


X- 6 15 -68-259 
PREPRINT 

ASYMPTOTIC RELATIONS BET WEEN 
THE THOMAS-FERMI-DLRAC 

AND THOMAS-FERMI ATOM MODELS. 
11. EXTENSION OF THE CASE O F  

LOW ATOMIC NUMBER 

R. E. Hartle 
Laboratory for Space Sciences, 

National Aeronautics and Space Administration, 
Goddard Space Flight Center 

Greenbelt, Maryland 

and 

J. J. GilvarryJ1: 
Theoretical Studies Branch, Space Sciences Division, 

Ames Research Center, 
National Aeronautics and Space Administration, 

Moffett Field, California 

July 1968 

*Present address: The Rand Corporation, Santa Monica, California 

Goddard Space Flight Center 
Greenbelt, Maryland 



ABSTRACT 

The asymptotic relation between the pressure  with exchange in the 
* 

c 

Thomas-Fermi-Dirac atom model and the corresponding pressure  

without exchange on the Thomas-Fermi model for the case of low atomic 

number considered in the first paper of this s e r i e s  is generalized by 

including a correction corresponding to the f i rs t -order  Coulomb con- 

tribution to the energy of the atom, rather than the kinetic energy of 

the electrons alone. All  t e rms  yielded by the asymptotic solution of 

March for the Thomas-Fermi-Dirac equation in the limit of small  atom 

radius a r e  included, and the extension of resul ts  on the basis of the 

general asymptotic solution of Rijnierse in this limit is indicated. The 

expression for the radius of an isolated Thomas-Fermi-Dirac atom 

for low atomic number obtained previously is extended to include a 

t e r m  corresponding to the Coulomb correction of first order ,  and com- 

pared with a similar result  of Jensen. Asymptotic relations between 

thermodynamic functions (the energy, the compressibility, and param- 

e t e r s  associated with the energy and equation of state) on the two models 

for low atomic number a s  given previously a r e  extended similarly. 

Comparison of the extended asymptotic relations between the pressures  

on the two models is made with numerical resul ts  obtained by direct  

solution of the Thomas -Fermi-Dirac equation. 
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I. INTRODUCTION 

An asymptotic relation expressing the pressure  with exchange on 
u 

on the Thomas-Fermi-Dirac atom model as a function of the cor re-  

sponding pressure  without exchange on the Thomas-Fermi model was 

obtained by Gilvarryl on the basis of the -method of March2 for solving 

the corresponding differential equations of the models for an infinitesi- 

mal atom. In a preceeding paper by Gilvarry, Hartle, and March: 

hereafter re fer red  to as I, it was shown that the result  of Gilvarry 

follows by a direct  physical argument, without the necessity of recourse 

to solution of differential equations. This possibility arises because the 

relation between the pressures  correspnds to the limiting situation at 

small volume, where only the kinetic energy of the electrons distributed 

uniformly throughout the atom need be taken into account (whether for 

high pressure  or for vanishing atomic number). 

It was pointed out in I that the physical method presented there 

could no be used to generalize the results of Gilvarry. The purpose of 

this paper is to obtain the generalization of these results by taking into 

account all the t e rms  in the asymptotic solution of the Thomas-Fermi- 

Dirac equation for small atom radius which can be determined by the 

method of March. Physically, this procedure corresponds to consid- 

ering in the relation between the pressures  with and without exchange 

the effect of the Coulomb interactions to first order  a s  well as the 

effect  of the kinetic energy of the electrons. In addition, the expression 

obtained in I for the radius of a Thomas-Fermi-Dirac atom in the limit 
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of vanishing atomic number will be correspondingly generalized, and 

the connection with pr ior  resul ts  of Jensen4 will be discussed. Results 

for thermodynamic parameters  a s  generalized in the case of low atomic 

number also will be considered. 

’ 

Only a restr ic ted number of t e rms  in the solution of the Thomas- 

Fermi-Dirac equation for the limit of vanishing atom radius can be 

obtained by the method of March, because of the appearance of diver- 

gences. In particular,  only t e rms  through quadratic in the exchange 

pararneter can be found. However, Rijnierse’ has  developed a method 

of obtaining systematically any desired number of t e rms  (and of arbi-  

t r a r y  order  in the exchange parameter) in the solution of the Thomas- 

Fermi-Dirac equation for the case of small  atom radius, 

of results on the basis of the general solution by Rijnierse will be 

indicated. 

The extension 

The treatment is restr ic ted to the case of zero absolute tempera- 

ture  throughout. The atom is considered spherically symmetric. 

11. ASYMPTOTIC RELATIONS 

The Thomas-Fermi-Dirac equation6 is 

d2$/dx2 = x [($/x) 1’2 + E ]  3 ,  

where E is the exchange parameter  ( 3 / 3 2 v 2 ) l I 3  Z - 2 / 3  for  an atom of 

atomic number Z ,  and x is a dimensionless variable connected with the 
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radial  distance r in the atom by r = px, in which p is the scale length 

( 9n2/128 Z ) in omic units, The Thomas-Fermi-Dirac function 

$ (x) for a neutral  atom satisfies the initial and boundary conditions 

respectively, wher*e 

radius xb of the 

Fe rmi  equation d2+/dx2 = +3/2 /x1 /2 ,  where the Thomas-Fermi 

function + is subj 

to those of Eqs, (2). 

is the boundary value of $ corresponding to the 

. When E vanishes, Eq. (1) reduces to t&e Thomas- 

to initial and boundary conditions exactly analogous 

Asymptotic s tions for  the Thomas-Fermi-Dirac function in the 

case of small  atom radius have been obtained by March and Gilvarry 

by means of a m od introduced by the former.  The procedure 

consists in expa 

imposing the initial and boundary conditions, and obtaining systemati- 

cally the partial  

first three partial  sums a r e  given recursively by 

g $ in a Taylor s e r i e s  about the atom boundary, 

ms $n of degree n = 1 , 3 , 5  , i n x  - x b  The 

$1 = 32/3 (,/,E) - 2 31/3(X/Xb) E + X E 2  



These results a r e  valid in the limit of vanishing atom radius xb . 
It was shown by Gilvarry and in I that the Thomas-Fermi-Dirac 

function corresponding to the limit of a uniform distribution of electrons 
J 

confined to the atom volume is the partial  sum t.,!~~ of Eq. (3a) and must 

include t e rms  linear and quadratic in E . Of the three t e r m s ,  the initial 

one arising from the chemical potential of an  electron is the dominant 

one and the las t  two correspond to the effect of exchange. The first 

t e r m  dependent on E was obtained by March and the second by Gilvarry. 

The original results of Gilvarry and those of I follow from the boundary 

value $J1, 

corresponds to the effect of the kinetic energy of the electrons only. 

of $J1, upon which the pressure  depends. This partial  sum 

The second partial  sum IC3 of Eq. (3b) differs f rom IC1 by the las t  

three t e rms ,  which represent  the effect of the variation of the potential 

in the atom computed on -- the assumption that -- the electron density is - 

uniform. 

physical argument. However, one notes that the three t e rms  cancel 

for x = xb , and hence the boundary values $J l ,b  and $J3 ,b  corresponding 

to the first two partial  sums a r e  equal. It follows that the associated 

pressures  agree and hence the effect on the Thomas-Fermi-Dirac 

function of the variation of the potential implied by a uniform electron 

distribution does not change the resul ts  of I inferred by considering 

the effect of the kinetic energy alone. This fact was noted by Gilvarry. 

These terms were obtained first by Gilvarry, by means of a 
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The partial  sum $s differs f rom $3 by a t e r m  - (3/10) x/xb which 

a r i s e s  f rom the contribution of the electrostatic electron-nucleus and 

electron-electcon interactions in addition to the kinetic energy, producing B 

nonuniformity of the electron distribution in the atom. Since this 

correction to 

boundary value $ 

differ. 

results of I artising from inclusion in the Thomas-Fermi-  

of the effect of the t e r m  in question, arising from the electrostat ic  

interaction wkien the electron distribution is not uniform. This t e r m  

representing the Goulomb correction on the boundary vaA3;2e of the 

Thomas-Fermi+Dirac function was obtained first by March. 

does not vanish at the atom boundary, the corresponding 

does not equal $3,b’ and the associatedipressures 
5 , b  

The-object of this paper is to obtain the modificatbn. to the 

rac  function 

Note that Eq. (3c) for $s contains a l l  terms i n +  which can be de- 

termined by the method of March. Terms of higher order  a r e  given by 

Rijnie r s e. 

In what follows, it is necessary to consider only the boundary 

value 

corresponding.to $ 5 ,  since the pressure  depends only upon. boundary 

values. 

SuLts of Gilvarry and in I; the last t e r m  a r i s e s  f rom the Coulomb cor-  

In th i s  expression, the first three t e rms  correspond to the r e -  . 

rection and yields the extension of the resul ts  of I obtained’in this paper. 
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The p res su re  P,, with exchange corresponding to a Thomas-Fermi- 

Dirac atom a t  zero temperature is given by 

where e is the electronic charge. When E vanishes, this expression 

reduces to the corresponding pressure  P of a Thomas-Fermi atom 

given by 

in t e rms  of 4b , the value of + a t  the atom boundary. Upon substituting 

Eq. (4) into Eq. (5) and retaining te rms  of significant order ,  one obtains 

(7) p,, = po [ 1 - 5 ~ ~ ~ / 4 . 3 ” ~  - 31’3xb/41, 

where po is the Thomas-Fermi pressure  in  the limit xb-o, given by6 

- ( P / 1 5 ~ ~ ) ( 2 / 7 ~ ~ ) ~ / ~  (e2/.:) Z1Ol3 xi5 Po - 

in t e rms  of the radius a,, of the first Bohr orbit  for hydrogen, 

The expression for the pressure  p,, of Eq. (7) was obtained by 

March2 from a form for $ J ~  corresponding to Eq. (4) with the exception 

that the quadratic t e r m  in E was ommited; Gilvarry pointed out that 
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March's result  for p,, is valid through te rms  in E higher than were 

included explicitly. The leading t e r m  p0 of Eq. (7) is just  the contri- 

bution to the pressure  f rom the kinetic energy of a uniform distribution 

of Z electrons in the atom volume. The second t e r m  is simply the 

exchange correction to such a gas of f ree  electrons. The las t  t e r m  can 

be identified ass the sum of the pressure  contributions pen d pee f rom 

the electron-nucleus and electron-electron interactions, respectively, 

calculated on the assumption of a uniform distribution of electrons. 

It follows from Eq. (7) that the Thomas-Fermi-Dirac pressure  

P e  x can be expressed a s  a function of the limiting form po of Eq. (8) 

for  the Thomas--Fermi pressure  by the asymptotic relation 

pex = [I- (1+32'3 E-~/~)(~o~po) 1/51 (9) 

in t e r m s  of the constant pressure  Po (independent of Z ) given by 

Po = [54/(3*210~7)1 e2/a:, (10) 

as was noted by Gilvarry. The fact that the Thomas-Fermi-Dirac 

pressure  peX of Eq. (9) includes the effects to first order  of the electron- 

nucleus and electron-electron interactions ra i ses  the possibility that 

P,, can be expressed as a function of the corresponding Thomas-Fermi 

pressure  which iQcludes the effects of these interactions. One obtains 

the latter presshre  including such interactions to first order  by equatin'g 

E to zero  in Eq. (7) to yield 
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pM = po (1- 3'13 xb/4) , 

*I 
where P, is the pressure  derived by March.2 

f r o m  the expression in square brackets of Eq. ( 7 ) ,  one obtains 

Factoring (1-3 l l3xb/4)  

P,, = PM [I-  (5EXb/4*31/3) (l+31/3Xb/4)] , 

which differs f rom Eq. (7 )  in that po is replaced by PM , which contains 

the Coulomb correction. 

The t e rms  neglected in the square brackets of Eq. ( 7 )  a r e  of form 

O( xb2 ). The perturbation analysis of March leading to this equation 

cannot yield the coefficient of the t e r m  O( xb2 ); however, this coeffi- 

cient can be determined by consideration of the general form of the 

Thomas-Fermi-Dirac energy uex . The energy to which Eq. ( 7 )  cor re -  

sponds is1 

u e X  = uo [l- ( ! 5 t ~ , / 2 * 3 ~ / ~ ) -  31/3xb/21 

where uo is the Thomas-Fermi energy associated with po . One can 

infer f rom this expression and the resul ts  of Rijnierse that the general 

asymptotic form of uex for the case of small x b  must be 
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with the coefficients bn dependent on E in general. Since uo var ies  as 

2 ,  the corresponding pressure  is 
I 

and one notes the complete absence of a t e r m  of form p0 O( x z  ), since 

the corresponding coefficient vanishes whenn = 2 .  This conclusion is 

consonant with the general solution of Rijnierse for P,, given by Eq. 

( A l )  in the Appendix. 

One notes that the factoring operation leading to Eq. (1 2) introduced 

a t e r m  of order  exb2 into the expression in square brackets. It follows 

from the preceding argument that the corresponding coefficient is exact, 

since the form of p 

such term. 

demanded that the final asymptotic relation for p,, vanish when the 

radius xb of the atom has the value xb,z  corresponding to the isolated 

Thomas-Fermi-Dirac atom. Te rms  of order  exb2 must be retained 

in the asymptotic expression for p,,  , since they a r e  of the same order  

as when xb has the value xb,z  corresponding to the isolated atom, 

a s  will appear. 

preceding the factoring operation contained no 
ex 

This fact is important in what follows, since it will be 

Equation (12) can be put in  the form 

p,, = pM [l- ( S ~ x ~ / 4 * 3 ~ / ~ )  (1+3 l l3  xb/20)-  EX:/^] 
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by adding and subtracting pM E xb2/16 

fixed value of 2, the Thomas-Fermi pressure  P approaches asymptotically 

In the limit of small xb at a 

the values of Py and Po . However, for small  Xb, in general, pM should be 

a better approximation t o p  than is po . Hence, for the limit in question, 

Eq. (16) can be written with suppression of the subscript M onp  as 
4 

by substitution for E and elimination of xb with use of Eq. (11). The 

constant pressure  P, is given by 

P, = (415)’ ( 3 ~ ~ / 2 ) ~ / ~ P ~  , 

in t e rms  of Po of Eq. (10). 

Equation (17) represents the proper asymptotic relation between 

the Thomas-Fermi-Dirac pressure  p,, and the Thomas-Fermi pressure  

p when the, effects on the pressures  of not only the kinetic energy of the 

electrons but also their  Coulomb interaction to f i r s t  o rder  a r e  taken 

into account. On the same basis as  in the argument of Gilvarry and a s  

given in I, the result  holds in the first instance for infinitesimal volume 

and should be valid in the two limits corresponding to infinite pressure  

for a rb i t ra ry  atomic number and to vanishing atomic number for a rb i -  

t r a r y  pressure.  In general, Eq. (17) should hold for a range of atomic 

number a t  low 2, ra ther  than simply in the asymptotic limit Z-0. 
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One notes f rom Eq. (17) that one obtains P,, = P in the limit p-co 
! 

s 

at constant 2, where the contributions from the exchange and Coulomb 

energies vanish. 

to p - m ,  consider the limit 2-Oat a fixed value of the Thomas-Fermi 

pressure  p . Forthismcase,  the asymptotic expression of Eq. (8) implies 

x -, 0 as 2- 0, independently of pressure  P .  The last t e r m  in Eq. (17) 

representing a contribution from the Coulomb energy vanishes for 

In contrast  to the limit xb+O at fixed 2 corresponding 
c 

L1 

b 

the limit in question and the resulting expression 

' 

is that obtained by Gilvarry and in I. 

Further  generalization of the asymptotic relation of P,, to p is 

car r ied  out in the Appendix by using the general expression for P,, 

obtained by Rijnierse. In this instance, for sufficiently small xb , Eq. 

(A5) can be written as 

in t e rms  of the constant pressure  

P, = [(2/5)4 (18~~)~/~/7I 5/3 Po 
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This procedure yields a resul t  that should be valid over wider ranges 

of pressure  than the corresponding Eq. (17). One notes, of course,  that 

the same asymptotic results follow from either Eq. (17) o r  Eq. (20) 

when one takes the limits P + a  at fixed Z o r  Z - 0  at fixed P . 

A maximum atom radious x b , z  for any value of Z corresponds to 

the isolated Thomas-Fermi-Dirac atom with zero  pressure  on its 

boundary. The boundary value +b,= of +b in the case p,, = 0 must 

satisfy the Jensen boundary condition 

which constrains 

conjoined with +b of Eq. (4) yields a quadratic equation for xb,z with 

a corresponding ambiguous sign in the root. Eq. (17) requires P >  Po 

and since p( xb ) is a monotone-decreasing function,' the minumum 

root must be taken. Hence, the radius xb,z  of the Thomas-Fermi-Dirac 

atom on the basis of Eq. (4) is 

to be a function of Z . The Jensen condition 

o r  , equivalently, 
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where t e r m s  of significant order  have been retained. One verifies 

directly that and x a r e  of the same order ,  as stated 
b , Z  

previously. 

t 

Direct substitution of the result  of Eq. (24) into pex of Eq. (17)  

yields 

to the order  of t e rms  considered. Thus, Eq. (24) represents the radius 

of an isolated Thomas-Fermi-Dirac atom a s  a function of atomic number 

in the limit 2-0, in conformity with the assumption that xb be small. 

The leading term of Eq. (24), obtained in I, corresponds to the effect 

produced by the exchange force which tends to contract the electron 

cloud (through its effect on the electrostatic potential energy). The 

second t e r m  corresponds to a contribution from the Coulomb interaction, 

in conformity with the fact that the total electrostatic attraction of the 

nucleus on the electrons is greater than the repulsion of the electrons 

on themselves. To the isolated Thomas-Fermi-Dirac atom with radius 

x ~ , ~  given by Eq. (24) and meeting Eq. (25),  a compressed Thomas- 

Fe rmi  atom of the same radius exists for which the pressure  P satisfies 

c 
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This expression generalizes a resul t  of I to low atomic number, since 

it yields the physical interpretation of Po given by ~ ( x ~ , ~ )  = Po in the 

limit Z + 0 .  Notice that a s  Z increases ,  the pressure  at the boundary 

of the isolated Thomas-Fermi-Dirac atom remains zero,  but that for 

the associated Thomas-Fermi atom of the same radius becomes la rger  

with Z .  

A difficulty a r i s e s  when one seeks the next correction t e r m  to 

of Eq. (24) f rom Rijnierse’s general solution for P,, given by x 

Eq. (Al )  in the Appendix. In this case,  xb,z  is fixed by Eq. (25). 

However, a subseries in the square brackets of Eq. ( A l )  exists whose 

i-th t e r m  varies  as eixF2and consequently a s  x : , ~  at the isolated 

atom boundary. It is unfortunate that these t e rms  contribute to the next 

correction to x 

to obtain the corresponding coefficient. In fact, the first few t e rms  of 

this subseries indicate a t  best  a very slow rate  of convergence. 

b. Z 

because, in principle, one must sum an infinite se r ies  
b, Z 

Jensen4 has  determined the equilibrium atom radius of a spheri-  

cally symmetric and uniform distribution of electrons in the field of a 

nucleus by 

H = $4, 

where p is 

stants a r e  

minimizing the Hamiltonian 

the electron density, Vn is the nuclear potential and the con- 

given by %, = (3/10) (3/77)2’3~2 e2  a. and %, = (3/4) (3/77)’l3e2. 
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The first integral over the atom volume represents  the kinetic 

energy, while the following two a r e  the electron-nucleus and electron- 

electron potential energies, respectively, and the last integral 

represents  the exchange energy. Mininizing the Hamiltonian with 

respect to the atom radius for the case of a uniform density p = Z/v 

in t e rms  of the atom volume v = ( 4/3) rp3x3b , one obtains 

I- 1 - 1  

which represents the atom radius determined by Jensen. Binomial 

expansion of this result  yields agreement with Eq. (24) through te rms  

of o rder  Z4l3.  

In deriving Eq. (28), Jensen assumed that the electron distribution 

is uniform. He did not state any restriction on the atomic number Z.  

However, it is obvious from the argument of Gilvarry and that presented 

in I that Z - 0  is the necessary and sufficient condition that the electron 

distribution in an isolated Thomas-Fermi-Dirac atom be uniform. It 

follows, in fact, that Eq. (28)  is subject to the restriction that the 

atomic number Z be small ,  and that the result  a s  expressed by Eq. (24) 

is no more accurate than the binomial expansion of Eq. (28) which 

corresponds to it. As a check, one notes that Eq. (28) implies that 

xb ,Z  approaches a constant for large Z ,  which is clearly invalid since 

x is know to vary a s  Z1I3 in this limit.8 b , Z  
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111. THERMODYNAMIC PARAMETERS 

For  sufficiently small xb , the total Thomas-Fermi-Dirac energy 

with exchange, related to the pressure  by P,, =-duex/dv can be 
ueX 

derived by integration of Eq. (7). Neglecting the resulting integration 

constant, one obtains 

in t e rms  of the Thomas-Fermi energy uo without exchange corresponding 

to Po , given by 

In analogy with the Thomas-Fermi-Dirac pressure  P,, of Eq. (17), the 

energy uex can be expressed as a function of the Thomas-Fermi 

pressure  pM and the corresponding energy uM given by 

which one obtains by integration of Eq. (1 1). Accordingly, one has 
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The last term in the square brackets of Eq. (32) is of form ab2 

and has been retained since it is of the same order  as x ~ , ~  at the 

isolated atom radius (as has been pointed out previously). The general 

solution for uex obtained by Rijnierse shows the presence of a t e r m  of 

form xb2 with coefficient independent of E , which clearly can be 

ignored. Hence, all t e rms  have been retained in  Eq. (32) for Uex which 

a r e  significant for xb = x ~ , ~  in the case corresponding to the isolated 

atom, where Eq. (25)  holds., Thus the ratio 

represents the asymptotic relation between the Thomas-Fermi-Dirac 

energy uex and the Thomas-Fermi energy u when the effects on the 

energies of not only the kinetic energy of the electrons but also the 

Coulomb interaction to first order  a r e  taken into account. This expres- 

sion should be valid for an  extended range of low atomic number as 

compared to the corresponding resul t  of I. 

The result  of Eq. (33) should be valid in the two limits corresponding 

to infinite pressure  for a rb i t ra ry  atomic number and to vanishing atomic 

number for a rb i t ra ry  pressure.  Fo r  the limit p-co independent of Z ,  

one obtains uex/u = 1; on the other hand, the last term on the right- 

hand side corresponding to the Coulomb correction vanishes for the 

limit Z - 0  independently of p, yielding the result  of Gilvarry and as 

given in I. 
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If one defines the Thomas-Fermi-Dirac parameters  yo,ex and 

= - dlnpex/dlnv, ‘0,ex with exchange by uex = p,, V/ - 1 1 and E ~ , e x  

respectively, in analogy with the corresponding definitions 

u = pv/( yo-l) and 

without exchange, one can obtain yo 

small. The results for and can then be expressed in te rms  

of the Thomas-Fermi pressure  pM of March and the corresponding 

= - dlnp/dlnv for the Thornas-Fermi case 

and in t e rms  of po for xb . e x  , e x  

parameters  yo,M and 

E = - dlnpM/dlnv, respectively. Consequently, one has 

determined by uM = p , ~ / ( 3 / ~ , ~ - 1 )  and 

0 ,M 

where Yo,,,, € 0 , ~  andpM have been replaced by their  asymptotic 

equivalents yo, and p ,  respectively, for the case of small  xb . Note 

that yo and eo in the present context a r e  given by 

3 

3 
yo =- [ l+(31/3 /10)~b] ,  

E o  =- 5 [1+ (31/3/2O)X,l , 
3 
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and not simply by the limits respectively, f rom the results of March, 

yo = eo = 5/3 appropriate to the discussion of I. Thus, the parameters  

yo and eo a r e  not identical for  the case of low Z considered here. 

expressions generalize the results of I to an extended range of low 

atomic number. 

2 , l O  

These 

The results obtained represent generalizations of the corresponding 

expressions f i rs t  obtained by Gilvarry. For  the case of vanishing atomic 

number independent of pressure P one cannot take P >> 

since Po is 0.01982Mb numerically. However, when the pressure  is 

sufficiently high, a binomial expansion of Eq. (34) yields the approx- 

imations 

in general, 

generalizing the original results of Gilvarry. Since the Coulomb 

correction terms varying as Z2/3(P,/p)2/5 in Eqs. (34) and (36) vanish 

for the limit 2-0 at constant p ,  one notes that the results of I obtain 

in this case. 

The Thomas-Fermi-Dirac compressibility Po with exchange is 
I e x  

= - dlnv/dpex in analogy with the Thomas-Fermi 
, e x  

defined by P o  

compressibility ,Bo = - dlnv/dp without exchange. In te rms  of the 

differential parameters  eo, e x  and eo introduced previously, one has  

20 
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respectively, by definition. The compressibility Po,,, of Eq. (37a) 

when combined with Eqs. (1 7 ) ,  (36b) and (37b) can be expressed as a 

function of P, and the corresponding compressibility ,Bo,, = ( E ~ , ,  pM ) - l o  

Accordingly, for sufficiently small xb , one obtains 

upon replacing P, and Po,, by the corresponding p and P o ,  respectively. 

In this expression, one has 

f rom results of March. 2 1 1 0  For the restricted situation where the 

pressure  p is sufficiently high, the compressibility is approximated 
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Fhich generalizes the result  of I for the case of low atomic number. 

Note that, the compressibility reduces to the resul t  of I for the limit 

Z -  0 ,  independent of p 

The results $or thermodynamic parameters  obtained in  this section 

can be generalized on the basis of the results of Rijnierse in an obvious 

manner. 

IV, COMPARISON WITH NUMERICAL DATA 

The Thomas-Fermi-Dirac pressure  P,, as a function of the cor re-  
- 

spoilding Thomas-Fermi pressure  p has  been plotted by Gilvarry for a 

number of values of Z f rom available numerical solutions for these 

quantities. The snlid lines for  coastant Z in Fig.  1 where constructed 

froim his results,  The selection of values o f  Z includes the practical 

limits represented by Z = 92 and Z = 2.  

corresponds to the asymptotic expression of Eq. (19) for the limit 

z - 0 .  

The limit line in the figure 

The asymptotic expression of the Thomas-Fermi-Dirac pressure  

P,, given by Eq. (17), which includes the Coulomb correction to first 

order ,  is shown by dashed lines in Fig. 1. One notes that at any value 

of p ,  the curves of constant 2 approach the limit line as Z- 0, in the 

family of solid curves corresponding to the exact solutions and in the 

family of dashed curves corresponding to the asymptotic result of Eqo 

(17). 

for  the lower. 

This fact is more obvious in Fig. 1 for the higher pressures  than 

Further ,  one notes that at sufficiently high pressure,  all 
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curves (solid and dashed) approach the tangent line p,, = p to the limit 

line. 

expressiox of Eq. (17) is consistent with the limit line of Gilvarry and 

with the exact solutions. 

Thus, the march of the curves corresponding to the asymptotic 

Figure 2 shows values of p,, as a function of p of intermediate 

magnitude as solid curves on an enlarged scale,  f rom numerical results 

of Metropolis and Reitz. Corresponding curves f rom the asymptotic 

result  of Eq. (17) appear dashed. Although the data a r e  limited, it is 

apparent (most  prominently for z = 1 4 )  that the asymptotic expression 

approaches the corresponding exact result  for fixed atomic number a s  

the pressure increases. Further ,  i t  is clear f rom the figure that for 

a given value of Z ,  there exists a Thomas-Fermi pressure  P ,  say 

P( Z), such that for p > P( Z )  the asymptotic expression P,, of Eq. (17) 

is a closer approximation to the actual Thornas-Fermi-Dirac pressure 

than is the limit of Eq. (19) corresponding to Z - 0  . For  example, 

P(14) is approximately 35 Mb while P ( 9 2 )  is about 350 Mb. It is 

obvious that for P > P(z),  Eq. (17) must be a valid approximation to 

the actual Thomas-Fermi-Dirac pressure for Z in the intermediate 

and large range rather than merely in the asymptotic limit Z-0. 

11 

The lower range of pressures  is covered by Fig. 3, where the 

solid curves representing exact solutions for P,, vs P a t  low and 

fractional values of 2 were plotted f rom results given by Gilvarry. 

The dashed curves yield the asymptotic results of Eq. (17). It is obvious 

that in the families of solid and of dashed curves, individually, the value 
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of the Thomas-Fermi-Dirac pressure  approaches that given by the limit 

line as 2-0 for fixed P or as p-cc for fixed Z .  Thus, the results are 

consistent in this sense with the theory given. Moreover, one notes 
v 

that the courses  of the dashed relative to the solid curves are essentially 1” 

the same in Fig. 3 as in Fig. 2. Thus, one can infer that Eq. (17) should 

yield a valid approximation to the t rue Thomas -Fermi-Dirac pressure  

for low values of Z when one has p >  P ( Z ) .  However, the data of Fig. 3 

are too limited to specify P( Z )  numerically in the limit of low atomic 

number, although P (0 .04  ) must be of the order of a megabar, as judged 

by extrapolation from the data. 

The salient feature of F igo  3, however, is that for increasing values 

of Z a t  fixed p I  the asymptotic values p,, of Eq. (17) become increasingly 

poorer approximations to the actual numerical values of P,, at these 

lower pressures .  Even for the lowest fractional value ( 0 . 0 4 )  of Z appear- 

ing, the value of p,, corresponding to the limit line for Z = O  is a better 

approximation to the t rue value than is that given by Eq., (17). This 

behavior obviously a r i s e s  f rom the fact that the factor p-2/5 

in  the correction t e r m  Z2l3 ( 

(17) causes it to overestimate considerably the Coulomb correction at  

present 

) 2’5 in  the square brackets of Eq. 

low pressures  where p < P(z). As a consequence, the truncated se r i e s  

in the square brackets of Eq. (1 7) yields a reasonable approximation at 

low pressure only in the mathematical cases  of Z close to zero (for 

Z << 0.04 , at least). 

sponding to Fig. 3 ,  the asymptotic expression of Eq. (19) for  the limit 

Hence, for the range of low pressures  cor re-  
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2-0 yields a more useful approximation than does P,, of Eq. (17) over 

the practical  range 2 2  1 starting with hydrogen, 

One notes that the asymptotic expression of Eq. (20) derived from 

the resul ts  of Rijnierse contains the further negative correction term 

Z4 l3  

Hence, the corresponding value of p,, leads to a further overestimate 

of the t rue Thomas-Fermi-Dirac pressure.  However, it can be shown 

that this trend is reversed by inclusion of the next correction t e r m  (not 

discussed in this work)  f rom the resul ts  of Rijnierse,  which would have 

the effect of adding a positive quantity to p,, of Eq. (20). The necessity 

of such behavior was pointed out by Gilvarry in his initial discussion. 

(P,/p ) 3/5 within the square brackets, as compared to Eq. (17). 

It is clear  that entirely s imilar  statements can be made on the 

corresponding range of validity of the asymptotic expressions for the 

energy, the compressibility, and the thermodynamic parameters  asso-  

ciated with the energy and the equation of state,  a s  obtained. 

V. DISCUSSION AND CONCLUSIONS 

It is obvious that the extended asymptotic relation between the 

pressures  on the Thomas-Fermi-Dirac and Thomas-Fermi atom models 

a s  obtained here  is a direct  consequence of the Thomas-Fermi-Dirac 

equation but has only a limited usefulness a t  low atomic number and 

low pressure.  This circumstance is a result  of the fact that the first 

(or  first few) t e rms  of an asymptotic se r ies  in 2 for low atomic number 

in this case can yield a useful approximation for the limit of low atomic 

25 



number simultaneously with the limit of low pressure  only i f  a fairly 

large number of t e rms  is included from the results of Rijnierse. Note 

that this s t r ic ture  does not apply to the expression obtained in I of this 

se r ies  for the limit of vanishing atomic number, because this result  is 

exact (the atomic number Z does not appear in it). 

On the other hand, the asymptotic relation obtained between the 

pressures  on the two models has an obvious use at higher pressures ,  

since it specifies precisely how the pressure  with exchange approaches 

the value of the limit line as the pressure  increases for fixed atomic 

number. In this physical case,  a single correction t e r m  corresponding 

to the effect of the Coulomb energy reproduces the results f rom direct  

solution of the Thomas-Fermi-Dirac equation provided the pressure  in 

question exceeds some limit dependent on atomic number, specified by 

P ( Z )  in the foregoing. 

The ultimate objective of this se r ies  of papers is to construct an  

asymptotic relation between the pressures  on the Thomas-Fermi-Dirac 

and the Thomas-Fermi atom models which is valid for a rb i t ra ry  atomic 

number and, to as great an  extent possible, for a rb i t ra ry  a s  well as 

high pressure.  

on the final solution of this problem. 

The results of this paper impose obvious constraints 

" 
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APPENDIX 

In a recent paper, Rijnierse’ has  solved the Thomas-Fermi-Dirac 

equation by a method of successive integrations and shown that the 

solution can be obtained to any desired order  for the case of small 

atom radius. Consequently, the Thomas-Fermi-Dirac pressure  can be 

determined to any order ,  and Rijnierse has evaluated p,, to poO ( xb5 ). 

The expression of Rijnierse for  the pressure  is 
0 

p,, = Po [l - 3,’, X&’4 - 5€Xb/4.31/3 - R, x:, 

a 

in  t e r m s  of the constants 

54,929 31,500 38,880 
-907 ,200  907,200 907,200 R -  , R  = , R, = 3113 . (A2a, b, c) 

In analogy with the Thomas-Fermi-Dirac pressure  P,, of Eq. (16), the 

pressure  peX of Eq. (Al)  can be expressed as a function of the cor re-  

sponding Thomas-Fermi pressure  PR given by 

pR = po [1-3’13 xb/4 - R, x i  -I R, xt In (4.32’3/xb)l , 
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determined from Eq. (Al )  by setting E to zero. By making pR a factor 

of Eq. ( A l )  and adding and subtracting appropriate t e rms ,  one obtains 

-  EX;/^) (1+31/3  xb/lO) - ( 7 ~ 3 ~ / ~ / 1 6 0  -R3) EX;] , (A41 

retaining only t e r m s  of significant order  of approximation. This 

expression enables one to write p,, a s  a function of pR by 

in t e rms  of the constant pressure  P, of Eq. (21) in the text and the 

constant pressures  Po and P, previously defined. 
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FIGURE CAPTIONS 

Fig. 1. Curves of the pressure  P,, with exchange as a function of the 

Thomas-Fermi p re s su re  p for selected values of atomic number2. 

The limit line corresponds to Eq. (19) while the remaining solid 

curves correspond to numerical solutions. For  comparison, the 

dashed curves correspond to the asymptotic expression of Eq. (17). 

Fig. 2. Curves of the pressure  p,, with exchange a s  a function of the 

Thomas-Fermi pressure  p for  selected values of atomic number Z 

The limit line corresponds to Eqo (19) while the remaining solid 

curves correspond to numerical solutions. For  comparison, the 

dashed curves correspond to the asymptotic expression of Eq. (17). 

The scales correspond to the intermediate decades of p,, and p in 

Fig. 1. 

Fig. 3. Curves of the pressure  p,, with exchange as a function of the 

Thomas-Fermi pressure  p for selected values of atomic number Z 

The limit line corresponds to Eq. (19) while the remaining solid 

curves correspond to numerical solutions. For  comparison, the 

dashed curves correspond to the asymptotic expression of Eq. (17). 

The scales correspond to the lowest decades of p,, and p in Fig. 1. 
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