrix of AR,, AVO,  and W o  can be obtained, and is shown in 
Table 3. Table 4 shows a normalized matrix where the elements along the main 
diagonal are the standard deviations of OR,, AVO, and AI-, , and the off-diagonal 
elements are the coefficients of correlation between these random variables. 

Table 3 

Covariance Matrix 2, of AR,, AVO,  and DT,* 

0.02644932 - 0.3 38 91053 -0.00100201 

5.29084000 0.0 158887 1 r Symmetric (0.493 00523) 10- 
*The elements along the main diagonal are the vari- 
ances of A R ~ ,  AVO, and Ar',, expressed respec- 
tively in units of (n.mi.)Z, ( f t /sec)2,  and (deg)2. 
The off-diagonal elements are the covariances be- 
tween ARo, AVO, and Are, expressed in units of 
(n.mi.)(ft/sec), (n.mi.)(deg), and (ft)(deg)(sec). 

The cumulative distribution functions f o r  some of the e r r o r s  in the parking 
orbit are shown in Figures 2 through 10, and were obtained as described in 
Section 5. 

From these figures we can see that the angular e r r o r  in the position vector 
at insertion (Figure 7), the e r r o r  i n  eccentricity (Figure 8), the perigee e r r o r  
(Figure 9), and the  apogee e r r o r  (Figure lo) ,  are non-Gaussian and do not have 
zero means. 
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Table 4 

Normalized Covariance Matrix 
o f m , ,  ov,, nr,* 

p.16263246 -0.90597355 -0.8774840;/ 

2.30018258 0.98378570 1 
ymmetric (0.7 0 2 14 3 3 1) 10- 'J 

'The elements along the main diagonal are the 
standard deviations of A R ~ ,  Avo, and Aro, ex-  
pressed in (n.mi.), iftisecj, and (deg). The off- 
diagonal elements are the coefficients of correlation 
between ARo, Avo, and Arc,. 
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Figure 4. The Cumulative Distribution Function of the Error in Insertion Flight Path Angle A r o  
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Figure 7. The Cumulative Distribution Function of the Angle Between the Actual Position Vector 

and the Nominal Position Vector at Insertion B 
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Figure 8. The Cumulative Distribution Function of the Error in Eccentricy AE 
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Table 5 

Lower and Upper 99.5% Probability Points for the Errors  
in the Parameters of the Orbit 

E r ro r  Lower 99.5% Point Upper 99.5% Point 

-0.7 km (-0.4 n.mi.) 

-1.8 m/sec (-6.5 ft/sec) 

-0.018" (-0.3 mrad) 

-0.016 (km/sec)* +0.016 (km/sec)2 

+0.7 km (+0.4 n.mi.) 

+1.8 m/sec (+6.5 ft/sec) 

+0.018' (+0.3 mrad) 

4 3  

% 
mo 
nc3 

AA -1.7 km (-0.9 n.mi.) +1.7 km (+0.9 n.mi.) 

B +0.0002" +0.0085" 

AE + 0 .O 00 1 (dimensionles s )  

-4.7 km (-2.5 n.mi.) 

-0.2 km (-0.1 n.mi.) 

+ 0 .OO 048 (dimensionless) 

+0.2 km (+0.1 n.mi.) 

+4.5 km (2.4 n.mi.) 
% 
ARa 

Table 5 summarizes the results of this analysis in tabular form, showing 
both lower and upper 99.5% probability points for the e r r o r s  in the parameters# 
Thus, there is a 99% probability that the e r ro r s  in these parameters will lie 
between these indicated values. 

It is significant to note that there is a 99.5% probability that perigee e r r o r  
will exceed -2.5 n.mi. or that the actual perigee height will exceed 97.5 n.mi. 
for  the nominal 100 n.mi. circular parking orbit. Likewise, there is a 99.5% 
probability that the actual apogee height will be less than 102.4 n.mi. 

From the above we see  that the actual parking orbit should be very close to 
the nominal circular orbit of 100 n.mi. This is also evident from inspection of 
Figure 8 where we see there is a 99.5% probability that the e r r o r  in eccentricity, 
and hence the eccentricity, will be less than 0.00048. 

Figure 11 shows a comparison between the cumulative distribution function 
of perigee e r ror  using Equation (15) and a cumulative normal distribution func- 
tion having the same mean and standard deviation. The difference between the 
curves is significant. For example, using the normal distribution, there is a 
99.5% probability that the perigee e r r o r  will exceed -1.7 n.mi. and a 99.5% 
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Figure 1 1 .  Comparison of the Cumulative Distribution Function of the Error in Perigee with a 

Cumulative Normal Distribution Having the Same Mean and Standard Deviation 

probability that the e r ro r  will be less  than 1.1 n.mi. From the calculated curve 
the corresponding points a re  -2.5 n.mi and 0.1 n.mi. 

Combining Tracking Errors  and Insertion Er ro r s  

As a further example, we will  show how insertion ship tracking e r ro r s  (cal- 
culated minus actual) can be combined with insertion e r r o r s  (actual minus 
nominal) to answer such questions as,  "For a nominally circular parking orbit 
of 100 n.mi., what is the probability that the calculated perigee height will exceed 
a given amount? 

At insertion of the Apollo spacecraft, the following parameters: 
. 

r l  radius 

speed "1 

flight path angle 7, 
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will be determined from one minute of ship's tracking data. In Reference 1 it is 
required that these parameters be determined to the following accuracies: 

3 o r ,  = 2.4 n.mi. (4.44 km) 

3 uV 

3 o y  = 0.16" (2.79 mrad) 

= 16 ft/sec (4.87 m/sec) 
1 

Let 

be an e r r o r  vector representing the e r r o r  or  deviation of the actual insertion 
radius, speed, and flight path angle from the nominal, and let 

be an e r r o r  vector representing the deviation of the measured o r  calculated 
insertion radius, speed, and flight path angle from the actual. 

Then 

is an e r ro r  vector representing the deviation of the measured o r  calculated in- 
sertion radius, speed, and flight path angle from the nominal. 

For this example, we will assume that &To and AZ, a r e  independent e r r o r  
vectors each with a trivariate normal distribution, having zero mean vectors and 
covariance matrices and C, respectively. Then AZ has a trivariate normal 
distribution with a zero mean vector and covariance matrix 2: 



Since it is practically impossible to determine the actual coefficients of 
correlation between the e r ro r s  OR,,  AV,, and W,, the analysis has been carried 
out for coefficients of correlation of 0.0 (uncorrelated) and *0.9. That is, all 
possible combinations of signs have been considered with the expection of those 
for which the covariance matrix Xl becomes singular. The possible combinations 
are: 

A,, PAT, AY, Ayl 

f 0.9 + 0.9 + 0.9 

+ 0.9 - 0.9 - 0.9 

- 0.9 + 0.9 - 0.9 

- 0.9 - 0.9 i- 0.9 

The matrix X l  is shown in Table 6 for the case p ~ ~ ,  A,, = pArl A,, 
= 0.9. - - 

AY, 

Table 6 

Covariance Matrix Z, of 
AR, , Av, ,  and Ar,* 

0.64 3.84 0.038400 

28.4444 0.25600 

Symmetric 0.002844 

*The elements down the main diagonal are the 
variances of AR1, Av1, and Arl expressed in 
units of (n.mi.)Z, (ft/sec)2, and (deg)2. The off- 
diagmal elements are the covariances between 
AR1, AV1, a d  Ar1, expressed in units of 
(n .mi.)( ft)/sec, (n.mi. )( deg), and ( ft)(deg)/sec . 

The matrix C obtained by adding C o  (Table 3) and 2 (Table 6) is shown in 
Table 7. Similar matrices can be obtained using other coefficients of correla- 
tion indicated in (31) and P A -  A.. = \r, - PA,, A = 0.0. - 

"'1 -'1 - ' I  --r, 

Using these matrices and the method outlined in Section 5 ,  the probability 
distribution of the perigee e r ro r  can be calculated. 
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Table 7 

* 
,o 1.0 

9 
8 

12 

9 

v) 

5 0.8 
w Y 

c* 
W 

0.6 

c 

2 
3 0.4 
4 
U 
I- 

9 
c 0.2 c 

i 
m 
2 

Covariance Matrix2 of (AR, + ARl) , 
(AVO +AV1) , and (m, + W l )  * 

-_ -- 
- TRACKING COEFFICIENTS OF CORRELATION . y- 

LEGEND ' A r l A v ,  ' A r l A Y 1  'AvlA71 

- -0.9 

--- +0.9 t0.9 f0.9 

---- 0.0 0.0 0.0 

I 
NOTE: THESE CURVES ARE BASED ON 

A NOMINAL 100 n.mi. ORBIT. 

0.66644932 3.50108947 0.03739799 

33.73524000 0.27 18887 1 I Symmetric 0.00289330 1 
'The elements along the main diagonal are the 

variances of ( A R ~  + AR I),  (AVO + AV I), and 
(Aro + AT,), respectively, expressed in units of 
(n.mi.)z, (ft/sec)2, a d  (deg)2. The off-diagonal 
elements are the covariances between these ran- 
dom variables, expressed in units of (n.mi.)(ft)/ 
s e c ,  (n.mi.) deg, and (ft)(deg)/sec. 

(n.mi . )  
NASA-CSFC-TLOS 
MISSION L TRAJECTORY ANALYSIS OIV1110* 
niuncn 551 DATE 4/28/b8 
nv, C.W. M ~ , ~ ~ .  4.. CLOT NO. IOU 

Figure 12. Probability That Calculated Perigee Height Exceeds r p ,  

28 



Figure 12 shows the cumulative distribution function of the calculated perigee 
height for a 100 n.mi. parking orbit and several combinations of coefficients of 
correlation between ARl , AV, , and M', . 

= + 0.9, and 
'1 A,, In order to compare these curves, we note that if 

- = &0.9, there is a 90% probability that the calculated perigee 
height is greater than 90.8 n.mi. If the e r ro r s  a re  uncorrelated, there is a 90% 
probability that the calculated perigee wil l  exceed 92.3 n.mi. If pAr, A,, = - 0.9, 
PAr, Ayl = * 0.9, and PA,, A,, = T0.9, there is a 30% probizbility that the calcu- 
lated perigee height will exceed 93.7 a m i .  

PArl Ay, - AY, 

CONCLUSIONS 

Distributions 

A statistical technique has been described for analyzing the effects of in- 
sertion e r ro r s  (deviations of actual values from nominal values) on the param- 
eters  of near-earth circular orbits. The technique assumes that the e r ro r  in 
the state vector (position and velocity) of the vehicle at insertion has a multi- 
variate normal distribution with zero mean and a given covariance matrix. 
Probability distributions for some of the e r r o r s  in the parameters are obtained 
numerically using Keplerian two-body equations of motion. Results of the 
analysis indicate: 

(1) Perigee e r ro r ,  apogee e r ror ,  the e r r o r  in  eccentricity, and the angular 
e r r o r  in the vehicle's position vector at insertion a re  non-Gaussian 
with non-zero means. 

The Apollo Parking Orbit 

The technique has been applied to  a nominal Apollo earth parking orbit using 
an expected covariance matrix typical of the performance of the Saturn V Launch 
Vehicle at insertion into a near-earth nominally circular parking orbit of 100 
n.mi. Results of the analysis indicate that: 

(2) The actual near-earth parking orbit will be close to the nominally cir- 
cular 100 n.mi. orbit. For example, there is a 99.5% probability that 
the actuai perigee height wiii exceed 97.5 n.mi., and a 99.5% probability 
that the actual apogee height will be less than 102.4 n.mi. 
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Combining Tracking Errors  and Insertion Er ro r s  

As a further example, insertion ship tracking e r ro r s  and insertion e r ro r s  
have been combined. The analysis indicates that for 3 sigma values of 

3% 

3% 
3 ~ 7 ~ ~ ~  = 0.16" (2.79 mrad) 

= 2.4 n.mi. (4.44 km) 

= 16 ft/sec (4.87 m/sec) 

for  the insertion ship's tracking e r r o r s  (calculated minus actual) in insertion 
radius r 1, speed vl, and flight path angle yl, and for coefficients of correlation 
of +0.9 between these errors :  

(3) There is a 90% probability that the calculated perigee height will exceed 
91 n.mi. for  the nominal 100 n.mi. parking orbit. 
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