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ABSTRACT

The recently developed universal form of the two-body
problem involves several transcendental functions. Since
these functions are evaluated so frequently, it is worthwhile
to develop approxiniations that minimize the number of
arithmetical operations required. This paper presents sev-
eral such approximations, based on theories of Chebyshev
and Knuth, with bounds for the errors incurred when using
them.
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OPTIMAL COMPUTING FORMS FOR THE
TWO0-BODY C AND S SERIES

by
C. R. Herron, E. R. Lancaster, and W. R. Trebilcock
Goddard Space Flight Centevr

INTRODUCTION

The classical solutions of the two-body problem separate naturally into the three cases of el-
liptic, parabolic, and hyperbolic motion, the mathematics being considerably different for each
case. A unified formulation is possible, valid for all three cases, if certain transcendental func-
tions, which we call the C and s functions, are introduced.

The unified formulation is fully developed by Battin (Reference 1) and will not concern us here.
The purpose of this paper is to present approximations for the C and s functions and their deriva-
tive functions, which reduce significantly the computation times required for their evaluation when
compared to those required by Taylor series expansions.

THE C AND S FUNCTIONS

The C and s functions are defined by

s(xy = (xV2- sinx1/2)/x3/2 , x>0 (1)
= [sinh (—x)l/z—(—x)l/z]/("x)?‘/2 , x <0 ; (2)
C(x) = (1 - cos xl/z)/x , x>0 (3)
= [l—cosh (—x)l/z]/x . x<0. (4)

Since these functions are indeterminate for x = 0 and present accuracy problems when evalu-~
ated in the neighborhood of x = 0, it is natural to replace the above forms by the following series,
convergent for all values of x:

S(x = ; ———(_x)i ’
0 (2i + 3)! (5)
i=0



For large values of x, the convergence of these series will be slow. It is then convenient to
use the following reduction formulas, easily derived from Equations 1 through 4:

A(x) = 1 - xS8(x) , (7
2c(4x) = [A()]? (8)
4S(4x) = S(x) *+ A(x) C(x) . (9)

THE C’ AND S’ FUNCTIONS

The derivatives S’ (x) and C’ (x) are needed for certain problems of orbit determination, guid-
ance, and optimization. From Equations 1 through 4 we obtain

S’ (x) [C(x)-ss(x)]/zx ,

C'(x) = [A(x)—2C(x)]/2x .

These forms suffer accuracy problems in the neighborhood of x = 0, again forcing us to series
representations. Differentiating Equations 5 and 6, we have

S’ (x) = 3 Ll M
(2i +3)! (10)
i1
, D i-x)t
¢ oo Z (2i + 2! (11)

i=1

convergent for all values of x.
For large values of x, the following reduction formulas (obtained by differentiating Equations 7,

8, and 9) are useful.

B(x) = S(x) + xS' (%), (12)
C' (4x) = -A(x)B(x%) , (13)
45’ (4x) = S' (%) + A(x)C' (%) - B(x)C(x) . (14)



THE FIKE-KNUTH ALGORITHM

Our first step in obtaining economical computing forms for Equations 5, 6, 10, and 11 was
the construction of sixth degree polynomial approximations on various intervals in the sense of
Chebyshev. In other words, these polynomials minimize the magnitude of the maximum error on
the interval. The program to accomplish this was written by the third author, based on ideas of
Stoer (Reference 2). The coefficients of these polynomials are given in the section entitled Numer-
ical Results.

Assume that the approximating polynomial has the form

= 2 3 4 5 6
P(x) = ag ta xta,x*+a;x”+a,x"+a,x>+a,x". (15)

The evaluation of Equation 15 by the usual method of nested multiplication requires six multi-
plications and six additions. However, by using recently developed polynomial evaluation methods
(References 3 and 4), Equation 15 can be evaluated with four multiplications and seven additions.
The form and parameters for the algorithm, as it applies to our functions, are given in the Numer-
ical Results section.

In the following description of the algorithm, a, is assumed to be positive. If a_ is negative,

6
a minor change is necessary.

Fike's modification of Knuth's method begins with a conversion: lety = 6’/2;, and let ¢, = ak/,u.k
for k = 0,1, ..., 5 Then compute

1
P T 73 (c5 - 1) , D" 7 ¢, - pC’
B = c, -p(p+l) , E' = 20 - B +1
C'" = ¢, - pB, E”Y = 20" -B'D' -C' ,
D' = p-B', E' = ¢, -B'D".

Find a real root q of the cubic equation*

2q3 + E'q2 + E'q +E" = 0 (16)

*See Appendix A.



and compute

1

A = 3B -gq,

C = p-2A,

B = q - 2AC - A%,

D = C' - q1+D') - ¢®> - D" - A2(1+C) - BC,
E = g2+ gD +D" - (A2+B)C,

F = ¢, - (q2+aD’' +D")[C' - q(1+D')- q%- D’]

Then our polynomial can be evaluated as follows:

q, = px,
a, = (q, +A)?,
d; = (a9, *B)(q,*C) .

P(x) = {q,+q,*D)(g,+E)+F .

In case a, <0, let T(x) = -P(x) and perform all the steps above, except the last, for T(x). The last
step should be

P(x) = - [T(x)] = (a,+a3+D)(-q;-E)-F .

If the machine being used has a "load negative' feature that is equivalent in execution time to
"load positive,' and if subtraction is likewise equivalent to addition, then this modification is equiv-

alent to the original.

As Fike points out, his method is a slight variation of that of Knuth (Reference 4), and since
Knuth's method was inspired by Motzkin (Reference 5), the three types bear a strong family re-
semblance. Each begins with a polynomial in the form of Equation 15 with a; = 1, and solves for
the parameters in the final evaluation scheme by expanding the scheme into a sixth degree poly-
nomial and equating its coefficients with those of Equation 15. To admit treatment of the general
polynomial of degree six, however, some transformation must be made so thata, = 1. The most



straightforward way is making
Qx) = P(x)/ag

and then applying any of the three methods to Q(x), adding an extra step at the last in multiplying
the result by a,. Fike specifies a different sort of transformation; his may be thought of as con-
verting Equation 15 into

ag 2, a,
R(x) = x +—=x5+—x*+—x3+—x2+ - x+a
5 2 m

Again, any of the three methods apply to R(x), and values of P(x) are obtained by using ux in the
scheme for R(x), since R(ux) = P(x).

This transformation, though a bit more complicated, is admirably suited to our particular prob-
lem. The type of polynomial with which we are dealing has the not uncommon characteristic that

lagl < lagl < -+ < la,]

and, in addition, |a6| is very small, For example, suppose the coefficients of form (15) are

ag = + .11 x 10710 |
ag = - .21 x1078,
a, = + .28 x107°¢,
a, = - .25 x107%,
a, = + .14 x107%,
a; = - .42 x 107!,
a, = * .50.

If we use the division transformation, the coefficients b, of Q(x) are

by = - .18 x 10% ,



b, = + .24 x 10° ,

b, = - .22 x107,
b, = + .12 x10°,
b, = - .36 x 10!,
b, = + .44 x 10! .

Here the errors in the numbers a, have become greatly magnified; worse yet, the arithmetic of
parameter production using the large numbers b, is likely to suffer the effects of large error prop-
agation. In contrast, Fike's transformation gives us

cg — 1

cg = - .27 x10',
c, = + .54 x10',
c; = - .73 x 10!,
c, = + .62 x 10!,
c, = - .28 x10',
c, - .50

These numbers of manageable size lend themselves very well to whichever scheme we choose. For
comparison, the two transformations above were evaluated by the Knuth algorithm for 40 points
over the interval [~ 1, + 1], and the differences between these values and the true values of the
polynomial were obtained. For the division transformation, the absolute value of the maximum
error was .92 X 10712; for the Fike transformation, this was .16 X 10 ~!4 a reduction by a factor

of more than 500. Several other test cases were run, with results that apparently verify the conclu-~
sion that the Fike transformation used on this type of polynomial has a very definite advantage.
There are, of course, other transformations that produce polynomials in which a, = 1. In general,
one should use the transformation that keeps the coefficients of the transformed polynomial as small

as possible.



NUMERICAL RESULTS

The four approximation polynomials were generated for each of the intervals [- 1, + 1], [- 2, + 2],
(- 4, + 4], [~ 16, + 16], converted to Equation 15 and parameters for the Fike evaluation scheme
were obtained. In.each case, the values given by the final scheme were tested against "true' values
of the original function for all multiples of .002 in the interval concerned. The true values came
from expanding the power series of the function (1) for enough terms to guarantee that the relative
error from truncation would be less than 1075 The following tables exhibit, for each of the six-
teen functions considered, the coefficients a, for Equation 15, the parameters A, B, C, D, E, and F
for the Fike scheme, and the maximum absolute errors for both methods. For comparison, a de-
gree 4 approximation polynomial was evaluated by both methods for the functions c(x) and S(x) on
the interval [~ 1, + 1], and the results are presented here also.

Goddard Space Flight Center
National Aeronauties and Space Administration
Greenbelt, Maryland, March 27, 1968
188-48-01-05-51



C(X)=ay +a;x +ayx? +agx3 +ayx4 +azx> +agx® on E—h, I'E]

h=1
ag = +0.4999999999999998 < 10°
a; = -0.4166666666667176 X 107!
a, = +o.1388888888888999 X 10'f1
a3 = -0.2480158725995993 X 10"/
ay = +0.2755731917059028 X 10
as = -0.2087759200397967 X 1078

Ma= 0.763 X 10713

h=4
ap = +0.4999999999998401 X 109
a; = - 0.4166666668808485 X 107!
a, = +0.1388888889138842 X 1072
ag = -0.2480157659289839 X 10™*
a, = +0.2755731272513377 X 107¢
as = -0.2089014196095935 X 10”8

a, = +0.1147636934013430 x 107 '°

Mg= 0.122 X 10710

a, = +0.1147134108311665 X 107 '°

h=2

=+ 0.4999999999999993 % 10°
a, =~ 0.4166666666700118 X 10!
+0.1388888888892785 X 10”2

as =
a; = - 0.2480158663241807 X 1074
a, =+0.2755731881710992 X 10”°

as = -0.2088010277268315 X 1078
ag =+0.1147215380312168 % 10™'°

Mq= 0.956 X 10713

h=16

ag = +0.4999999894793170 % 10°
a; = -0.4166675473500692 X 107
a, = +0.1388889916034137 X IO‘i
ay = - 0.2479883633119184 X 10”
a, = +0.2755565077419917 X 10‘3
a5 = -0.2109148028487573 X 10"~
ag = +0.1156091702389399 X 10

Mg=0.202 X107



6
d1=Vvag x
q2 =(9; +A)?

d3 = (92 + B) (4; + C)
C(X)=(d2 + 93+ D) (+9d3 +E) +F on [-h, h]

h=1

A = +0.4513408582627891 X 100
B = +0.3744865190483202 X 10!
= -0.2769272800754423 X 10"
D = + 0.9433565393074166 X 101
E =+0.1055413968372178 X 102
F = +0.6288190624578802 X 10”2

M= 0.583x107M

h=4

+0.4507019590625572 % 10°
+0.3740448131455307 X 101
-0.2768317205414987 X 10"
+0.9414899439055362 X 10!
+0.1053701311149719 X 102
+0.6272339359526764 X 10~ 2

= 0.122 x10°10

T "TmIUOwP
[T | A I | R R 1

h=2

+0.4512008438957284 % 10°
+0.3743936586512442 X 10!
~0.2769076432349482 X 10!
+0.9429681327692907 X 10}
+0.1055053194443676 X 102
+0.6284207351324604 X 10-2

0.994 X 10713

T "TmU0O= >

h=16

+ 0.4405766736959988 x 100
+ 0.3669989101432331 X 10
- 0.2752824996097087 % 10
+0.9117484138879304 X 10"
+0.1026464040151929 X 102
+0.6161613003116790 x 10~2

0.202 X107¢

LT mMmmUO0Ow >



S(X)=ag ta;x fayx2 +azx3 +ay4x* +agxd +agxs on {-h, I-EI

h=1

ag = +0. 1666666666666665 X 10°
- 0. 8333333333333568 X 1o-§
+0. 1984126984129264 X 10~

+0.2505210785999854 X IO—;
as =-0.1605953765319026 X 10°

ag =-+0.7650283228592385 X 10”12

Mg = 0.555 x 10716

h=4

ag =+0. 1666666666666581 X 100
- 0.8333333334593103 X 10”2
+0.1984126984258407 X 10™3

4

a2=

az = -0.2755731292513204 X 1072
ay = +0.2505210496761327 x 10~
a5 =-0.1606691704048320 X 1077

My =0.720 X 10712

10

a3 = - 0.2755731919939401 X 107>

a, = +0.7650122280184766 X 107 12

h=2

ag =+ 0. 1666666666666663 X 100
a; =-0.8333333333352921 X 1072
an =+0.1984126984129057 X 10™3
az =-0.2755731883077317 X 10”2
a, =+0.2505210816170333 X 107/
a5 = ~0.1606101133600677 X 10 =7
ag =+0.7647926042737674 X 10712

Ma=0.566 X 10714

h=16

ag =+0.1666666661133027 % 10°

a; = -0.8333338509758059 X 1072
ap =+0.1984127524406629 % 1073
ag = - 0.2755570214946503 X lo‘j
a; =+0.2505123071826789 X 1077
a5 =-0.1618528418504030 X 10”

ag =*0.7694603615375217 X 10712

Mg =0.118 X 1077



T mnmO0w >

94 =f/a—6 X
9, =(9; +A)?
q3=(q2+B) (ql +C)
S(X)=(9, +q3 +D)(+q3 +E)+F on E-h, h]

h=1 h=2
= +0.1030541110544949 X 100 A =+ 0. 1028274494783523 X 10°
=+0.1357446199107850 X 10° B = +0. 1356879505417743 X 10!
= - 0.1709888012144409 X 10} C = -0. 1709784631095070 X 10!
= +0. 1803960616654583 X 10! D = +0. 1802832347589989 X 10!
=+0.2062171852872241 X 10" E =+ 0.2060949727430426 X 10!
= +0.2130010466488949 X 10~ F =+0.2128753997322974 X 10~}
= 0.236xX10714 = 0.808 x107 "

h=4 h=16
=+0.1026453527945748 % 10° A =+0.9898746283297480 X 107
=+0.1356011711587295 X 10! =+0.1338586121335949 X 10!
= - 0.1709549340846876 X 10! =~ 0. 1704756186376375 X 10!
= +0.1800557277079013 X 10" D =+0. 1754906650979839 X 10°
= +0.205924687 4696585 X 10" E =+0.2025050653157090 X 10! ]
=+0.2125209137884825 X 10~ F =+0.2056593593968585 X 10~
= 0.722 X 10712 = 0.118 1077

11



CH(X)=ag +ayx +apx2 +agx3 +a,x4 +agxd +a,x5 on [—h, h]

h=1 h=2
ag = - 0.4166666666666430 X 10~ ‘ ap == 0.4166666666606742 X 10~
ay =+0.2777777778467318 X 10 a, =+0.2777777822034584 X 1072
az = - 0. 1488095238678453 X 103 a, =-0.1488095275535492 X 1073
=+0.6613751098214413 X 10~ 5 ag =+0.6613668137463213 X 107>
a, —-o 2505208412532178 X 10~ a, ==0.2505171918626241 X 10~°
as =+0.8269965205281566 X 10”8 =+0.8303136595603477 X 10~ 8
ag =-0.2412214891589441 X 10~ 7 a, = -0.2422316681583509 X 10~°
Mg=0.217 X 10716 Ma=0.251 X 10714
h=4 h=16
ag = - 0.4166666651125364 X 107 ag = - 0.4166666641763858 X 10~ !
a; = +0.2777780643726382 X 1072 ay =+0.2777780078584500 X 102
a, = - 0.1488097663598733 % 1073 ay = -0.7440478621862503 X 10~ 4
ag = +0.6612326049924104 X 1073 az = +0.1102220894089232 X 10~5
ag = - 0.2504581368842600 X 107¢ a, = -0.1043798352532477 X 10~7
a5 = +0.8437138609417991 x 1078 as =+0.6938557071056230 X 10710
ag = -0.2463133603265637 X 1077 as =~ 0.3366982823031963 X 10”12
Mg= 0.320 X 10712 Mg= 0.527 X 1078

12



9, =%

qz = (91 +A)?
a3 = (92 + B) (91 +C)
CHX)=(d2 +9 + D) (=93 ~E) = F on [~h, h

h=1

A =+0.6421500675794880 X 10~}
B =+0.9631412054424315 X 10°
= - 0.1485378935681960 X 10!
D = +0.1206516480446427 X 10}
E = +0.1262370275488431 X 10
F = +0.2235785774036898 X 10 ™2

M =0.179 X 10715

h =4

A = +0.6405925631551870 X 10~
B = +0.9624584033933687 % 10°
= =0.1485269967153406 X 10!
D =+0.1205018912730453 X 10!
E =+0.1261394717119364 X 10"
F =+0.2210887038704210 X 10~2

M =0.320 X 10712

h=2

A =+0.6415596248585610 X 10 ™!
B = +0. 9629599640982438 X 10°
C = - 0. 1485350658374242 X 10}
D = +0. 1206153148806730 X 10
E=+0.1262088821410514 X 10!
F = +0.2230745797490601 X 10 ~2

M =0.268 %1014

h=16

Il

+0.6208183431484613 X 10 -
+0.9523193847619871 X 109
-0.1483582934430130 X 10 !
D =+0.1182131124018069 X 10
E =+0.1247277466997771 X 10!
F =+0.1829570481293727 X 10 ~2

M =0.527 X108

i

A
B
C

13



SY{X) =ap +a;x tayx2 +azx3 +ayx* +a5x5> +agxé

h=1

ag = -0.8333333333333210 X 10 -2
a, = +0.3968253968616768 X 10 3
a, = -0.1653439153716376 X 10'4
ag = +0.6012503110063301 X 10-
a, = -0.1927084107177350 X 10”7
5 =+0.5511761621292874 X 1077

= -0.1418571972378231 X 10719

Ma= 0.260 X 10717

h=4

ap = - 0.8333333325953303 X 10 -2
+0.3968255472561213 X 10 =3
- 0.1653440305444520 X 10 ~*
+0.6011754909568150 X 10 ~¢
-0.1926786201990815 X 10 -7
+0.5599576811597955 X 10 =7
= - 0.1442776137237285 X 10~ 10

Mqg=0.168 X 10713

o
Il

o))
w
inon

]
il

14

on [-h, h]

h=2

ay = -0.8333333333304809 X 10~2
a, =+0.3968253991531185 x 10-3
az = =0.1653439171256403 X 104
a3 =+0.6012459474285134 X 1074
ay = =0.1927066737597982 X 10~
as = +0.5529210296030711 X 107
ag = -0.1423381311296310 x 10~ 10

Ma=0.134 X 1071

h=16
ay = -0.8333333321480760 X 102
a, =+0.3968255178485000 X 10~ 3

a2 = -0.8267196924462379 X ]0
ag =+ 0.1002046526767 437 X 107¢
a, =-0.8029333915166488 X 1077

+0.4617817733427159 X 10~ ”
- 0.1978183008506138 X 10~

Mq— 0.277 X 1077

a



q1=§/-§x
q2=(q] + A)?

q3 =(q2 + B) (94 +C)
SHX)=(a2+9% +D)(-93 - E)=F on [-h, h]

h=1

.4272502910304863 X 10~
.4460409572215307 X 109
.1020276052465536 X 10!
.4064530281034859 X 10°
.3450015283629582 < 10°
.2885054406289098 X [0~2

.529 X106

h=4

.4274056995233864 X 10~
.4458621272744412 % 109
.1020307887595762 X 10!
.4061739766937458 % 10°
.3449170623874602 < 10°
.2876661053629565 X 102

169 x10°13

h=2

A =-0.4272336986330691 X [0~
B =+0.4460090638507059 X 10°
=-0.1020282840851638 X 10!
D =+0.4064007086884238 X |0°
E =+0.3449898120978949 < 10°
F =+0.2883373149053849 X 10~2

M= 0.182 X 10715

h=16

A =-0,4310245077956152 % 10~!
B =+0.4428994350437274 X 100
C =-0.1020789569928175 X 10!
=+0.4016042135773923 % 10°
=+0.3434241762739658 X 10°
=+0.2744481265299470 X |0~ 2

M= 0.277 X107°

mm Qg

15



C(X)#4 [-1,+1]

aq = +0.5000000000007167 X 100
ay = = 0.4166666601424471 X 10-;
a, =+0.1388888879568642 X 10~

a3 = -0.2480419696201834 X 10™*

a, =+0.2755932664579228 X 10-¢

Mg = 0.130 X 1077

q

S(X)*4 [-1, +1]

ag = +0.1666666666667142 X 100

a, = -0.8333333283147393 X 102
ap =+0.1984126977913694 X 1073
a3 = - 0.2755932664326337 X 107>
a, =+0.2505344666229896 X 10~/

Mg = 0.100 X 10710

q4,=(q; + 8)?
P(x)=(q, +q,+C)(q,+D)+E

C(X)*4 [-1, +1]

A =+0.2291221893900772 X 10~ !
B =-0.7655416156428518 X 100
C =+0.2592589041826887 X 109
D =+0.4011554686880556 X 100
E =-0.3345008393894142 X 100
M = 0.130x1077

16

S(X)*4 [-1,+1]

A =+0.1258104947765253 X 107!
B =-0.5959855810891701 X 109
C =+0.1104585254341674 % 100
D =+0.2038526154314646 X 100
E =-0.9365973340739070 X 10~}

M = 0.100x10""°
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and since v and t have the same sign, we have

v+ E 2t t] > faatl¢| |

1=0
This simply says that the length of the initial bracketing interval is less than, or equal to, the mag-
nitude of the small end; in turn, this means that the large end of the interval is at most twice the

magnitude of the small end.

Now, consider how the endpoint values would be represented in floating-point binary arithmetic
(normalized) with an r-bit fraction. If the difference between their binary exponents is at most 1
(which is what we are getting at above), then it can be seen that the number of distinct points in the
initial bracketing interval is at most 2. Therefore, the number of interval-halving iterations
needed—that is, the number of times one reduces his choice of points in the interval by one-~half—
is at most r. Moreover, it often turns out that f is nearly (or exactly) zero at an end point of one
of the half-intervals, so that r iterations are not always needed.

We have treated the special case |t| <[v|, but we need not restrict ourselves to it. The number
of interval-halving iterations needed depends upon the size of t and, if one is willing to iterate a
bit more, he can find the initial bracketing interval more quickly by increasing t; the converse of
this also holds.
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