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ABSTRACT

Four modes of landing a vehicle on Mars are
compared in this document. In addition, several
variations to these four basic mission modes are
suggested. The most efficient mission mode for a
Mars landing depends on the type of trajectories used.
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MARS LANDING MISSION MODE COMPARISON

By James J. Taylor and John T. McNeely
Manned Spacecraft Center

SUMMARY

Four modes of landing a vehicle on Mars are studied and compared in this docu-
ment to determine their relative merits in terms of the total spacecraft weight required.
These four modes are combinations of the techniques of aerodynamic braking and pro-
pulsive orbit insertion with hyperbolic rendezvous or direct return. Aerodynamic
braking is shown to be a very effective technique for reducing the required spacecraft
weight. The propulsive-orbit-insertion and direct return-to- Earth mode is shown to
be very inefficient when compared to the other possible modes, regardless of the type
of propulsion system used. The aerodynamic braking with hyperbolic rendezvous mode
is particularly effective because it appears to be most consistent with the payload capa-
bility of the Saturn V launch vehicle.

Several variations to the four basic mission modes are suggested, and the result-
ing total spacecraft weights are listed. Mars lander weights in excess of 300 000 pounds
are shown to be feasible if the lander is sent to Mars as a separate unmanned vehicle.

INTRODUCTION

A mode analysis, as defined for this study, is the comparative analysis of tech-
niques for accomplishing a given mission within the prescribed energy requirements.
The analysis is aimed at evaluating the performance advantages or disadvantages of the
various techniques. Some degree of preliminary trajectory design work is assumed to
reduce the number of parameters to be considered. Otherwise, so many possible com-
binations of parameters exist that the analysis becomes confused in a maze of options
that often makes a comparison of mission modes meaningless. The purpose of this
analysis is to determine the performance characteristics of the various mission modes,
with the same basic trajectory assumptions applied to all modes.

The opposition class of trans-Mars trajectories is assumed for this study. The
trade-off of mission energy requirements and of total mission duration is not a contin-
uous function, and a large jump in energy requirements exists between the various
classes of missions. The minimum-energy Mars mission is the near-1000-day con-
junction class discussed in reference 1. The next mission in the energy spectrum is
the Venus-flyby/Mars-landing mission which has a duration of 600 to 680 days. The
use of the Venus-flyby technique to reduce mission energy requirements is discussed in



references 2 and 3. The 400- to 500-day opposition class of missions (refs. 4 to 8)
represents the practical limit for reducing the mission duration for a manned Mars
landing and requires a 60- to 75-percent increase in energy relative to the minimum-
energy landing mission. ‘

Numerous modes for accomplishing a manned Mars landing mission have been
investigated (refs. 9 to 15), but these investigations have been carried out with consid- P
erable variation in assumptions and mission constraints. This document presents a
mode analysis with the four basic modes subjected to the same assumptions. Cryo-
genic, hypergolic, and nuclear propulsion systems are compared as applied to mission
modes which use aerodynamic braking to assist in the Mars-orbit insertion, hyperbolic
rendezvous near Mars, direct retrograde maneuvers into Mars orbit, and direct return-
to-Earth (that is, without hyperbolic rendezvous). The variations to the basic modes
studied include crew size and a separate unmanned Mars lander launched from Earth
orbit and guided into Mars orbit by a crew already orbiting the planet.

SYMBOLS
g, sea level acceleration because of gravity, 32.2 ft/sec2
ISP specific impulse, sec
AVD
k ratio of Mars departure AV to ideal engine exit velocity,
D gl
o SP

AVI
kI ratic of Mars-orbit insertion AV to ideal engine exit velocity, i

o'sp
W1 total weight staged prior to Mars-orbit insertion, 1b
W2 total weight staged while in Mars orbit, 1b
WEM Earth-entry module weight, 1b
WFT total spacecraft propellant, lb
Wf vehicle mass after impulse
Wi vehicle mass before impulse
WL Mars lander weight, 1b




w mission module weight, 1b

AVD impulsive velocity change to depart from Mars orbit for
return-to-Earth, ft/sec

I !
€ ratio of Mars-entry structure weight to total entry weight
A ratio of propulsion module stage weight to fuel weight
)\1 ratio of propulsion module stage weight to fuel weight, first stage
A2 ratio of propulsion module stage weight to fuel weight, second stage
MISSION MODES

The four basic mission modes are described in the following paragraphs and are
numbered for convenience of later notation as follows.

Mission Mode Number

1

2

AV impulsive velocity change for Mars-orbit insertion, ft/sec

MM
W0 total spacecraft weight, Ib
’ ‘
WPL payload launched from Mars orbit for return-to-Earth, lb
YAV impulsive velocity change, ft/sec

Description
Aerodynamic braking with hyperbolic rendezvous
Aerodynamic braking with direct return-to-Earth

Propulsive Mars-orbit insertion with hyperbolic
rendezvous

Propulsive Mars-orbit insertion with direct
return-to-Earth

Schematic diagrams of the spacecraft configurations illustrate the mission modes
(figs. 1to 4). These schematic diagrams do not show actual or anticipated spacecraft
shapes; they are used only to illustrate the required functional modules.



Mission Mode 1 — Aerodynamic Braking with
Hyperbolic Rendezvous

The spacecraft for Mars mission mode 1, which combines aerodynamic braking
at Mars with a hyperbolic rendezvous, is shown schematically in figure 1. This mode *
requires the following two spacecrafts.

1. An orbiting spacecraft, vehicle 1 Ps
2. A flyby spacecraft, vehicle 2

The flyby spacecraft is launched to Mars so that it arrives at Mars near the end of the
planned stay time of the first vehicle. The first vehicle enters Mars orbit by using
aerodynamic braking and then stages a lander for surface exploration. The lander is
launched from the surface to rendezvous with the orbiting spacecraft which then departs
from Mars orbit for rendezvous with the flyby spacecraft and subsequent return-to-
Earth.

In the orbiting spacecraft, the mission module provides crew quarters during the
transplanetary phase and is jettisoned immediately prior to atmospheric entry at Mars.
The lander and the rendezvous modules provide crew support until the rendezvous with
the flyby vehicle. The Mars-entry structure is jettisoned immediately after exit from
the Mars atmosphere, and the propulsion module provides the velocity increment re-
quired to establish the Mars orbit and to rendezvous with the flyby spacecraft.

The flyby vehicle is composed of an Earth-entry module, a mission module, and
an experiments package and/or propulsion module. The propulsion module on the flyby
spacecraft would permit powered-turn flybys and would reduce the velocity increment
required of the orbiting vehicle. A powered turn would also eliminate passage through
the asteroid belt.

Mission Mode 2 — Aerodynamic Braking with
Direct Return-to-Earth

The spacecraft for Mars mission mode 2, which uses aerodynamic braking at
Mars and a subsequent direct return-to-Earth, is shown schematically in figure 2.
This mission mode requires only a single spacecraft assembled in and launched from
Earth orbit. The sequence of events is similar to that of the orbiting vehicle in mission
mode 1. However, the entire spacecraft is slowed by atmospheric braking to near or-
bital velocity at Mars, and the return-to-Earth is direct rather than the result of a ren-
dezvous with a flyby spacecraft. The propulsion module provides the velocity increment
to attain Mars orbit and to return to Earth. The lander is staged from orbit as de-
scribed for mission mode 1. The mission module provides crew support during both the
transplanetary and trans-Earth phases, and the Earth-entry module provides for the
return of the crew to the surface of the Earth.




Mission Mode 3 — Propulsive Mars-Orbit
Insertion with Hyperbolic Rendezvous

The spacecraft for Mars mission mode 3, which combines a propulsive insertion
Yinto Mars orbit with a hyperbolic rendezvous, is shown schematically in figure 3. The
sequence of events for mission mode 3 is the same as that described for mission
mode 1 except that a propulsive maneuver, instead of aerodynamic braking, is used for
sMars orbit insertion. Vehicle 1 requires two propulsion modules. Propulsion module 1
provides the total velocity increment to orbit Mars, and propulsion module 2 provides
the velocity increment to rendezvous with the flyby spacecraft. The lander can be
staged either before or after orbital insertion. Fuel is saved if the lander is staged
prior to orbit insertion, but serious operational problems are associated with the
landing -site selection. The flyby spacecraft is the same as the flyby spacecraft de-
scribed for mission mode 1.

Mission Mode 4 — Propulsive Mars-Orbit
Insertion with Direct Return-to-Earth

The spacecraft for Mars mission mode 4, which uses a propulsive insertion into
Mars orbit and a subsequent direct return-to-Earth, is shown schematically in figure 4.
The sequence of events for mission mode 4 is the same as that described for mission
mode 2 except that propulsive maneuvers, instead of aerodynamic braking, are used
for Mars-orbit insertion. The spacecraft requires two propulsion modules; one module
is used for insertion of the spacecraft into Mars orbit, and the other module is used to
launch the spacecraft to Earth. The mission module and the Earth-entry module are,
therefore, carried into and out of Mars orbit. The lander can be staged either before or
after orbital insertion, as described for mission mode 3, with the same implications.

ANALYSIS

The total spacecraft weight is chosen as the parameter for performance compar-
ison in the analysis, because the spacecraft weight determines the number of Earth
launches required for orbit assembly. Payload size, complexity, and the number of
Earth launches can be directly related to program cost in terms of new development,
hardware, and operations.

All fuel weight computations for this study are based on impulsive velocity
changes, which are computed by using the "ideal rocket equation."

W,

1
AV = g I log, W—-f- (1)



where AV = impulsive velocity change

32.2 ft/sec2

]
it

—
]

Sp specific impulse
W, = initial mass d
Wf = final mass

The equation for total spacecraft weight for mission mode 1 is

w _(1 +A1)WFT +WL+WPL+W .
o (T -¢€) MM

where WFT is the total fuel required. The equation for W is

FT
(1) (- e™
w _WPLe -1 +(WL +WPL) 1-e .
FT ( -kI) kD
(1 +)\1) e - A€
AV AVI
where k,, =——— and k_= -—=—. The total spacecraft weight and fuel requirements
D oISP I goISP

for mission mode 2 can be determined from equations (2) and (3) by including the mis-

sion module weight WMM in the return-to-Earth payload WPL'

The advantage of the hyperbolic rendezvous technique is apparent in equation (3)
because of the terms involving WPL‘ The total fuel required increases rapidly as

WPL increases. The advantages of aerodynamic braking are obvious in the terms
involving AVI. Without aerodynamic braking, the required velocity increments ap-

proach the theoretical limit for a single stage vehicle; and, thus, a two-stage propul-
sion module is much more efficient.




The equation for total spacecraft weight for mission modes 3 and 4 is

w w
w =W1+ 'kl 2 + PL (4)

° e T(an))-n l:e_kl(nxl)-AI:H:e-kD(lmz)-xz]

The advantage of the hyperbolic rendezvous technique is obvious in equation (4)

since it results in a reduced WPL term. However, another option to be considered

in equation (4) is that the Mars lander module can be staged prior to orbit insertion;
thus, the weight of the lander is included in Wl' If the lander is not staged, the second

-k
term in equation (4) becomes very large because e I is very small. Equation (4) also
indicates that payload weight carried to hyperbolic injection is very expensive in terms
of W .
0

RESULTS

The relative merits of the four modes of operation previously described can only
be determined if the modes are compared by using the same basic criteria for com-
puting spacecraft weight. Table I lists the values of the parameters selected in opti-
mistic, expected, and pessimistic categories. The nominal specific impulse of the
propulsion module is listed as 380 seconds. A hypergolic system was selected for the
propulsion module because it appears that such a system will have to be developed for
the Mars lander. The system will thus be available to reduce development time
and cost. A cryogenic chemical system (ISP = 420 seconds) and nuclear system

(ISP
ison of these systems is also included.

= 820 seconds) are also possibilities for the propulsion module. A brief compar-

The spacecraft module weights used in this study are based on the results of a
series of spacecraft design studies conducted at the Manned Spacecraft Center during
1966. The characteristics of the nuclear propulsion system are based on information in

reference 3. References 4, 5, and 6 are useful in obtaining a spacecraft velocity
budget.

Parametric Mission Mode Analysis

The following paragraphs present a parametric analysis of the four basic mission
modes based on the use of a hypergolic propulsion module.

Mission mode 1. - Mission mode 1 uses aerodynamic braking to attain Mars orbit;
and, therefore, the velocity increment required for orbit insertion can be made rela-
tively small. Figure 5 shows the effect of the orbit insertion AV on total spacecraft
weight when the insertion maneuver is preceded by atmospheric braking. The required




AV decreases as the apoapsis and periapsis altitude (resulting from the braking maneu-
vers) increase. A AV of 150 ft/sec is sufficient to attain a circular 100-n. mi. orbit

if, after braking, the periapsis altitude is 0 n. mi. and the corresponding apoapsis alti-
tude is 100 n. mi. The total spacecraft weight increases at approximately 24 pounds

per ft/sec for this AV. A nominal AV of 150 ft/sec is assumed for the remainder of *
this study.

The payload required for rendezvous with the flyby spacecraft is a sensitive pa- 1
rameter because of the large AV required for the launch from orbit. A small rendez-
vous module (15 000 pounds) is used to reduce the total spacecraft weight. This payload
was assumed to be a four-man Earth-entry module, which would be required earlier in
the mission for abort while in Earth vicinity. Figure 6 shows the effect of this payload
on the total spacecraft weight. The total spacecraft weight increases approximately
5-1/3 pounds for each pound of rendezvous payload.

The effect of small variations in specific impulse is shown in figure 7. The vari-
ation of total spacecraft weight with specific impulse is negligible for hyperbolic launch
velocities of 10 000 ft/sec or less and is very large at 20 000 ft/sec (approximately
1800 1b/sec).

The increase in total spacecraft weight caused by the addition of an entry struc-
ture for aerodynamic braking to Mars orbit is difficult to assess without getting involved
in a spacecraft configuration study. Therefore, a parameter €, defined as the ratio of
entry structure weight to total entry weight, is assumed and is shown in figure 8 as a
function of total spacecraft weight and AV for hyperbolic injection. It is assumed that
the mission module is staged prior to atmospheric entry. If the mission module is not
staged prior to entry, the total spacecraft weight is increased by a factor of approxi-
mately EWMM'

The ratio of the propulsion module tank and engine weight to fuel weight A is
plotted in figure 9 as a function of total spacecraft weight and hyperbolic injection veloc-
ity. This is a sensitive parameter when AVD approaches the theoretical limit for a

one-stage vehicle. For a moderate AV (for example, AVD = 15 000 ft/sec), the total
spacecraft weight variation with a 10-percent change in A is 14 000 pounds.

The total spacecraft weight variation for mission mode 1 is summarized in fig-
ure 10 for the optimistic, expected, and pessimistic values of the design parameter
(table I). The expected total spacecraft weight for a AVD of 15 000 ft/sec is

250 000 pounds and is well within the payload capability of the present Saturn V booster
for attaining a low Earth orbit. By using pessimistic values and a AVD equal to

15 000 ft/sec, the total spacecraft weight is only 340 000 pounds. If we assume that
each spacecraft has a 300 000-pound total spacecraft weight and multiple Saturn IVB
stages for transplanetary injection, then mission mode 1 can be accomplished with eight
Saturn V launches.

Mission mode 2. - Mission mode 2 uses aerodynamic braking to attain Mars orbit
as described for mission mode 1, but the return-to-Earth is accomplished without ren-
dezvous with a flyby spacecraft. The return-to-Earth payload for mission mode 2 must,




therefore, include a mission module as well as an Earth-entry module. Figure 11isa
plot of the total spacecraft weight as a function of the trans-Earth payload and hyper-
bolic launch velocity. A 150-ft/sec AV for orbit insertion is assumed here as was
assumed for mission mode 1. The expected value for the return-to-Earth payload is
*73 000 pounds for an eight-man crew and 55 000 pounds for a four-man crew. The total
spacecraft weight for AVD = 15 000 ft/sec is 450 000 pounds and 550 000 pounds for

four-man and eight-man crews, respectively. The total spacecraft weight increases by
*approximately 5-1/2 pounds for each pound of trans-Earth payload.

The effect of variations in the specific impulse of the propulsion module is shown
in figure 12. The total spacecraft weight decreases by 2800 pounds for each second of

increase in ISP at AVD = 15 000 ft/sec. The reason for the increased sensitivity, as

compared to mission mode 1, is that a much greater amount of fuel is being consumed.

The total spacecraft weight is also more sensitive to the ratio of tank and engine
weight to fuel weight as is shown in figure 13. A 10-percent increase in A will result
in an increase of 15 000 pounds in total spacecraft weight for AVD = 15 000 ft/sec.

The ratio of entry structure weight to total entry weight is plotted in figure 14 as
a function of total spacecraft weight. A 10-percent increase in ¢ will result in an in-
crease in total spacecraft weight of 800 pounds (for AVD = 15 000 ft/sec) and a nomi-

nal € of 0.15.

The total spacecraft weight variation for mission mode 2 is summarized in
figure 15. The expected total spacecraft weight for AVD = 15 000 ft/sec is

550 000 pounds. When compared to mission mode 1, mission mode 2 shows a signifi-
cant increase in the sensitivity of total spacecraft weight to variations in the design
parameters. The optimistic to pessimistic variation of spacecraft weight at AVD =

15 000 ft/sec is 130 000 pounds for mission mode 1 and 270 000 pounds for mission
mode 2.

Mission mode 3. - Mission mode 3 does not use aerodynamic braking to attain
Mars orbit as did mission modes 1 and 2. However, hyperbolic rendezvous is used to
reduce the payload inserted into Mars orbit. Two propulsion modules are used instead
of one as in mission modes 1 and 2, because of the increased AV requirements and
the obvious advantages of staging.

Since Mars-orbit insertion is accomplished propulsively, it is important to reduce
the spacecraft weight as much as possible at this point. One possibility is to stage
the lander for a hyperbolic entry prior to orbit insertion. The effect of staging the
lander either before or after orbit insertion is shown in figure 16 (assuming a AV of
15 000 ft/sec for orbit insertion). The total spacecraft weight is increased by
420 000 pounds if the lander is staged after orbit insertion (that is, the total spacecraft
weight is doubled if the lander is not staged before orbit insertion). This weight savings
cannot be completely realized since the lander weight must increase to accomodate the
higher Mars-entry velocity when the lander is staged prior to Mars-orbit insertion.



The total spacecraft weight variation for mission mode 3 is summarized in fig-
ures 17 to 20. This summary assumes that the lander is staged prior to orbit inser-
tion. The expected value of total spacecraft weight for AVD = 15 000 ft/sec and

AVI = 15 000 ft/sec is 480 000 pounds, which is slightly less than for mission mode 2. +

However, the difference between the optimistic and pessimistic values for spacecraft
weight is 400 000 pounds, which indicates that mission mode 3 is much more sensitive
to the design parameters than either mission mode 1 or 2. ‘

Mission mode 4. - Mission mode 4 uses a propulsive orbital insertion and a direct
return-to-Earth. It is even more important for mission mode 4 than for mission
mode 3 that the lander be staged prior to Mars-orbit insertion, as shown in figure 21.
The total spacecraft weight is increased by 500 000 pounds if the lander is not staged
before orbit insertion. The total spacecraft weight is well over 1 500 000 pounds for a
AVD of 15 000 ft/sec even if the lander is staged before orbit insertion.

The total spacecraft weight variation is summarized in figure 22 (assuming a
AVI of 12 000 ft/sec). Even with this very low AV for orbit insertion, the expected

spacecraft weight for AVD =15 000 ft/sec is 1 250 000 pounds with a variation of

750 000 pounds between optimistic and pessimistic values of the design parameters. A
much higher specific impulse is required for mission mode 4 to be realistic.

Comparison of the Basic Mission Modes

The comparison of the basic mission modes, which use the hypergolic, cryogenic,
and nuclear propulsion systems, is shown in figure 23. The lander is staged after
achieving Mars orbit in each mission mode.

The total spacecraft weight in figure 23 is the sum of all vehicle weights for those
modes requiring more than one spacecraft even though they are launched to Mars as
separate vehicles. Thus, the spacecraft weight scale is the total weight required to be
launched to Mars.

Table II lists the expected characteristics of the propulsion systems, and table III
lists the assumed velocity budget. The velocity budget is somewhat arbitrary; and,
although a different budget would alter the spacecraft weights, it would not greatly
affect the relative comparisons. The engine weight is included in A for the hypergolic
and cryogenic systems, but this weight is listed separately for the nuclear engine. A
10 000-pound reactor shield is included in the nuclear system. The specific impulse
variation (optimistic to pessimistic) for the cryogenic system is +5 seconds and for the
nuclear systems, +20 seconds. The nuclear engine weight and the engine radiation
shield weight are each assumed to vary by +1000 pounds from the expected value. All
other spacecraft design parameters are as shown in table I.

The second vehicle weight for mission modes 1 and 3 (that is, weight for the flyby
spacecraft) is 180 000 pounds, which allows 18 000 pounds for the Earth-entry module,
55 000 pounds for the mission module, and 107 000 pounds for the experiments package
and/or propulsion module. Figure 23 indicates that mission modes 3 and 4 are not

10




competitive with mission modes 1 and 2 unless a nuclear propulsion system is used.
Mission mode 1 is particularly effective because the first and second vehicles can each
be launched into Earth orbit by a single Saturn V launch vehicle, since the weight of the
largest vehicle is approximately 270 000 pounds; the Earth-orbit assembly is thus sim-

¢ plified. The sensitivity of the various modes to uncertainties in the design parameters
is indicated by the length of each bar in figure 23. Mission mode 1 is the least sensi-
tive, and the sensitivity increases through mission mode 4.

T

Variations of the Four Basic Mission Modes

Many possible variations to the four basic mission modes exist. These variations
include the propulsion system used, the crew size, and the number of vehicles used. A
complete analysis of all possible variations is unnecessary and beyond the intended
scope of this study, but an assessment of some of the more meaningful variations is
included. The variations selected for analysis illustrate the effect of systems require-
ments and mission profiles on the spacecraft module weights and the number of launches
required.

The Mars lander could be launched to Mars as a separate, unmanned vehicle and
guided to Mars orbit by using aerodynamic braking by a manned vehicle already in Mars
orbit. The manned vehicle would then rendezvous with the lander in Mars orbit and
continue the mission. The advantage of this operation is in the increased lander weight
capability. The lander could weigh as much as 300 000 pounds and could be launched to
Mars by using a propulsion stage assembled to the lander. This assumed that the Sat-
urn V can deliver 306 000 pounds to a low Earth orbit. The increased lander weight
could be used to increase the Mars surface exploration capability. This variation will
be applied to mission modes 2 and 4 and referred to as mission modes 2a and 4b.

The reduction of crew size is an obvious possibility; the spacecraft weights for
four-man and eight-man crews are computed for mission modes 1, 2a, 4, and 4b.

Tables IV and V list the lander weight, total spacecraft weight, total weight in
Earth orbit, and the number of Saturn V launches required. The weights in table IV are
based on an eight-man crew, and the weights in table V are based on a four-man crew.
The assumed spacecraft velocity budget is shown in table III.

The total weight in Earth orbit and the number of launches required are based on
the following assumptions.

1. A 306 000-pound payload capability in a 100-n. mi. circular Earth orbit

2. A characteristic velocity increment of 16 000 ft/sec required for transplane-
tary injection

3. A nuclear transplanetary injection stage used only if the Mars spacecraft uses
nuclear propulsion — the specific impulse (ISP> of the nuclear injection stage assumed

as 820 seconds, the engine weight as 35 000 pounds, A as 0.15, and the total weight as
306 000 pounds

11



Tables IV and V indicate that a nuclear propulsion system will reduce the number
of Saturn V launches required for the Mars landing mission. For example, mission
mode 4b with a four-man crew and nuclear propulsion is capable of placing a
300 000-pound lander on the surface of Mars by using only six Saturn V launches. How-
ever, a hypergolic mode 1 and a cryogenic mode 2a are equivalent to the nuclear
modes 4 and 4b, except that mission modes 1 and 2a require two additional Saturn vV
launches. The Mars landing mission can be accomplished without a nuclear propulsion
system, but at the cost of two to three additional Saturn V launches depending on the
mission mode selected.

CONCLUSIONS

The most efficient mission mode for the Mars landing depends on the type of
trajectories used, and the conclusions derived from this study apply only to the oppo-
sition class of missions with flight times of 400 to 500 days. The conclusions are fur-
ther qualified by the fact that the study is strictly a performance analysis and does not
include a concurrent assessment of spacecraft design feasibility. Therefore, the
following is a list of "'qualified" conclusions.

1. Aerodynamic braking is equal to or better than nuclear propulsion for either
direct return-to-Earth or hyperbolic rendezvous missions.

2. Propulsive orbital insertion with direct return-to-Earth requires the largest
total spacecraft weight and is the most sensitive to uncertainties in spacecraft design
parameters when compared to the other mission modes studied.

3. Aerodynamic braking into Mars orbit with hyperbolic rendezvous for direct
return-to-Earth is the mission mode most consistent with the current Saturn V
launch-vehicle payload and can be accomplished without the development of nuclear
Earth-orbit launch stages.

4, The use of nuclear Earth-orbit launch stages reduces the number of launches
required and, thus, either simplifies Earth-orbit operations or permits a larger space-
craft weight in the Earth-orbit operations for a given number of launches.

5. Sending the lander to Mars in an unmanned configuration as a separate vehicle
could provide lander weight capability in excess of 300 000 pounds and thus provide for
greater surface exploration capability.

Manned Spacecraft Center
National Aeronautics and Space Administration
Houston, Texas, April 24, 1968
981-30-10-00-72
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TABLE II. - COMPARISON OF PROPULSION SYSTEMS

FOR MARS LANDING MISSION MODE

Propulsion SpecificS ;::npulse, N Enginelgleight,
Hypergolic 380 0.12 .-
Cryogenic 420 .15 --
Nuclear 820 .15 15 000

TABLE II. - COMPARISON OF VELOCITY BUDGET

FOR MARS LANDING MISSION MODE

With aerodynamic |Without aerodynamic
Maneuver braking, braking,
ft/sec ft/sec
Earth-to-Mars midcourse 500 500
Deboost-to-Mars orbit 500 15 000
Return-to-Earth 15 000 15 000
Mars-to-Earth midcourse 500 500
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