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ABSTRACT 

The response time of a silicon photoconductive detec­

tor in a circuit containing capacitance depends on the recom­

bination time of the photo-generated carriers and the RC re­

sponse time of the circuit. This RC response time is afunc­

tion of the impedance of the detector. A linear model is de­

veloped which gives the response of the detector in the cir­

cuit to square light pulses of arbitrary duration. It is found 

that the maximum signal can occur at times much longer than 

the end of the pulse and that for short pulses the signal is 

proportional to the energy in the pulse. The model and the 

expected reduction in RC response time using low imped­

ance detectors is verified experimentally. Results are used 

to determine the responsivity. 

It is also found that the carrier recombination time in 

these detectors varies inversely with the field under highfield 

conditions (greater than about 100 volts/cm). A minimum 

carrier response time of 30 nanoseconds is obtained. Pos­

sible mechanisms for this effect are discussed. 

Current noise and Johnson noise are the only noise 

sources found measurable. The usual dependence of current 

noise on field, frequency, and dimensions is found to be ap­

proximately true. The detectivityas a functionof light mod­

ulation frequency is computed for selected cases. A value of 

5 x 1010 cm-cps1/2/watt is found at 2 MHz. 
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1. INTRODUCTION 

In the past, near infrared (0. 6 g to f. it) detectors have been dominated by silicon 

photovoltaic (PV) junction devices. Although a photoconductive (PC) detector is in prin­

ciple simple, the purity of the silicon required to achieve an appreciable effect is so high 

that the usual procedures for passivation and contact formation are inadequate. Recently, 

MITHRAS has overcome these problems to the extent that photoconductive detectors are 

now comparable to the photovoltaic detectors in many areas. We will discuss briefly the 

PV devices in the Appendix. 

Basically, a PC detector is just a light modulated conductance in series with a load 

resistor and connected to a bias voltage. The voltage across the load resistor is modulated 

by light of the appropriate wavelength (less than 1. 1 g.in silicon). 

The main area in which PC detectors are not yet comparable to PV types is that 

where high light modulation frequencies are used - the response time is too long. This is 

not to say that PC detectors do not respond to short light pulses, but merely that the shape 

of the pulse is not reproduced by the signal. The response time of both PC and PV 

detectors is a function of two response times. One is the recombination time of the photo­

generated carriers, and the other is the RC response time of the device and external 

circuitry. The recombination time of our usual PC detectors is on the order of 5 micro­

seconds, but in addition the impedance is about 0. 5 megohms, so that the RC effects can 

limit the response in some cases. The initial goal of this program was to construct and test 

detectors having interlaced finger electrodes to reduce impedance. However, during the 

tests of the low impedance detectors we found that the carrier recombination time was not 

constant, as is usually the case, but was reduced by the use of fields greater than about 

100 volts/cm on the detectors. We devoted attention to this problem and obtained a 

minimum recombination time of about 30 nanoseconds. 

Theories to handle the mechanisms of photoconductivity exist in the literature, but 

they are in most cases too general. In order to compare theory and experiment it is 

necessary to determine many parameters. Since practical silicon PC detectors are rela­

tively new, we felt that at this stage a very simple model would be more useful for an 
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understanding of applications and for improving the characteristics of thedevice. Thus, 

in Section 2 we develop a quantitative linear model for the signal produced by a silicon PC 

detector in a circuit containing capacitance. 

Section 3 describes the experiments performed to test the low impedance detectors 

and verify the model. A field-dependent recombination time is also described. The 

absolute responsivity is measured at 0.9 g and compared with the model. In Section 4 

we describe noise mechanisms and use measurements of the noise to compute D* as a 

function of frequency. Section 5 contains our conclusions and suggestions for improving 

the performance of PC detectors. 

2 MC 67-264-RI
 



2. THEORY­

2. 1 The Change in Conductance of a Simple Bar Detector Upon Illumination 

2. 1.1 Neglecting Recombination 

We will develop in this section an expression for the change in conductance of a simple 

bar detector upon illumination. We will arrive at the intuitively Feasonable result that in 

the absence of recombination the fractional change in conductance is the number of absorbed 

photons dividedbythe total number of free carriers. This is not true in general, and the 

purpose of this section is toconsider the assumptions which lead to such a result. 

In semiconductors the bulk conductivity is given by the expression 

a = neun + peUp where 

n = density of unbound electrons
 

p = density of unbound holes 

un,u = respective mobilities (carrier velocities in a
 

field of 1 v/cm)
 

e = magnitude of electronic charge 

In an intrinsic semiconductor n = p, but usually there are impurities which increase one at 

the expense of the other (at fixed temperature np = constant in the absence of illumination), 

and it is extrinsic. Here we will be dealing with n-type material and we will assume that. 

n >>p and thus a = neu. At fixed temperature and low enough fields (less than 1. 5 Kv/cm) 

u is a constant, and the change in conductivity comes about through changes in n. This -n 

occurs when a photon with energy greater than the band gap (about 1.1 ev in silicon - equiva­

lent to a wavelength of 1. 13 microns) is absorbed by the sample. The effect is to create a 

non-equilibrium unbound electron and hole which increase the conductivity. (At high enough 

energies, more than one electron-hole pair can result, but we will always assume a yield of 

one). A great simplification results if we assume that the photo-generated holes have a 

very short lifetime and do not contribute to the increased conductivity. The above assump­

tions are possibly true only for low levels of illumination, but this is the most important 

case in practice, 
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Consider the simple bar detector of length 1, width w, and thickness d, as shown in 

Figure 2. 1. In the figure Gxy is a differential element of conductance with respect to the 

indicated field of length Dy, width a x, and thickness d. As shown in Figure 2. 2 this can be 

broken into elements Gx Z . The change in conductance of Gxy upon illumination, AGy,
 

is simply:
 

(2.1)AG fd AGxz) 

where AG is the change in G ' upon illumination. 
xyz xyz
 

If P monoenergetic photons/unit area are incident on the sample surface, then the 
0 

number of photo-generated electrons at a depth z, assuming unit quantum yield, is 

An(z) = POe e1Z (2.2) 

where a is the absorption coefficient at the particular wavelength. Since AG 
xyz

Aneu axaz/ay 

AG =An eu - Saz (2.3)
xyz nay 

In the case of the simple bar detector, the total conductance for uniform fields is 

G =(2.4) 

For low illumination levels, the change in conductance and fields will be small, hence the 

change in G is approximately 

2 
AG G

o AG (2.5) 

xyxtzoY G 

where G and G are the conductances in the absence of illumination. If we denote the 

unilluminated electron density by no, then, since Go = n eun wd/2 and Goxy= n euwd/(ay), 

we have 

A=eu( 1 -- d) wfo 

AG= 2 ' j f Po(x, y) ax by (2..6) 
Y=
 

4 
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INCIDENT PHOTONS 

/ dy 

ELECTRIC FIELD 

ELECTRODE (2) 

Figure 2.1 Simple Bar Cell Geometry 

INCIDENT PHOTONS 

ELECTRIC FIELD ! 

Figure 2. 2 The Conductance Element G 
xy 
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At this point we will make two simplifying assumptions. First, we will only consider 
uniform illumination, P (X,y) = P . Second, we will use a wavelength of 0. 9 microns. For 
the cells used, the absorption coefficient has been found to be 500 cm and the thickness 

about 0.01 cm. Thus the term 1 - exp(-ad) is approximately unity. We must, however, 
include a factor F, which is the transmission through the front surface after reflection 
losses. For normal incidence on a detector with a glass cover, this is given by 

where n and nSi are the indices of refraction of the glass and silicon, respectively. With
 
n = 1. 5 and nsi = 3.5, F has the numerical value of 0. 8. 
 Whenthe last three considera­
g 

tions 	are taken into account, Equation 2. 6 simplifies to 

AG = FPoeu ­ (2.8) 

The fractional change in conductance is 

F? FP A
AG o oG -	 nd n Ad 

(2.9) 
0 0 

The last term on the right is just the total number of absorbed photons (equal to the number 
of photo-generated electrons) divided by the total number of free carriers in the unillumi­
nated cell. This is the intuitive result referred to above. 

2.1. 2 Effects of Recombination 

So far, other than the assumption that the holes recombine rapidly, we have not con­
sidered what happens to the electrons with time. In general, the photo-excited electrons 

may 

1. 	 recombine directly with a free hole, 

2. 	 become localized at trapping centers and get thermally reexcited
 

before recombining,
 

3. 	 recombine with a hole localized at a recombination center, or 

4. 	 recombine with a hole at a hole-injecting (positive) electrode. 

6 MC 67-264-Ri 



The first case usually is not as probable as one of the latter three and has a time ­

constant in the hundred microsecond region in silicon. The trapping case plays a tole in 

stretching out the photo-response in PbS, CdS and CdSe detectors but is not predominant 

in silicon. Cases 3 and 4 are both important. We will look at case 4 experimentally in 

section 3.2.3. In this section we will be concerned with recombination centers with field 

independent microsecond time constants. Although not a great deal is known as to their 

nature, experiments with bulk samples indicate that the centers arise primarily at defects 

in the surface. This can add complexity to the problem, since we must consider the time 

for photo-generated electrons to diffuse to the surface. However, the assumption that the 

absorption coefficient is large implies that most of the excess carriers are generated near 

the surface and thus the diffusion time is short. 

In the case of low light levels, a linear recombination equation holds: 

An=-- An (2.10)at 

where T is the recombination time of the photo-generated electrons and may be a sum of 

several recombination times, viz., 

T1 (2.11)
1 

Since 8(AG)/at. O(An)/at and assuming that the change in G and n is very small, 

we have 

ap 
8 AG(t) F o 1 AG(t) (2.12) 
at G nd-t 7r G 

0 0 0 

At this point it will be convenient to consider the excitation in terms of watts instedd of 

photons/sec. Thus, 

ap 
o = KH(t) (2.13)at 

where 

H = number of watts/cm 2 incident on the sample 

K = (wavelength in microns) x 5.13 x 1018 

photons/sec/watt 
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With this change, Equation 2. 12 can be rewritten, 

a AG(t) 1 AG(t) FK8t 	 G r+ G ndatGG = -i (t) 	 (2.14)
O 	 0 

For 	a constant light input, He, turned on at t = 0, this has the solution 

AG(t) FKH 0T -t/r 
endG 

o o 

2. 2 Signal Produced by a Photoconductor in a Circuit with Capacitance 

2.2.1 General Solution 

In this section we will use the results of section 2. 1 for AG(t)/G to determine the 

signal obtained with a photoconductor in a circuit which includes both detector and stray 

capacitance. With the detector considered as a light modulated conductance, the equivalent 

circuit is as shown in Figure 2.3. A straightforward circuit analysis where AG is a function 

of time yields the following equation for S, the AC signal. 

at)+[ L Go + AG(t)]S(t) GaL E 
o 

t ++ = + G0 CL + C 

asct) F L 1sG)--~AG(t) (2.16) 

where 

G 	 = dark conductance of detector
0 

C 	 = capacitance of detector0 

GL 	 = conductance of series load 

CL 	 = capacitance associated with load 

E = 	constant bias voltage on detector and load 

in series 

If AG(t) is known, the equation can be solved even though it is non-linear. A more 

illuminating approach is to develop a linear second order equation by making the usual 

assumption that AG(t) < < either G or G . First we recast Equation 2.16 into the form 

S +S = M(GL/Go) E AG(t) (2.17) 
at T- L o G e 6 
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Figure 2. 3 Equivalent Circuit for Detector Operation 
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Figure 2.4 Load Mis-match Factor, M(RL/RO, as a Function of RL/R0 

9 MC 67-264-Ri 



where the electronic rise time is 

C L+ 0 R L R-e GL+G -U t (CL o -- L ° - +R)-O0 L+ CO) (2.18) 

and we shall define a load mis-match factor, M, as 

GG o RLRo
 
M(GL/G)= L Lo 
 (2.19)L 0Go) LR R o 

where R L and R are the respective resistances. The function M(RL/Ro) is shown in
 
Figure 2.4. It has a broad maximuni at L/R ° = 1 and a value of 0. 25 there.
 

Using the expression for AG(t)/Go, Equation 2.14, we have 

-
at + -e FM 
re H(t) (2.20) 

which has the general solution 

1S(t) = FMKErn d T-7r 
0 e 

ft .[e(qt)/r (q-t)/Tej H(q) dq (2.21) 

The above equations are analogous to a double low pass filter separated by an ideal isolation 

amplifier. 

We shall restrict the remainder of this section to the response to a single square 

light pulse of duration T, i. e. 

H(t) = H
0 

for 0 ;9 t T 

H(t) = 0 otherwise. 

The terms which do not depend on time may be collected into a voltage term 

= FMKET0o n d 0o(.2 (2.22) 
0 

.s will become apparent when we consider special cases, S is the maximum signal obtained 
Nith infinitely long pulses. It is the equilibrium photoconductive signal-, and"with a matched 
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I\ 

load [RL = Re so that M(R L/R o ) is maximized] itis a measure of sensitivity of the detector. 

The dependance on 7 expresses the fact that there is a tradeoff of sensitivity for intrinsic 

detector speed. 

In terms of S the solutions are 
0 

-t/r)"/ e
 

e(-e )-r (I-e e 
S(t < T) =S e (2.23) 

e 

and 

-(t-)/r-T/7 
- T / ) - (t - T )/ r 

-T/r -(t-T)/r 
r(1- e e 7- (1 -e e) e e 

S(t > T)S e( 
o 7-T (2.24) 

e 

For pulses of finite duration the maximum signal, Sm, is less than S and is given by 
T0 

7 e 

S S 
T/r 

(e -1) 
r- r T 

(e - 1) 
- (2.25) 

m o 
This occurs at a time, tm, given by 

77 -T/e 
t= T+ e / T  (2.26)1e


1m T Te I-

Note thatt - T for all r and T 
m e 

2.2.2 Special Cases
 

Below we list special limiting cases.
 

Case 1: Te- 0. This occurs when either the parallel detector and load resistance or the 

capacitance is small. The response is determined by the detector. The solutions reduce to 

- t / TS(t < T) = S (1 - e (2.27) 

- T / ) - (L- T )/ T  S(t > T) = S (1 - e 7 e (2.28) 

-S =S I - e T/T) (2.29)
m 0 

t = T (2.30)m 
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Although analogous to a simple RC filter, the response time is determined by the 

recombination time only. However, the amplitude of the response to sinusoidally modu­

lated light can be written 

( + 
S 

2)1/2 (2.31) 

where f is the modulation frequency. This relation makes it possible to relate sinusoidal 

modulation and square pulse responses. 

Case 1. 1: 7e = 0; T - 0. This is a subcase of Case 1 and approaches the response to an 

impulse. The solutions are 

St 
o ME FKHt

T) =nd- 0 (2.32) 
0 

-t / S T e 
- t / TME FKH TeS(t > T)= S 

o (2.33)S~tT 7 - n d 
0 

ST 

S =- ME FKH T (2.34)
M r n d 00 

t = T (2.35) 

In 

The signals are no longer a function of the recombination time. The response to an impulse 

(e. g., a Q-switched laser) is an almost instantaneous step with an exponential decay. The 

term FKH T is just the number of photons absorbed from the pulse.
0 

Case 2: T - 0. This is the case for short pulses when 7 and 7 may be comparable.
e 

2tS 
S(t < T) = 0 (2.36)

2Tr 
e 

S(t > T)= S T e -e (2.37) 
0 7T' 

e 

eS SoT \Te/(7 ­

m = - (2.38) 
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MT 

e e 

This illustrates the effects of the circuit on the signal. The initial response is now quadratic 

instead of linear. The maximum signal in Equation 2.38 is less than in Equation 2.34 and 

t is,now independent of pulse width.m 

Case 2.1: T - 0; r = 7- . The magnitude of the effects of Te are illustrated by this case.e e 
2

S t 

S(t < T)-
2T
o 2 (2.40) 

Tt -t/r 2.1S(t > T) S --T e T (2.41)
S~tT,- ° 2 

T 

" S = S e 1 = ME FKH T e-1 (2.42) 

m oT" nd o 
0 

t =T (2.43) 

Comparing Equations 2. 42 and 2. 34 one can see that the reduction in response to an im­

pulse is not very large even though the time, tm , at which the maximum signal occurs, 

T in this case, may be orders of magnitude later than the length of the pulse. 

13 MC 67-264-Ri 



3. EXPERIMENTAL 

3.1 	 Description of Detectors 

3.1.'1 Geometry 

Five samples were used in all-three low impedarce grid cells as shown in Figure 3. 1 

and two higher impedance simplebar cells in order to extend the range of analysis. Table 3. 

contains a compilation of geometrical data. In determining the effective length and width 

-of the grid cells, they were considered as a set of narrow spaced bar cells in parallel. 

Thus the length is the distance between electrodes and the width is the number of elements 

times the length of each finger. The thickness of all cells was approximately 1. 2 x 10-2 cm, 

3.1.2 Impedance 

The resistivity of the silicon was nominally 14,000 ohm-cm (equivalent to 6 x 1011 

carriers/cc), but the samples were so thin that surface states contributed to the 

conductivity. The resistaice was measured in the dark, and this was used to determine 

an effective concentration of carriers, n . These results are shown in Table 3. 1, where o 

it will be noted that n
0 

is higher than nominal for cell #1114-1, which had an 0.5 cm 

electrode spacing, and lower than nominal for close spaced electrodes. The latter case 

is due to a field concentration near the surface containing the electrodes when the electrode 

spacing approaches the thickness. Since we are interested in the product 1/n
0 d we deter­

mined this from the equation 

1 eu Ro (3 
nd n 

0 

Although the mobility decreases at high fields, the measured resistance on these samples 

was almost linear with about a 5 % increase in resistance at 1.5 Kv/cm. Using the usual 

value for electron mobility in silicon of 1. 4x 103 cm 2/volt-sec, we obtained the results for 

l/nod shown in Table 3.1. An effective thickness is computed assuming the n0 of #1114-1 

and is also shown. 
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The capacitive part of the impedance is quite small. Using the formula Co= C awd!e, 

cell #120-2 should have the largest capacitance. For silicon, the low frequency E is 

about 12, and thus, using the effective d, the capacitance is about 0. 6 pf. 

3.2 Response Times 

In order to check the validity of Eq. 2.22 for the time-independent term, S we 

need to determine the recombination time, 7-. This section describes experiments to 

determine T and check the validity of the solutions of section 2 for the response to square 

light pulses, 'We will also describe the field-dependent recombination time found in the 

close electrode-spaced cells. 

3.2.1 Experimental Setup 

Because of the difficulty in obtaining calibrated submicrosecond light sources, we 

used a different source for the absolute determination of S and the time-dependent terms.0 

For the latter, the source used for generating square light pulses was a GaAs light emit­

ting diode (Monsanto #MIE 200) driven by a Hewlett-Packard model 222A pulse generator 

which produces repetitive pulses of 30 nanoseconds to 5 milliseconds. The risetime of 

the generator was found to be less than 10 nanoseconds. Figure 3.2 is a picture of the 

30 nanosecond pulse which has about a 25 nanosecond half-width. The diode has a peak 

output at 9000 A with'a 400 A half-width. The rise-time of the diode was not measured 

but is specified as 5 nanoseconds. This was not noticeable in any of the measurements. 

A totally enclosed metalboxwas used to contain the sample, load resistor and battery 

bias supply, and to-reduce capacitance was mounted directly on an oscilloscope via a BNC 

connector. The oscillbscope used was a Tektronix Type 585 with Type 82 plug-in, which 

has a 10 nanosecond/cm sweep with a 4.5 nanosecond risetime. The total circuit dapac­

itance of the plug-in and sample box was found to be 20 pf. 

The diode was embedded in the end of a coaxial cable with a 50 ohm series resistor 

and fed into the sample box through a grounded metal pipe. There was some pickup of 

500 MHz ringing at the beginning and end of the pulse which was not serious and could be 

used to determine the pulse length in some cases. 

S Effects of External Capacitance3. 2. 2 

In general, the response to square light pulses for all cells obeyed the equations 

developed in Section 2. 2. In this section we will only illustrate the effects of external 

capacitance with results for cell #1114-1 and cell #1041-1, 
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In Section 2.2 we found that the response as a function of time was determined by the 

photoconductive response time, r, and the electronic response time, Te . Experimentally, 

in order to vary Tre we did not change the external capacitance but varied the load resistor, 

In the first set we used a matched loadTwo sets of data were taken for each cell.RL . 
In the second set R. reduced to the point wherewhich yielded a T-e comparable to 7. was 

This reduces the signal through the dependance, M(RL/RO); itT- was much less than r. 


is the motivation for developing low impedance detectors when external capacitance is
 

present. The experiments consisted of illuminating the cells with square light pulses of
 

constant amplitude and various durations, T. The signal was displayed on the oscilloscope
 

and photographed.
 

UnderFor cell #1114-1 the first set used a matched load and a bias of 45 volts. 

these conditions, 7" was 3.6 microseconds. The signals for pulse durations from 500 micro­
e 

seconds to 25 nanoseconds are shown in Figures 3.3, 3.4, and 3,5. One can see that 

Usingas T decreases, the maximum signal, Sm , tends to occur at the constant time, tm . 

Eq. 2.39 and -r = 5.75 microseconds (the determination is discussed below), tm should be 

correct.4. 5 microseconds, which is approximately In general, the response is given by 

the equations of Case 2 in Section 2.2.2. 

For the second set, the same bias was used but the load resistance was reduced to 

5. 1 K ohms. This reduces Tre to 0. 1 microseconds and thus the response time is deter­

mined by the detector. The signals for pulse durations from 5 microseconds to 50 nano-

One can see that Case 1 of Section 2.2.2seconds are shown in Figure 3.6 and Figure 3.7. 

The major effect is that very short pulses yield the simple exponential responseapplies. 

of the detector. 

The dependence of the maximum signal, Sm, on T was computed by using Eq. 2. 25 

for the first set and Eq. 2. 29 for the second set. The results were normalized to the 

The theoretical and experimental dataexperimental value for an 0. 3 microsecond pulse. 

are shown in Figure 3.8. The disagreement for long pulses probably occurs because the 

percentage change in conductance is about 30% in this region and a saturation effect occurs. 

This, of course, violates one of the assumptions in the development of the theory. 

We will not consider cell #1041-1 in detail since results were similar. This cell had 

a shorter time constant (about 0. 5 microseconds) and a lower impedance (35 K ohms) so 

that faster responses could be achieved. With a 50 K load (- e = 0.4 microseconds) the 
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maximum time, tm, is reduced by an order of magnitude. An example which.illustrates 

Case 2. 1 of section 2.2 is the response to a 25 nanosecond pulse shown in Figure 3.9. 

When the load is reduced to 510 ohms, so that Te2 
= 10 nanoseconds, response times illus­

trated in Figure 3. 10 are obtained. Lastly, the t dependence of Case 2, Eq: 2.36, is 

shown in Figure 3. 11, again with a 510 ohm load. 

3.2.3 Field Dependent Response Times 

While checking the response time of the close-spaced electrode cells (numbers 1135-1, 

1120-2 and 1135-2) it was found that the detector response time was reduced as the bias 

was increased. This is illustrated for sample #1135-2 in Figures 3.12, 3.13, 3.14, 3.15 

and 3.16, where the response is shown as a function of voltage on the sample. In all 

except Figure 3.16 the measurements were made with a 1 K ohm load. In Figure 3. 16 

a 200 ohm load was used to reduce T- sufficiently. Similar results were obtained withe 
sample# 1135-1 and are shown in Figures 3.17 and 3.18. These last two figures are 

difficult to interpret since the risetimes of the light source and oscilloscope begin to be­

come important. Sample #1120-2 showed similar results also. Initially, an almost exact 

l/E dependence on bias up to 2 Kv/cm was found for this sample, but this could not be 

obtained a second time. Increasing bias still reduced T but not exactly as 1/E. Further, 

at the same bias T was less by a factor of 3 than it had been. The most probable reason 

is that the high fields and local heating changed the surface characteristics. 

The response time, T, at various field strengths is shown in Table 3.2 for all three 

samples. The carrier drift velocity, (uE/2) (R/(RL+ R )), and the transit time between 
2 0 0 

electrodes, (C/uE) ( (RL + R)/R), are also listed. There are two simple models which 

might account for the field dependent recombination time. One is that electrons are 

recombining at a hole-injecting electrode. It can be seen that the response time (really' 

the recombination time) is always longer than the transit time between electrodes. This 

could be explained by postulating that the mobility is reduced near the surface where the 

fields are concentrated. On the other hand, the surface recombination time is inversely 

proportional to a surface recombination velocity, which for low fields is on the order of a 

thousand cm/sec. The results do not rule out one or the other. 
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3. 3 Determination of S0and Responsivity0 

3.3.1 Experimental Setup 

To experimentally determine So, we need a calibrated source and 	long duration 

light pulses (T >> r). For this a Barnes model 11-200-3 1000* C black body and a 620 Hz 

mechanical chopper were used. A calibrated Baird Atomic #B9 narrow-band filter with 

peak transmission at 9045 A and 91 A half-width was inserted between the source and 

sample. The energy falling on the sample was computed from the transmission of the 

filter and the theoretical black body characteristics by numerical 	integration. 

The signal was amplified by a P. A. R. Model CR-4 low noise amplifier and the 620 Hz 

component determined with a Hewlett-Packard Model 302 A wave analyzer. (Use of a 

wave analyzer is restricted to cases where the response to light is linear; however, on 

sample #1114-1 this was true within a few percent over six orders of magnitude of light 

intensity. The range is determined on the upper end by the restriction that AG/G is 

small, and on the lower end by the noise.) 

3.3.2 Results 

The experiment performed was to determine the absolute value of S and check its 

dependence on bias, E. All five samples were placed in the same photon flux of 1.2 x 10 
2 

watts/cm , and S was measured as a function of E under matched load conditions. Note0 
that the voltage on the sample is E/2. The results appear in Table 3.3. 

The response is linear at low fields and approaches a constant as higher biases are 

used. This is what is expected if r varies as lI/E, since S is proportional to ET. The0 

effect is the most pronounced in cell #1135-I, which has the narrowest spacing. At high 

enough fields the response decreases. The decrease at 45 volts bias may be related to 

heating, since cells #1120-2 and #1135-2 have the lowest resistance. 

Rather than computing S0 from Eq. 2.22 we will compute a related parameter, the 

responsivity, R. This is defined as the signal per watt incident on the cell, and hence 

S 
o 	S FMKEr (3.2) 

(ffHA =.ZdA o o 

This is computed using values found previously and the results for 45 volts bias are 

shown in Table 3,4 along with the experimental values. Cell #1120-2 is not included, since 
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T was not found at 45 volts. Experimentally it had a responsivity of 3.33 x 103 volts/watt 

there. 

The results are not far out 6f line. Although this may be somewhat fortuitous, 

cell #1114-1 is a fairly simple case and should agree reasonably well. The widest 

divergence occurs for cell #1135-1. It could be that the recombination time is faster, 

and it is very probable that there are added complications due to the close spacing. 
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TABLE 3.1 

SAMPLE SPECIFICATIONS 

Sample# 1114-1 1135-1 1041-1 1120-2 1135-2 

Type Square Narrow 6 grid 19 grid 19 grid 
Bar 

Electrode spacing, 
(cm) .5 .0075 .1 .012 .016 

Width of active 
area (cm) .5 .2 .4 .4 .4 

Number of active 
bars 1 1 5 18 18 

Equivalent width, 
w (cm) .5 .2 2 7.2 7.2 

Active area, w (cm ) .25 .0015 .2 .0864 .115 

Resistance (K ohms) 360 110 35 3.7 11 

Equivalent number 
of carriers/cc, 

n x 10 10.3 1.26 5.3 1.68 .75 

Effedtive 
thickness (cm) .012 .0015 .0062 .002 ,00087 

(nod)-1 x 1010 .81 6.6 1.6 5 11 
0 
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TABLE 3.2
 

FIELD DEPENDENT RECOMBINATION TIME
 

Sample # Voltage on 
Sample 

1120-2 .375 
.75 

1.5 
3 

1135-1 6 
12 
22.5 
45 

1135-2 1.5 
3 
6 

12 
22.5 

Field 

(Kv/cm) 

.03 


.062 


.125 

.25 


.8 

1.6 
3.0 
6.0 

.094 


.188 


.375 


.750 

1.400 

Response 
Time, 
(nsec) 

865 

500 

300 

200 


140 

100 


70 
30 

520 

430 

300 

230 


72 

Drift 
Velocity 6 

(cm/sec x 10 ) 

.044 


.087 

.175 

.35 


1.12 

2.24 

4.2 
8.4 

.13 


.26 


.52 

1.04 

1.96 

Transit 
Time 

(nsec) 

275
 
137
 

68 
34
 

6.7
 
3.35
 
1.8 
.9 

122
 
61
 
30.5
 
15.2
 
8.2 
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TABLE 3.3 

S AS A FUNCTION OF BIAS
0 

Sample# 1114-1 1041-1 1120-2 1135-1 1135-2 

Bias, E
 
(volts)
 

1.5 61 v 36 v 10.5 v 18 v 18.5 v 
3 120 72 19 24 35 
6 240 145 30.5 29 68
 

12 480 280 47 33 100
 
22.5 840 440 58.5 35 150
 
45 1700 690 50 36 140
 

TABLE 3.4 

COMPARISON OF THEORETICAL AND EXPERIMENTAL RESPONSIVITIES AT 45 v BIAS 

Sample # Theoretical Responsivity Experimental Responsivity 

1114-1 7.5 x 104 volts/watt 5.7 x 104 volts/watt 

1.6x104 2.3x1041041-1 

1135-1 1.3 x 106 2.0x 105 

1135-2 2.8 x 104 1.0 x 104 
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ELECTRODES
 

-

SILICON BAR 

Figure 3. 1 Grid Cell Geometry 
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Ons 5Ons lOOns
 

Figure 3.2 Square Wave Pulse Generator Output on 30 ns Setting
 

4000mv
 

2000mv 

O s 500/Ls I000pS 

Figure 3.3 Response of Cell #1114-1 for T (right to left) 500 ps, 200 gs, 50 gs 

2000mv 

IO000mv ' - I I 

iOOmv ' 

0/4s 25/Ls 

Figure 3.4 Response of Cell #1114-1 for T (top to bottom) = 5 gs, 2.5 gs, 0.5 pis 
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20 mv 

Omv 

Ojs 251Ls 50/Ls 

Figure 3.5 Response of Cell #1114-1 for T (top to bottom) = 500 ns, 250 ns, 50 ns, 25 ns 

200 mv 

Omy
O/Lsa ~ I0 s 

Figure'3.6 Response of Cell #1114-1 for T (right to left) = 5 gis, 2 gis, 1 gs 

40my 

4Omv 

O/Ls 0.5Ps I.Ops 

Figure 3.7 Response of Cell #1114-1 for T (top to bottom) = 500 ns, 250 ns, 50 ns 
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Figure 3.8 Sm(T) vs. i/T for Cell #1114-1 
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Figure 3.9 Response of Cell #1041-1 for T = 25 ns 
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Figure 3. 10 Response of Cell #1041-1 for T (top to bottom) = 400 ns, 200 ns, 100 ns, 25 ns 
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20 mv _ _I I _ 
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Figure 3. I initial t2 Dependence of Response for Cell #1041-1. T > 100 ns 
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Figure 3.12 Photoconductive Decay for Cell #1135-2. E = 1. 5 volts 
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Figure 3.13 Photoconductive Decay for Cell #1135-2. E = 3 volts 
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Figure 3.14 Photoconductive Decay for Cell #1135-2. E = 6 volts 
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Figure 3.15 Photoconductive Decay for Cell #1135-2. E = 12 volts 
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Figure 3. 16 Photoconductive Rise for Cell #1135-2. E = 22.5 volts 
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Figure 3.17 Photoconductive Rise and Decay of Cell #1135-1. 
 E = 12 volts­
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OmVIII 

Op. 0.25p.s 0.50/is 

Figure 3.18 Photoconductive Rise and Decay of Cell #1135-1. E = 45 volts 
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4. NOISE AND b* 

4.1 Noise 

4.1.1 General 

The main types of noise inphotoconductors are current noise, generation-recombination 

noise, Johnson noise, and photon noise from surroundings. Only current noise and Johnson 

noise have been found in these detectors. Current noise is a general phenomenon in solid 

state devices but it is not well understood. However, when photoconductive detectors are 

operated with a matched load the noise voltage per root cycle follows the general form 

-a 
Vn - B E f 

if wd (4.1) 

where 

B = constant 

f = frequency 

a = constant which is usually near 1/2. 

E, C, w, and d are as defined previously. 

Note that the noise power has approximately a 1/f dependance and the term 1/f noise is often 

used. 

If the impedance of the detector and. measuring circuit is purely real, the Johnson noise 

voltage per root cycle with matched loads is 

Vn = r4-kT Ro (4.2) 
2 

Calculated values for these detectors are shown in Table 4.1. 

.4.1.2 Noise Measurements' 

The noise was measured using the same equipment used for measuring responsivity 

except that the cells were in the dark. An output from the wave analyzer was averaged with 

a 10 second RC network and displayed on an oscilloscope, and further averaged by eye for 
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about a minute. Readings were taken at bias voltage up to 45 volts and frequencies from 620 Hz 

to 50 KHz. The results for three of the detectors are shown in Figures 4.1, 4.2, and 4.3. 

In general, the noise has a !/f component which dominates at high fields and low fre­

quencies. The frequency dependence has an increasingly negative slope as the bias is 

increased. Values of the slope, a, are shown in Table 4.2 as a function of,bias, where it 

is seen that a approaches 1/2. The dependence on bias at 10 KHz is shown in Figure 4.4. 

It becomes linear as the i/f noise predominates. The sub-linear result for 45 volts bias 

on two of the cells is not understood, but it is probably related to the reduction in signal 

discussed in section 3.3. The coefficient, B, has been computed for the four cells for which 

22. 5 volts bias is in the region where 1/f noise predominates. The results are shown in
 

Table 4.3. The values of B are within an order of magnitude. Variations may be due to
 

the uncertainty in the effective thickness and variations in silicon material.
 

4.2 D* 

4.2.1 General 

The two most common figures of merit for photodetectors are the Noise Equivalent 

Power (NEP) and the Detectivity (D*). The NEP is the number of watts on a detector which 

would yield a signal to noise ratio of one. D* is a somewhat artificial number which is the 

square root of the area divided by the NEP. 

The measurement conditions for NEP and D* are specified by 

1) the radiation source in terms of a black body temperature or the wavelength if a 

monochromatic source is used, as we have in this project, 

2) the frequency of the assumed sinusoidally modulated radiation, 

3). the bandwidth of the amplifier. In this report the usual case of normalization to 

a 1 Hz bandwidth is used. Otherwise, one must integrate the noise power over the bandwidth. 

These conditions are specified in the above order ina parenthesis following the figure of 

merit. 

With the notations for signal and noise used above the relevant definitions for NEP and 

D* become: 

Vn Vn A watts/Hz 2NEP B --- V A /2 (4.3) 

SoHe cm- 1/2 (4.4) 

D* 'r _ c Hz /wattNEP Vn VX-­
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For both Johnson noise and 1/f noise limited detectors the NEP can be decreased without 

limit by decreasing the size of the detector. Since Johnson noise is independentof bias, 

and if the signal and i/f noise increase linearly with bias, the maximum signal-to-noise 

(S 0 /V n ) is obtained when the detector is operated in the 1/f noise region. In this case, 

using Equations 2.31, 3.2 and 4.1 in Equation 4.4, an expression for 1/f noise limited D* 

isobtained:
 

D* (0.9p,f, l) = FMKr fa (4.5) 
Bnod (1 +(2rf-)2)1/2 

Thus D* is independent of area. The utility of such a figure of merit comes about when 

optical limitations exist. 

One should also note that there is an optimum modulation frequency, If a = 1/2, 

then D* is a maximum when f = (2 r) - , and Eq. 4.5 becomes 

1 FMK t7 

D* (0. 9g, (2-.. ) = B Id (4.6) 
0 

Thus, D* (maximum) is reduced only as 17 and not as T. In other words, a faster 

detector is less sensitive but the signal-to-noise for the I/f limited case is not reduced 

as strongly as the signal. 

4.2.2 D*(0.9g, f, I) for Selected Cases 

Using the results of section 3.3 for~and section 4.1 for Vn, D* (0. 9, f, 1) can be 

computed. It is necessary to assume thatEq. 2,31, the response to sinusoidal inputs,. 

is valid. The noise at frequencies greater than 50 KHz was assumed to follow the extra­

polated curves i n Figs. 4.1 through 4.3. The results for cell numbers 1135-1 and 1135-2 

are shown in Fig. 4.5. 

For sample. 1135-1, it is 4.5 x 1010 
The peak D* occurs at 2 MHz for both. 


1/2 -13 1/2

cm-Hz /watt with an NEP of 9 x 10 watts/Hz / 

. Cell 1135"2 had a maximum D* 
110 cmH1/2 -11 1/2

of 5 x 10 cm-Hz//watt and an NEP of 6.8 x 10 watts/Hz 
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TABLE 4.1 

JOHNSON NOISE LIMIT WITH MATCHED LOADS (RL= R) 

cell f R0 (K ohms) Noise/root-cycle (nanovolts) 

1114-1 360 54.2 

1135-1 110 30.0 

1041-1 35 16.9 

1120-1 3.7 5.5 

1135-2 11 9.5 

TABLE 4.2 

SLOPE OF i/f NOISE, a, AS A FUNCTION OF BIAS: MATCHED LOAD CONDITIONS 

cell # Bias, E 
1.5v 3v 6v 12v 22.5v 45v 

1,114-1 - - - - .15 .23 

1135-1 .12 .14 .17, .36 .46 .41 

1041-1 .16 .19 .32 .33 .38 -

1120-1 .15 .19 .27 .29 -

1135-2 .29 .34 .37 .32 .41 .40 

TABLE 4.3 

NOISE COEFFICIENT, B, AT 10 KHz AND 22.5-v BIAS 

cell # B 
-7
1.3 x 101135-1 
-7
6.7 x 101041-1 

1120-1 1.3 x 10- 7 

- 73.5 x 101135-2 

34 MC 67-264-Rl 



IOO I~,4.v1111111E I I 1111+111 I I 1111111h I 1111111ll I.' I111 1 

BIAS, E 

45.0V 

oFITTED LINE 

L" 

0 
0 

12.OV 

01 

a-
C 

w 

0 

> 

too 

> 

6.0v 

3.OV 

1.5V 

too z 

JOHNSON NOISE LIMIT 

00 

100 iK 10K 
FREQUENCY (Hz) 

lOOK IM IOM 

Figure 4. 1 Noise Spectrum of Cell #1135-1 



I I I I11 I 1I111 I I1000 I 1I 1 I 11 I I 11111ll I I1l11l 

BIAS, E 

22 5VEXPERIMENTAL 
FITTED LINE 

w 

o 12.0V
ttoo­

0 
0
 

6.OV 

w 
& 

ol 5v. .. 

~JOHNSON NOISE LIMIT 

100 IK IOK lOOK IM IOM 

FREQUENCY (Hz) 

Figure 4.2 Noise Spectrum of Cell #1120-2 



-- lA E ,, 

-- BIAS,E 

45.OV
 
> EXPERIMENTAL
 
C1000 c [00 _-- 2.5VFITTED LINE22.5V

-lJ
 
L)
 

>- I2.0v 
L)
I­
0 o0
0i.­
, -- 2.Ov 

w 
> :003.OV 

0O 00 

JOHNSON NOISE LIMIT 

100 IK IOK lOOK IM IOM 

FREQUENCY (Hz)
 

~Figure 4.3 Noise Spectrum of Cell *1135-2 

0) 

C 



1000 

1135-1 

IJ 
-J 

,-
UL) 

0 
0 

(L 

C 1135-2 

1:1 SLOPE 

10.41-1 

0 

z 

I-I 
0 

I0 I I I I I l i I I I I li i i 

10 100 
BIAS, E (v) 

Figure 4.4 Noise Voltage, Vn' per Root Cycle vs. Bias, E, at 10 KHz 

'MC67-264-Rn38 



o

l
 

to. 
IK IOK lOOK IM IOM 

FREQUENCY (Hz) 

Figure 4.5 D* (0.9 g, f, 1) for Cells #1135-1 and #1135-2 at a Bias of 45 volts 



5. CONCLUSIONS AND SUGGESTIONS- FOR FUTURE WORK 

5.1 Conclusions 

In the foregoing we developed a relatively simple model for the response of a PC 

detector by making the following assumptions: 

1) only majority carriers need be considered 

2) there are no traps present 

3) the relaxation of the photo-generated carriers is described by a single 

exponential time constant 

4) the surface recombination and the bulk mobility can be used to characterize an 

assumed homogenous material 

5) diffusion can be ignored 

6) the absorption coefficient is large 

7) field inhomogenieties can be ignored and an effective thickness found. 

With the above assumptions, the only measurements needed to predict the responsivity 

are the resistance to determine 1/n d and the recombination time, T. -All other factors 

are properties of a general nature for silicon. The results agreed reasonably well but 

become more uncertain as the extreme cases of very non-uniform geometry and high fields 

are encountered. The noise was also found to follow a relatively simple dependence on 

bias, frequency, and dimensions. 

We should point out that the reduction of recombination time to less than 100 nano­

seconds represents an improvement of tv/o orders of magnitude for PC silicon detectors. 

This loses some of its significance because PV detectors can already operate-in-this 

frequency region. However, the D* and NEP of sample #1135-1 at 2 MHz are equal to or 

better than currently obtainable with PV detectors. Moreover, there are possibilities for 

improvement as discussed in the next section. 
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5.2 Suggestions for Future Work 

It is obvious that a great deal of work can be done to reduce the number of assumptions 

in a more comprehensive model than the one presented in this report. However, Equation 

3. 2 for responsivity and Equation 4. 6 for D* have an approximate validity which makes them 

useful for a discussion of the prospects for improvement. 

Considering the factors involved in the expression for D*, we see that a 25%0 improve­

ment can be made by reducing the reflection losses to zero. M has a maximum value of 

0. 25, but in cases where external capacitance is a problem, low impedance detectors are 

required. Thus practical methods of achieving low impedance configurations would be 

useful. The development of ohmic transparent electrodes would help here. 

Since these detectors are 1/f noise limited, reduction of the noise coefficient, B, is 

worthwhile. At this time the practical limit to such reduction is not known. Reduction in­

n0 is probably possible since, although the nominal purity is within an order of magnitude 

of intrinsic, n is probably increased by surface impurities. Ultra clean surfaces would 

not only'decrease n but would increase the recombination time yielding higher D*'s at0 

lower frequencies. 

For high frequency operation, the field dependent recombination time should be 

explored further. If it is due to recombination at an electrode, then the use of transparent 

electrodes on thin samples would yield nanosecond response times. If it is due to increased 

surface recombination, .then the incorporation of neutral recombination centers is a possible 

method of improvement. -

Lastly, a practical method for making ultra thin samples should be devised. The term 

(1 - exp(-ad))/d appraoches a as d becomes small indicating that there is a limit to the 

improvement obtained. However, the absorption coefficient increases very rapidly at shorter 

wavelengths so that a large increase can be obtained in this region of the spectrum. 
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APPENDIX: PHOTOVOLTAIC JUNCTION DETECTORS 

In this section we will briefly describe the PV type detector. The reason for doing
 

so is the similarity to PC detectors in the form of the output signal and the fact that until
 

recently these were the only type of silicon detectors commonly manufactured.
 

The device is a PN junction or diode with one side of the junction exposed to the 

illumination. When photons of the appropriate wavelength are absorbed the internal fields 

cause current to flow through an external load resistor. This current source is linearly 

related to the intensity and does not require an external biasing potential. The rise and 

fall times associated with the current source response are on the order of 10 nanoseconds. 

A complete analysis of the operation in a circuit would yield equations similar to 

Equations 2. 23 and 2. 24 with - = 10 nsec. It would be more complicated since the rise and 

decay are not simple exponentials. However, an equation for the voltage signal on a load 

resistor due to a square light pulse is easily derived if we make the following assumptions: 

I. The time scale of interest is large enough so that the current source rise and
 

decay can be neglected.
 

2. The load resistor is much larger than the series resistance of the device (usually 

on the order of 100 ohms) and much smaller thin the junction resistance (usually on the 

order of 100 megohms). 

3. The output voltage is less than about KT/q = 25 mv. (If not; the output signal 

becomes a logarithmic function of light intensity.) 

Under the above conditions, the voltage signal, S, obtained with a square light pulse 

of H watts/cm2 will beS(t <T) = So (I-e-t/T e) (1) 

where now 

S =s HA (2) 
o 42 6L7- 2 

42 MC O?-264-R1 



and 

Te = (C0+ L ) (3)R L 

with the usual definitions of the other parameters. This is the same form as Equation 2.27 

for recombination limited response in PC detectors. For PV detectors it is a non-trivial 

constraint since, even if C = 0, the junction capacitance, Co, may be as high as 1000 
L0 

pf. /cm 
2 

of active area. To reduce C a reverse bias is used on the junction, which reduces 

the capacitance inversely as the square root of the bias. An order of magnitude reduction 

can be obtained-n this way, limited by reverse breakdown. (This is often called the 

photoconductive mode although it is not a photoconductive process.) 

The PV detectors are specified in terms of amps/watt instead of volts/watt. The 

reason is clear if we rewrite Equation 1 as 

(4)
S (t < T) =I RL (1--t/re 

where 

I = FKtH A (5)° 

At 0.9 microns, assuming F = 0. 8, I HoA = 0.58 amps/watt. Typical values are in the 

range, 0.2 to 0. 5 amps/watt. 

With a specification of capacitance and sensitivity in amps/watt, one can compare 

PV versus PC signal and frequency response using the above equations subject to the 

constraints listed. For very high or very low frequencies, more information about the 

device would be needed. 

It is also possible to find a short circuit current sensitivity for PC detectors. We 

note from Equation 2. 19 that as RL approaches 0, M(RL/R ) approaches RL/R . Using 

the form of Equation 2.22, the short circuit signal, S, becomes 4(RL/R o) S where S 

is the matched load signal. Assuming a real load impedance, 

I S 
sc sc 49 (6) 
HA R L HA R 

There is no particular limit for this; values for the detectors in this report range from 0.25 

to 8.0 amps/watt. 
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The major noise mechanisms for PV detectors are 1/f noise at -very low frequencies 

(less than about 1 KHz), shot noise at intermediate frequencies, and Johnson noise at high 

frequencies. The dependence on load impedance, reverse bias, and frequency is too 

complicated for a simple exposition. 
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