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STABLE IMPLICIT AND EXPLICIT NUMERICAL METHODS FOR
INTEGRATING QUASI-LINEAR DIFFERENTTAL EQUATIONS
WITH PARASTTIC-STIFF AND PARASITIC-SADDLE
EIGENVALUES
By Harvard Lomax

Ames Research Center
SUMMARY

Certain classes of coupled, quasi-linear, ordinary, differential equa-
tions contain eigenvalues in their associated matrix which make them difficult
to integrate by means of conventional numerical differencing schemes, even
when the solutions are continuous and nonsingular. Two classes of such
"parasitic” eigenvalues are defined and general ways in which their effects
can be suppressed are discussed.

INTRODUCTION

Special classes of differential equations (both ordinary and partial),
termed gquasi-linear, are defined by the ccondition that the highest order deriv-
ative terms appear explicitly and to the first power only. For ordinary dif-
ferential equations these can be written

[B]%' = C (1)

where the elements of [B] and E can depend upon ; and upon the independent
variable t. This equation can be written formally

¥t = [B]7Y T = F(W,t) ‘ (2)

Cases in which [B] ™! does not exist (det(B) = 0) are of special interest and
lead to the study of critical points, and in particular, for the discussion in
this paper, to the study of saddle points.

We are principally concerned with the practical situation when .ﬁ has a
nonlinear dependence upon . However, we assume this dependence is continu-
ous at least through the first derivative. In such cases, we can make a local
Taylor series expansion of ¥ about some reference point n, where t = nh
and h is a small (step) interval. Equation (2) then becomes

_T/;' = [An]% + .:—f.>l’l + hzé?t’t (33)
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-
where [An] is the Jacobian of F with respect to w and

- - -

£y = Fy - [Aplwy, (3p)
and. é;t is bounded as h — O.

If the term h®er; 1s neglected in the interval nh <t < h(n + 1), the
result is, in that step, a set of coupled, ordinary, llnear differential equa-
tions. Further, if equations (2) are autonomous (i.e., ¥ does not depend
explicitly on t), they are linear equations with constant coefficients. In
carrylng out practical numerical calculations, the elements of F (or [An] and.
fn, if that form is used) are varied from step to step. This "capbures" the
nonlinear effects by embedding local polynomlals of O(hz) in the calculations
as they proceed. If equations (3) are used, W is approximated to O(h®).
Further, if in each successive step a method is chosen that is stable for the
local linearized form in that step, overall or "global" stability is assured
in the sense described below.

There are two common approaches to the numerical integration of differen-
tial equations. One is to use explicit differencing formilas and apply them
directly to equations (2), without ever actually formulating equations (3).
These methods can have unlimited accuracy (since the local linearization is
never carried out) and, in the author's experience, have stability properties
that correlate extremely well with the eigenvalues of [Ap] (as if the local
linearization actually had been performed). However, all explicit methods
have a finite (and, practically speaking, rather limited) stability boundary.
The optimization of explicit methods, from the point of view of stability, is
treated in reference 1, and briefly reviewed in the section Highly Stable
Explicit Methods.

Another approach ig to use implicit methods. A general discussion of
this approach 1s the intended contribution of this paper. In the implicit
case, equations (2) are in fact put in the form of equations (3) and treated
as coupled linear equations in a single step. The elements of [Ap] must be
reevaluated at each step, although it is consistent with the accuracy involved
to do this numerically rather than analytically. For example, use of the
formila '
a‘.ZENF(l 01w) F3(0.99 w3)

1J Ow: 0.02 wj

has given good practical results. Since calculating all the ajj for each
step can be quite time-consuming, it is advisable to know when it is and when
it is not worthwhile. This leads directly to the subject discussed next.

GENERAL COMMENTS ON THE CONSTRUCTION OF NUMERICAL METHODS
FOR INTEGRATING ORDINARY DIFFERENTTAL EQUATTIONS

It is unlikely that "new" combinations of linear equations that connect a
function, u, and its derivative, u', at a series of reference points,



equispaced or not, will improve existing methods for the numerical integration
of general sets of coupled ordinary differential equations having the form
given by equations (2). If nothing special is known a priori about the dif-
ferential equations, the standard fourth order Runge-Kutta method 1s probably
the "best." It is self-starting, has low storage capabilities, is easy to
program, has good accuracy O(h®), and, as we shall presently see, is more
stable than any of the standard predictor-corrector processes (e.g., Harming's,
Adams-Moulton, etc.).

Nevertheless, it is still popular to publish numerical integration meth-
ods for general classes of ordinary differential equations (see, e.g.,
refs. 2—5). These methods are meant to compete with, or improve upon, the
classical ones mentioned above. Under what qualifications they do, or do not,
is a subject discussed in reference 6. Por the most part, their development
seems to be motivated by a popular misconception that one can "break through"
the Dahlquist stability "barrier." Now the Dahlquist stability theorem is the
result of a rigorous proof (see ref. T7) based upon certain premises. One of
these premises is that the function and its derivative are evaluated at, and
only at, a series of equispaced points. Another is that a predictor is fol-
lowed by only one corrector. Under these conditions Dahlgquist shows that no
linear stable equations relate upyi and uﬁ+i, i=1,2, - - -, k (i.e., k-step
methods) with an accuracy of order greater than k + 2, if k 1is even, or
k+ 1, if k is odd. But if the conditions described above are violated in
any way, the theorem no longer applies.

In order to avoid the confusion and ambiguity that can arise when we try
to classify explicit methods according to (computational) step size and step
number, the representative step size is introduced such that:

H = the distance a solution is advanced after
two evaluations of the derivative. (L)

If both the accuracy and stability of a method are referenced to this parame-
ter, truly significant comparisons can be made amongst all types of numerical
integration procedures involving linear connections between the function and
its derivative. Let us next consider two examples.

The standard, fourth order, Runge-Kutta method is usually referred to as
a one-step method. When it is cast in predictor-corrector terminology, it can

be written (1) N .
ULn+% = Un * <§> Un (5a)
h A 4
ur(li_i. “ Ut <§> “I(;ia | (5b)
(3) _ (.};> (2)"
Uppy ~ U F 2 2 un+§ (5¢)
_ 1/n (3)' (2)' (2)' '
Upsy T U0 T3 <2> Yty T gum_é. + 2un+% T up (5d)
3



Graphically (see definition of symbols in table I) it appears as shown in
sketch (a). From the sketch we see that the reference step size, H, is half
that usually used in the computations. The example shows clearly that

TABLE I.- DEFINITIONS OF SYMBOLS USED IN SKETCHES

Symbol Represents

O Value of function predicted from data at
previous steps.

+ Derivative calculated using [J .

O 1. Value of corrected function using data at
previous steps and predicted data at this
step, or .

2. Value of function calculated using implicit

method.

X Derivative calculated using O -

references to accuracy and stability on
the basgis of a calculation step size,
h, and step number, k, (for egs. (5) is
k equal to 2 or 1?) are untrustworthy
Euler predicior N —, since the step designatiog is arbitrary.
Eq. (50) Eq. (5b) On the basis of H, equations (5) have
the error terms

+ +

()
e N —]

fo—— N —— o

1 5

e = —— (o 6a
R r\ = 15 (oH) (62)

u2H5 3 2 2 3
ery =-7g5 (k7 - 50u% + 100%u - 300°)

Nystrom predictor Milne corrector
Eq. (5¢) Eq.(5d) (6b)
Sketeh (a).- Standard, fourth-order, Runge-Kutta
method.. for the complementary and particular
solutions (respectively) to the representative equation

u'! = gu + eth (1)

There is, generally, no connection between step number, k, and the accu-
racy and stability of a method. This has been discovered by various authors
(see refs. 2-5), and has led to the introduction of terms such as "hybrid" and
"combined" methods, terms which indicate (simply) that the premises required
for the validity of Dahlquist's theorem have been abandoned.

Typical of the hybrid or combined methods (for a complete analysis see
ref. 6, pp. 93-95) is

L



(1)

TR
n+i.s nt1 15

t 1 (1) !
268un+l +22u - 230un+o.8> (8a)

- 25u<l)' (8b)

n+o.8

h 4 ? 1 o) (l)'
Yo = Ynea Y18 7un+1 tu, t 5un+:|_.8

which has the graphical representation shown in sketch (b). Its error, when
applied to equation (7), is given by

L L s ek

| i er = == (uH)S (9b)

|
I
t=—nh : h i
! ! 20
|—o.8h~ |—o.8h~ CI
“Predictor” “Corrector” Clearly, equations (9) are much more
Eq.(8a) Eq.(8b) accurate (when oH is small enough
Sketch (b).- A typical "hybrid" or "combined” for.the flrst'mlssed ?erm in a.Taylor
method . series expansion to give a valid

approximation of the total error) than
equations (5); but they pay the usual price: they are less stable.

Now the stability of a method depends upon the roots to its characteris-
tic equation when that method is used to difference equation (7). The stabil-
ity of Runge-Kutta methods is analyzed in many places (see, e.g., ref. 6).

The characteristic polynomial for equations (5) (in terms of the displacement
operator E = eh(d/dx)) is

P(E) =FE - 1 - oh - % (oh)2 - % (oh)® - —2% (gh)* (10)

Tt has only one root (the principal one) and this root represents OB
exactly through the fourth order. The P(E) for the ith order Runge-Kutta
method represents eoh exactly through the ith order, at which term it ends.
The detailed behavior of these roots, as oh ranges from zero through a vari-
ety of complex values, is shown on page 83 of reference 6 for the second,
third, and fourth order methods. The stability boundary |0H|c (defined pre-
cisely in the next section) is shown in
2 : sketch (e¢). From this sketch we see
that the fourth order Runge-Kutta
B method is the best of all Runge-Kutta
loHl | P ] p~—a methods (i.e., minimizes machine com-
/ \ s puting time) when applied to coupled
/ \\ A ordinary differential equations with
é ! YW i parasitic (stiff) eigenvalues (a term

4 6 8 10 : . - -
Order of Runge- Kutto method defined precisely in the next section).

_ s The characteristic equation for
Sketeh (c). - Gemeral stebility boundary of 1o method defined by equations (8) is
a cubic, so that it contains two spuri-
ous roots. However, both of these roots go to zero when h goes to zero.
Because of this the method is said to have "Adams-Moulton stability" (this



property is characteristic of all Adams-Moulton methods), and equations (8)
bave guaranteed stability for small enough h. The detailed behavior of all
the roots is shown on page 96 of reference 6, and the general stability bound-
ary is shown in sketch (d). Although the method is quite accurate, it is not
suitable for coupled equations with

4 v =7e' parasitic eigenvalues because of its
]— low stability boundary.

oH 2 oH] An analysis of the above examples
¢ (and many others presented in ref. 6)

o . ._L leads to the conclusion expressed in
w2 3m/4 g - the first sentence of this part. This
Sketch (d).- General stability boundary for does not mean, however, that valuable

equations (8). numerical methods (of the type being

considered) cannot still be formulated. What appears to be needed are studies
of special methods designed for special classes of equations (among which the
quasi-linear equations (2) are already a special case). For example, if some-
thing is known about the eigenvalues in the local associated matrix in equa-
tions (3), particular numerical methods can be constructed which are superior
to the classical ones for the particular parameters involved. Such cases are
congidered below.

DEFINITIONS AND TERMINOLOGY

We wish now to introduce some general notation and define precisely some
terms used in the later discussion. First, consider M coupled, linear,
ordinary differential equations with constant coefficients and (for simplicity,
though it is not essential) distinct eigenvalues. Then

=

->
W= AT f (11)

o
C'.

where, 1f cpj are constants dependent on the initial conditions, t = nh, and
o; are the elgenvalues of [A],
M
W= j{: cmj(ecjh)rl + Particular S. , m=1,2, « +, M (12)
J=1

Next choose any set of linear, difference-differential equations with constant
coefficients (e.g., Runge-Kutta, Adams-Moulton, Hamming's, etc.) and symbolize
it by the operator L. By itself L represents any linear set of differenc-
ing operations composing a method; on the other hand, L. refers specifically
to linear explicit methods, and Lj; +to linear implicit ones. Thus if Lg

represents the predictor et - Yn + huﬂ followed by the corrector

_ 1y (! ; - ;
Uy = u, + 3 h UL + u, ) » the operation Le(u = gu + f) results in the

difference equations

6



L)

n+i

1

(1 + oh)u, + hfy,

Il

L (1) 1
w_ . =un+3oh <Fn+1 + u%) + 3 h(fpyq + fn)

having the characteristic polynomial

P(E) =E -1 - ch - % o®h® = 0

For arbitrary L the operation L(u' = ou + f) results in a set of difference
equations, the solution to which can always be written

k
up = ZE: B;(As)™ + P.s. (13)
i=1

where A; are the roots to the characteristic polynomial P(E) = 0. The
value of these roots depends on the choice of L and, in particular,

N = gi(oH) , i=1,2, ++« «, k (1ha)
A = e 4 o@d) (1Lp)
Ny are the spurious roots of the numerical method if i > 1
Bs are constants dependent upon the initial conditions
H is the representative step size defined in equation (4)

It should be noted that:

The value of 1 depends upon the order of

the local Taylor series which L embeds in

the calculations. In general, I is inde- (15)
pendent of k even for stable L. Dahlquist

imposes special conditions under which 1

and k are connected if stability is imposed.

The function g5 depends entirely upon the (16)
choice of L. }

Now it can be shown (see ref. 6) that the operation L(; = [Alw + ?) results
in a set of coupled difference equations, the solutions to which can always be
written

M k
— n
Ymn T }Z }: ij(%ji) + P.S. , m=1,2," ", M (A7)
J=1 i=1

=



where

Ay =giogE), 1=1,2, - ki J=1,2, - M
oiH
Njp =ed + o(m?)
xji are the spurious roots of the numerical method if 1 > 1
Emj are constants dependent upon the initlal conditions

It should be noted that:

If, and only if,l the same L 1s applied
in a given calculation step, h, to all the
equations in a coupled set, the numerical
accuracy and stability do not depend upon
the elements in [An] except as those
elements affect the eigenvalues 0.

Under the same conditions as in (19), the
functions g; in equations (1ka) and (18a)
are identical.

The following definitions can now be formulated.

A set of differential equations is inherently stable if
Re(cj) £0, j=1,2, ¢ * *, M.

If a set of differential equations is 1nherently stable,_,

the set of difference equations formed by L(W = [A]W + f)
has an induced 1nstab111ty if |KJ1| |gi(ch)| > 1,
jg=1,2, « « ,M; 1 =1, 2, - ,k. (Note that i =1

is included.)

If Re(o JH) < O, the value of o0jH for which any increase
in H makes |%J1| = Igl(d H)| > 1 is labeled |GJH| and
called the general stablllty boundary, or simply, the
stability boundary.

If we set o3 = EJeie (where Gj and 6 are real), and let
U sH < O, the value of 0:;H for which any increase in H
makes |K ;| = |lgi(oH)| >'1 is labeled |oH|, and called

the real stability boundary. Similarly, the value of
10 :H for which any increase in H makes

|KJ1| lg1(iG5H) | > 1 is labeled |ioH|c and called the
imaginary stablllty boundary.

(18a)

(18p)

(19)

(20)

(21)

(22)

(2k)

1proof of (19) is given in reference 6. It should be noted that roundoff
effects (which may be important) are neglected in all statements made in this

report.

8



Methods for which ‘dch <o are called conditionally stable. (25)

All explicit methods are conditionally stable. A proof is } (26)
given in reference 1.

Certain classes (containing any order of accuracy) of
implicit methods are unconditionally stable. This is } (27)
discussed in the last section.

The g; can be divided into two classes:
1. Driving eigenvalues, g of them with subscript d, say, and
2. Parasitic eigenvalues, M-qg of them with subscript p

and the parasitic eigenvalues can be subdivided into two groups: parasitic-
stiff and parasitic-saddle. The definitions follow:

Driving combined with parasitic-
stiff eigenvalues result when

lcd‘ << ‘op‘

(28)
a M

EEZCJ(eGJH)z >> 251 lcj(eGJH)pl

J=1 J=q

Driving combined with parasitic-
saddle eigenvalues regult when

Re(O’)p >0

Re(o‘)d <0

9

. (29)
E; CJ(eUJH)d # 0

J=1
M
osH _ .
E: cj(e J )p =0 (analytically)

J=a j

EEegieeen



THE CONTROL OF PARASITIC EIGENVALUES

Congider the following numerical problem: How can one integrate coupled,
quasi-linear, differential ‘equations with both driving and parasitic eigen-
values, letting the step size be determined by the driving ones, and, at the
same time, introducing no significant errors due.to the parasitic ones?

Of course, one could always locally linearize the equations and uncouple
them. But this, in effect, requires not only finding the elements of [A], but
also the eigenvalues and, what is more drastic, the eigenvectors themselves.
The remarkable thing is that, although there are cases for which finding the
elements of [A] is advisable, actually calculating the eigenvalues or eigen-
vectors 1s unnecessary. It is a direct consequence of (19) that, under the
gqualifications noted, any standard, linear, differencing scheme integrates the
coupled equations by seeking out each individual eigenvalue and integrating it
as if the others did not exist (see footnote 1). Under these conditions, a
step size can be chosen that will integrate one group of eigenvalues completely
inaccurately but another group with high accuracy, and 1f the two groups are
coupled together, the high accuracy would remain for the one in spite of the
large errors in the others. (An example is given in ref. 8, pp. 35-36.) How-
ever, in general, all the coupled solutions would be inaccurate, and the highly
accurate results could only be recovered by uncoupling the final answers.

While the last remark is interesting, it 1s not quite at the heart of the
matter. Consider instead the following logic which is, in fact, the "solution"
to the problem posed at the beginning of this section.

1. Let the coefficients cj of (ede) in equations (28) and (29) be
made small with respect to the coefficients of (eFjl)g by choosing appropriate
initial conditions at the commencement of the numerical integration.

2. Choose any numerical method, L, that is stable for all (ojH)p with
total disregard as to its accuracy for them.

3. Let the same L be both stable and accurate for all (UjH)d.

4. Then, in applying L +to a set of differential equations in which
(0jH)p and (ojH)g are coupled in any fashion, all of the coupled solutions
will be accurately resolved and will represent the solution due to the driving
eigenvalues as if the parasitic ones had been removed. -

HIGHLY STABLE EXPLICIT METHODS

Some highly stable explicit methods for integrating coupled, autonomous,
quasgi-linear, differential equations with real, parasitic-stiff eigenvalues
were developed in reference 1. For the sake of completeness, the subject is

briefly reviewed in this sectionm.

10



The characteristic equation for any explicit method, Le, is a monic
polynomial of the general form

EX 4 Pk_l(orH)Ek'l 4+« + P(oH) = 0O (30)

where the PJ(UH) are themselves polynomials in oH. Highly stable explicit
methods for real, parasitic-stiff eigenvalues can be constructed, if Le is
chosen so that the roots to its characteristic polynomial, equation (30),
. behave like those shown in sketch (e).
i The principal root ?%St correspond to
N v > the expansion of e through order
2%2%?%7 "oy demend® 3 if the accuracy of Le is to be
Mo *l A behave ke e o(372),  Agide from this, it is only
— =, necessary to make the magnitude of A\i
> " stability demands and all the spurious roots Ai, i > 1
//// A//%ff fhat IAjl<k il (if there are any) less than one for

2,...,
47 as large a range of -0H as possible.

t"la—ch

In reference 1 one-root methods

Sketch (e). were developed for autonomous equa-
tions by finding the b, in
N —

A= 1+ on+ 2 (G0)2 4 E: by (F0)™ = %2 + 0o(n®) (31)
n=a

such that |oH|. in sketch (e) was maximized in a least squares sense. (The
actual optimum polynomials are unknown for N > 3.) A summary of the results
is contained in the following chart.

v [ 2] s e] o ]

lonl, |12 |17 |25 (35 | |57 |70
loH|o | 5.5 | 7.2 | 8.6 | 10.1 | 11.4 | 12.7 | 1k.2

Notice that methods can be constructed that are highly stable for complex
or even imaginary oj. Furthermore, they can be constructed such that they
are stable in certain bands of oH

Stable . and unstable in other bands. For exam-
PN N 4 a ple, taking again the case for real ¢
| Accurate (not only for simplicity, but since
W_—%}H this is a practi?al)situation), the
i Z/77, b in equation (31) could be chosen
~_ sg that the curve in sketch (f) would
Sketch (f). result. The method Lg which had

such a (single) root in its

11
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characteristic polynomial would be stable when used to integrate differential
equations with rather large negative eigenvalues, provided the intermediate
smaller set did not appear in the coupled group. This kind of method has not
been thoroughly exploited, but it is
- 30 not impractical. An example of its
use is contained in the method sug-
gested by Treanor (ref. 9). If
Treanor's method i1s applied to the rep-
120 resentative equation (7), its stabil-
ity bounds would be those illustrated
Ph in sketch (g). The parameter P can
either Dbe fixed,2 or varied as the
integration proceeds. Maximum stabil-
ity for all ¢H in the range
0>gH > -|oH|e is found when Ph = 8
and gives |GH|c = 5, a considerable

Asymptotic to |

Unstable

Unstable

-10 -5 b oo GH improvement over the Runge-Kutta meth-
“41h order Runge - ods shown in sketch (c). For higher
Kutta boundary values of Ph stability can be
attained for larger -0H, provided
Sketch (g).- Real stability bounderies for they lie in the stability corridor
Treanor's method. shown in the sketch.

HIGHLY STABLE IMPLICIT METHODS

The explicit methods Jjust discussed have the advantage that they can be
applied directly to equations (2) and have the theoretical capability of inte-
grating those equations with arbitrary accuracy. There are many practical
cases, however, for which their limited stability boundary makes them very
costly to apply. In such instances the use of implicit methods may be advis-
able. To compare the efficiency (measured with regard to machine running time)
of implicit methods with explicit ones is not a simple matter because the
former require the step by step conversion of equations (2) to equations (3),
and the subseqguent solution of simultaneocus algebraic equations. An attempt
at a rational comparison is presented in reference 8. In this report the capa-
bilities of the implicit methods are considered without regard to their effi-
ciency. With these words of caution, we return to the use of the calculation
step size, h, as the reference parameter in estimates of stability and
accuracy.

From the point of view of the computer, the principal difference between
explicit and implicit methods is that the latter require the solution of M
simultaneous algebraic equations at each step. From a more abstract point of
view, the fundamental difference between the two is that the characteristic
polynomial for the implicit methods is no longer monic, and can always be
written in the form

ZTpeanor takes P at each step to be the ratio of certain terms in the
first two steps of a standard fourth-order Runge-Kutta process. For an
analysis of Treanor's method see reference 1.

12




P (oh)ES + B, (Gh)E"™" + . . . + Po(oh) = 0 (32)

where the Pj(oh) are polynomiasls in och. This difference is extremely
important.

Consider, for example, the implicit modified Euler method. ILet Lj
represent

1 1 t
W, St 3 h(upy, + up) (33)

Then Li(u' = gu + f) results in the difference equation

l =
<? -5 G%) uh+1 <? +

having the characteristic polynomial
<l—%0‘h>E-<l+%o‘h>=O (34)

ch

|-

1
ch u, + ’2_ h(fn-]—l + fn)

The single root

N1 (35)

1l

gh

N =T

has a magnitude that is less than 1
(see sketeh (h)) for all Re(oh) < O,
and the method is, as is well known,
unconditionally stable.

é%%%???%@;g?ﬁyc//' m?wm L Not all implicit methods are uncon-

: ditionally stable. For example, if Lj
4 8 represents the Adams-Moulton, two-step-
corrector used implicitly

. 1 ' 1 !
//////’ Uptz = Untr + 75 h(5untz + Supty - un)

Sketch (h).- Real stability boundary for implicit ( 3 6)
modified Buler method (eg. (33)).

—
>

N

ql
-

-1

Asymptotic to -1
-2

R

-3

the operation Li(u' = gu + f) results in the characteristic polynomial

<—1%crh>E2—<l+l—82-0'h>E+I12—oh=O (37)

which is unstable if ©oh < -6.

13
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On the other hand, unconditionally stable methods with any order of
accuracy can be constructed. The graphic description of a class of them is
shown in sketch (i) for equispaced data. These are sometimes referred to as
the backward difference formulas and
the first five of them are given in
reference 10, pages 96-98. These
methods can be "more stable" than the
modified Euler method in the sense
o T N o that the roots to their characteristic

polynomials are smaller for large ‘dhl.
Sketeh (i).- Unconditionally stable implicit For example, the two rootsg derived
methods. from the use of

Upto = % (bupys - up + 2hupyo) (38)
are
2 +~N1 + 2ch
A = 3 - 2oh (39a)

2 -~N1 + 20h

A2 = 3 - 2on (390)

Both have magnitudes less than 1 for all Re(oh) < 0, but behave asymptotically

as 1N lohl, rather than as 1 for the modified Euler case. Their variation for

real oh is shown in sketch (j). Equation(38)has been used in boundary-layer
studies (ref. 11), and equation (33)
is extremely popular (ref. 12) for use

A
t in studying parabolic partial differ-
Ton ential equations, in which discipline
i end 2] 2-ZL/ they are known as the Crank-Nicholson
o | - equations.
é%ég Ao Siabl :
4 4 \Ji—_T ] ——— Dahlquist has shown (ref. 13)
y ,/5///;(0{45/’:7 {cl,{;_ 4 %s °"  that only one Lj with p =2k + 1
is unconditionally stable, and in fact,
-2+ the method is that given by equa-
1 tion (33). In this statement p
refers to the highest order of the

embedded Taylor series that accurately
represents e%h  in the expansion of
Ay = g1(oh) (i.e., p=1 -1 1in

eq. (1%b)), and k is the step number in an equispaced, multistep, linear
method. Dahlguist is sometimes misquoted as saying that only one implicit
method is unconditionally stable, namely, equation (33) which has an error
O(h3). However, his theorem states nothing about the order of accuracy that
can be achieved in unconditionally stable implicit methods. What it does

state is that if, for example, an unconditionally stable, four-step, equispaced,

Sketch (j).- Real stability boundary for implicit
method given by equation (38).
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linear, implicit method is used, its embedded Taylor series expansion can be
accurate, at most, through the term (1/24)(ch)*.

Aside from the hypothesis of equispaced steps in Li, there is another
gqualification underlying Dahlquist's theorem discussed in the previous
paragraph; namely, that [Ap] is used only to the first power. Let us consider
this next in more detail.

The operator L4 converts the (locally) linear differential equations
into a set of M algebraic equations that must be solved by the methods of
linear algebra._ For example, if Lj refers to equation (33),

- - .
Li(w = [Ap]w + fn) results in

-> - 1 e -> -> -
which can be rearranged to form

<[I] - '12__ h[An]> (;;n-i-l - -V;n) = h[An];n + h—fn (Ll-l)

Now it 1s clear that equation (33) is a special difference-differential
relationship from the class

1" 11
Unti = Un + h(aluﬁ + a2u£+l) + h%(byup + boupty) + - - - (heoa)

which is, in turn, a special case of multistep groups (note, eq. (42a) only
relates data between one step) with higher order derivatives. In this report,
however, attention is restricted to equations (%42a) and, in particular, to

t ! = "
u.n+l = Un + haun + h.a2un+l + h bgun+l (l"gb)

since it displays all the esgential points to be made. Now if u' = ou + f,
where o is a constant and f 1is also a constant (i.e., autonomous equations,
the only kind we will consider in the following), u" = ou' = g2u + of. Let

L; represent equation (42b). Then the operation Lj(u' = ou + f) results in
the difference eguation

Un+i = (l + aUh)U.n + Uh(ag + bgUh)un+l + hf(a + aos + thg) (Ll-3)
which hasg the characteristic polynomial
(1 - azoh - b2o®h®)E - (1 + ach) = 0O (hk)

The single root expands to give

15



1 + ach

7\1 = gl(Uh) = 1 - a-oh - -b20,2b2 2h2

=1+ (a + az)oh + [ba + ax(a + a2)lo

+ [a3(a + as) + bala + 2a5)16%n® + -
(h5)

Insisting that A; represent the expanded eO0h through the term (1/2)0%n®
gives

as =1 - a
(46)

_ 1

bs = a - >

for which eguation (45) reduces to
Ny = — l+adhl =1+oh+%02h2+?2—03h3+-
1+ (a - 1)oh +<—2— - >02h2

()

The exact solution to the difference equation (43) combined with equa-
tions (L6) is

_ 1 + ach f
oy = co| — el IR (48a)
l+(a-l)cfh+<§—e9oh
and the exact solution of u' = ou + f, with constant o and f, is
— £
up = co(ech)n -5 (480)

The particular solution is calculated exactly and the complementary solution
has an error O(h®), consistent with the error in equations (3).

There remains the discussion of stability for the method L; defined by
equations (42b) and (46). Let us first consider the real stability boundary
in detail and later present the results for complex and imaginary o. When
a = 1/3, the error is minimized (the method is then O(h*)) and Ai has the
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P variation shown in sketch (k). This
o form of the method is not only uncondi-
tionally stable, it is also stable for
all positive oh = 6. In general, the
' value of Ai(oh) given by equation (47)
crosses the line +1 when
/S'c% %Smble _
4 , / Gh = 0
-4 % 0 é l & Gh — (49)
/ oh = 2/(1 - 2a)
774 #

and the line -1 when

Eh=1if1—<T_L%> (50)

Thus, between -3/2 < a < 1/2 the value
of A1  1is never less than -1 for any
oh, and is above the line 1 only in the

A Y / range O < oh < 2/(1 - 2a). Hence, the
/S"’b‘e S maximum real stability of the method is
achieved (see sketch (1)) when
? g

Sketeh (k).- Real stability boundary for method
given by equation (52b).

_t_ )

2

———

Fn & = -3/2, in which case the error is

v
kK i ~(11/12)(5n)2, and the |A1] > 1 only
/622 A//y for O < oh < 1/2. Of course, the accu-
racy for oh > 1/2 is completely lost,
Sketch (1).- Real stability boundary for method {1yt if the positive eigenvalues are

1 b ation 2c). s . . . .
glven by equ (52¢) parasitic-saddle, this is immaterial.

The complete stability properties
for all complex oh are shown, for the case a = —3/2, in figure 1 in the
(\,oh) plane, where the lines *1 represent the stability boundaries. Figure 2
shows some of the same results in the complex plane where Re(Ai) is plotted
against Im(Ai), and the unit circle is the stability boundary.

When Lj; represents

Upty = up + hlaug + (1 - a)upss] + <' - %) Un+a (51)

- =y —-
the operation Li(w = [Aplw + fn) results in the difference equation

(121 = ate - )+ (5 - ) 001%) o - o)

= h <[I] +h <a - %) [An]> <[An]¥n + 'fn>

(52a)
17
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For the most accurate case, a = 1/3 and

<[I] - % nlAn] + % hg[An]%> (W1 - Wn) = b ([I) - % h[AnJ> ([Anlwn + Tn)
(52b)

and for the most stable case, a = —3/2 and

<[I] - 2 nlag] + 2112[An]2> (¥gry - W) = n([I] + nlA])([Anl¥n + Tn)
(52¢)

Equations (52) are actually programmed when the method is used on-a digital
computer. They can be said to violate the Dahlquist theorem discussed above;
that is, equation (th) is an unconditionally stable method for which (in the
notation used in presenting the theorem) p = 3 and k = 1. But, as has been
pointed out, such a vioclation does not really occur, since Dahlguist's theorem
is based on the premise that [An] is used only to the first power.

The practical application of methods such as these must, of course, be
made with care. They are designed for quasi-linear differential equations for
which the standard general methods are unsatisfactory and something is known,
or can be determined about, the eigenvalue structure of the associated [An]
matrix. An example of such a case is given by the quasi-linear equation

(1 - w) %% = 2w -t + 0.5 (53)
with the initial conditions

to = 0
(54)

Il

(7-5J2)/2

Yo

It is easy to show that equation (53) has a saddle point (see, e.g., ref. 1k)
at w=21land t = 2.5. Introduce the new independent variable such that

ab o
Is = 1 -w (55)
and equation (53) becomes
v (a73 4 3 (56a)
ds

18



where

24
WL = [w,s] (56b)
Saddle curve
.6 |~ for which ,
W=1+(1-2.5) 7 (1+4/2) B o -1
w [w=..0+2'. effls] [a] = (56c)
s -1 0
sl X 22540 e Saddie point
and
-—>
fT = [0.5,1.0] (56a)
N
B
o e 6 2.4 32 Notice that the introduction of equa-

' tion (55) has transformed the nonauton-
omous equation (53) into the autonomous
Sketch (m).- Saddle behavior for equation (53). form (56) . The latter may, therefore,
be integrated using the methods defined
by equations (52).

L2 Saddie
asymptote
i”’,———* The eigenvalues of [A] are
8l
w & or = - (J2 - 1) ~ -0.41k
4 —.-' AS = .25
o gz =+ (J2 + 1) =~ 2.4k
) 1 I 1 1 1
0 4 8 12 16 20 24

The initial values are located at
point (B) in sketch (m) and fall
Sketch (n).- Locus of computed points for w in exactly on the saddle curve shown. Any
(v, &) plane. standard numerical integrating scheme
applied to equations (56) will diverge
in typical fashion, following the
2 saddle poin curves (BB!') or (BB") shown in the
sketch. This is because the coefficient
,,> of the term with e92R (which is exactly
8r eeo®” zero along the saddle curve) cannot be
w 0" held to zero in finite place arithmetic,
ak ° and an ingtability will ensue if the
. numerical method itself is unstable for
. lpositive eigenvalues in this range.
o* 4 .8 1.2 1.6 2.0 2.4 2.8
! Using the method described by equa-
tion (52¢) with a step size h = 0.25
gave the results shown in sketches (n)
and (o). The use of equation (55)
transforms the saddle point to infinity in terms of s, the independent vari-
able used in the numerical integration, so the saddle point is approached
asymptotically in the (w,s) and (t,s) planes as is shown in sketch (n). (The
behavior for +(s) was identical.) When w is plotted as a function of x,
however, the "physical" nature of the variation is regained and shown in
sketch (o). Notice that the value of oh is about ~0.103 for oih, which
reduces the local error to about 0.001l. The value of the parasitic-saddle

Sketch (0).- Locus of computed points in (t, w)
plane.
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eigenvalue is about 0.603. According to sketch (1), this gives a value of
|A(oon)| < 1, so the application of the method should be (and was) stable.

Ames Research Center

10.
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(b) o = 5e*%, 6 = 23°

Figure 1.- Variation with oh of the single root, Ay, in the characteristic
polynomial for the method defined by equation (52c).
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Figure 1l.- Continued.
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(e) o = Eéie, 0 =45

| | |
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(£) ¢ = 5et®, o = 78°

Figure 1.- Continued.
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(g) o =3, 6 = 90°

—1 Unstable (=0

-3.0 -2.0 -1.0 0 1.0 2.0 3.0

(h) o =5, 0<06 < 90°
Figure 1.- Concluded.
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Points separated
by increments
of O. oh

g=11°

o h>0

G h<O1

6=45°

o=5el®
%
)
Y
oQ
I
8= 90°

Figure 2.- Some results shown in figure 1 redisplayed in the complex plane.
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