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SUMMARY
This report documents research performed under Contract NAS 8-21082
between 1 January 1967 and 31 October 1967. The object of this program
is to measure the absorption coefficients and fine structure parameters
of water vapor at wave;engths between 1 and 10 p and at temperatures be-
tween 1200° and 3000°K and to incorporate these into a practical analytic
procedure which may be used for the evaluation of the radiative base heat=-
ingbof Saturn V and other launch vehicles. Scientific and technical per-
sonnel who spent appreciable amounts of their time on this study were
C. B. Ludwig (Principal Investigator and Project Ieader), J. A. L. Thomson,
W. Malkmus, M. L. Streiff, C. N. Abeyta, R. Janda, and D. Suttie. The
Contract Monitor was R. M. Huffaker, Aerodynamics Branch, National Aeronautics
and Space Administration, Marshall Space Flight Center, Huntsville, Alabama.

A uniform volume of high temperature water vapor was produced above
the combustion zone of a long three inch wide flat burner which was con-
structed for these measurements. HEmission and absorption measurements
were made with a pathlength of 20 feet.

The results obtained under the present program have been combined
with previous data in order to generate tables of water vapor absorption
coefficients covering the spectral region 50 to 9300 cm-l and the tempera-
ture interval 300° to 3000°K. The representation of the inverse of the
line spacing covers the intervals 1150 to 7500 cm-l in the temperature
range from 600° to 3000°K.

Several nonisothermal measurements with four five-foot sections at
different temperatures were made to test the nonisothermal radiance calcu-

lation procedure.



A theoretical study of the sensitivity of band models to deviations
of the line shape from the assumed lorentz shape was made and plausible

line intensity distribution functions were investigated.
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SECTION 1

INTRODUCT ION

Measurements of hot water vapor absorption up to a pathlength of ten
feet were carried out previously. Assuming the applicability of the
statistical band model,- values for the absorption coefficients and fine
structure parameters were obtained.

The purpose of the research reported here is the extension of these
measurements to twenty feet, in order to obtain more reliable values of
the fine structure parameter in spectral regions where the square-root
region of water vapor becomes better defined only at longer pathlengths.
These spectral regions include the troughs between the vibration-rotation
bands and the higher order bands at elevated temperatures.

Of course, at and near the bottom of the troughs, much longer path-
lengths than the present twenty feet are needed to bring the water absorp-
tion into the square-root regions. However, the present results are suf-
ficient as to extrapolate with confidence the values of the fine structure
parameter into these trough regions, thereby eliminating the uncertainty
existing in the previously reported values.

New values of the absorption coefficients k and the reciprocal of the
average line spacing d are reported. The decision to present l/d rather
than "a" was dictated by the desire to reduce the complexity in the calcu-
lation of ¢ at other than the present conditions. The representation of the
line half width Y as a function of self and foreign gas broadening, tempera-
ture, and pressure is the same as given in Refs. 1 and 2.

The new values of k are very similar to the values reported previously.

The new values of the fine structure parameter a (and therefore l/d = a/Y)
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are similar to the previous band-averaged values of a for the 6.3- and 2.7-u
band at all temperatures, for the 1.8- and l.1lh-y band only at temperatures
below 1500°K. Higher values of a are obtained for these bands at higher
temperatures (> 1500°K) and in the troughs. In order to facilitate the
computational procedures in complex programs, it is desirable to represent
the frequency dependent term l/d by simple equations. Previously, band-
averaged values were suggested. We propose now to replace the band-averaged
values with a sinusoidal function, which simulates much more closely the
measured and extrapolated values of 1/d. While this does not render the
computations more difficult, it gives better values of ¢ at long and non-
homogeneous pathlengths than by using band-averaged values.

In addition to these measurements, the independent control of four
separate five-feet sections was utilized to make inhomogeneous measurements.
The comparison with calculations using the present set of k and l/d and
the Curtis-Godson approximation gives good agreement, even for the extreme
case, where the radiation of 5 feet of»HéO at 2500°K is passing through 15
feet of H20 at 1200°K. Although we estimate that the calculation of the
spectral and total emissivities of water vapor above 1200°K is accurate to
within + 20% for homogeneous and inhomogeneous paths at most of the conditions
relevant to the exhaust of the Saturn V, certain additional studies must be
made to verify this confidence level to temperatures below 1200°K and to
more extreme inhomogeneous paths. The first task can be carried out through

3

the analysis of the extensive experimental data taken by Rocketdyne~ and by
the University of M’:‘Lchiga,n.lL The second task requires a combination of

experimental and theoretical investigations. More extreme inhomogeneous



path measurements must be taken and work on different models for use in

the Curtis-Godson approximation must be continued.
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SECTION 2

EXPERIMENTAL PROCEDURE

The installation of the ten-foot burner was described previously.l For
the present program, ten feet of burner with the necessary propellant,
cooling and control system were added. A photograph of the completed
burner inside the tank is shown in Fig. 1. At both sides of the burner,
the manifolds connecting five one-foot sections can be seen. The four
infrared safety devices (one for each five-foot section) are located
outside the tank and cannot be seen in the figure, except one hole in
the tank wall near the entrance, through which the collimated radiation
passes. The infrared safety devices consist of a PbS detector, an
amplifier, and a relay, which govefns the two main control valves for
the propellants. If the radiation drops below a previous set level, the
main control valves are shut and a nitrogen purge is initiated. 1In ad-
dition, the output of these amplifiers is displayed on a Sanborn recorder
in order to check the constancy of the radiation during a spectral scan.
The maximum variation of the output level was within the accuracy of the
control gages (+ 2%). The check of the homogeneity was again made with
a thermocouple, traveling the total length along the line of sight. The
RMS value of the variations was less than 5%.

A total of 24 runs were made. In order to esfablish consistency with
the previous runs, six runs with a five-~foot pathlength using different five-
foot sections, six runs with a ten-foot pathlength, and twelve runs with a
twenty-foot pathlength were made. During the course of these runs, one

error was discovered, which existed in some of the previous runs made last



year at ten-foot pathlengths. A discussion of this is given in the next

section.
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SECTION 3

DATA ANALYSIS

The same data reduction procedure as described in Ref. 1 was used.
Previous runs at 2', 5', and 10' together with new runs at 5', 10', and
20' were used. The spectral emissivities were averaged over 25 cm_l
intervals. The averaged emissivities were then least-square fitted to

2nd degree polynomials as functions of the temperature. The RMS of the
deviation to these fits was about the same as was found previously, less
than £ 5% in the bands, but somewhat greater in the troughs, where the
signal-to-noise ratio was smaller. However, the errors in the 20' trough
mea surements were less than the corresponding measurements at smaller
pathlengths.

From the curve-fitted‘data, the emissivities were calculated at
specified temperatures between 1250° and 2750°K. Using the statistical
model with exponential line intensity distribution, the parameters k and
a were obtained from the curves of growth at each w. The curves of growth

4n(1/1-€) were transformed into linear functions of u:

(u/&n (1/1-¢ ))2 - k2 & u(lak)™t . (1)

From the intercept with the ordinate and from the slope, the values of k
and a, respectively, are obtained.
In comparing these data with the previous ones, given in Ref. 1, the

following observations are made.




1. The absorption coefficients are essentially the same, except

in the troughs.

2. The fine structure parameters "a'" are larger for the higher

order bands and for the trough regions between the bands.

The reason for the difference‘is fwofold: firét, the 20'
burner data improved the determination of the square-root
region, which was previously well-defined only for the regions
having the largest values of k; second, some of the previous
iO' burner data were in error by about 20%. |

This error occurred through a wrong calibration in the propellant
system which influenced the determination of the temperafure. After the
data were corrected and new iO’ data obtained as a check, théy were then
used in the present data reduction, which subsequently gave higher values
of a. As an example, the curve of growth at 2000°K for w = 3500 cm_1 is
plotted in Fig. 2. The previous data are given by (o), and the resulting
curve of growth (least-square fit) is given by the dashed line. The present
data are given by (A) and the curve of growth ié given by the solid line.
The present curve has a smallér siope and, therefore, a greater value of
"a" for the same k. At the same time, the o (RMS of the scatter of data
points) is much reduced.

As in the previous data reduction, where the largest pathlength was 10',
the present data up to 20' are still not sufficient to determine the fine
structure parameter in the troughs betweeh the bands. These regions were
presented in Ref. 1 as dotted lines because of this uncertainty. However,

n,

a certain consistency in the data let us believe that "a" was small in these

regions. We are now convinced that the consistency was fortuitous. The
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present data indicate a rise of "a" toward the wings of the bands so that
the actual minima of "a" occur in the center of the bands (excluding the
Q-branch) and not in the troughs.

Although the absolute levels of "a" and the dependence of "a" on the
wavelength are different as compared with the results given in Ref. 1, the
difference in the total emissivity based on the two different sets of "a" is
small and is within the uncertainty limits of the band model parameters. In
Figs. 3 and 3a, the total emissivities between 1150 and 5900 em ™t at 2500°
and 1SOOOK, respectively, are computed based on previous k and band-averaged
a's and on present k and l/d at a total pressure of 0.1l atm and 50% HQO and
50% N2 mixture. The abscissa is the pathlength from 0.1 to 105 cm-atm. The

maximum deviation of about 25% occurs at around 100 cm-atm for ISOOOK.
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SECTION 4

RESULTS

In this section, we present the results of the absorption coefficients
and the fine structure parameter in graphical and tabular form. Comparisons
between experimental and calculated data, error considerations and results

of inhomogeneous data are also given.

4.1 THE ABSORPTION COEFFICIENTS OF HEO

Data were obtained in the temperature range from 1250° to 2750°K, Extra-
polations were made to 1000° and 3000°K. Previous data at 300° and 600°K

were re-examined and changes incorporated where necessary. Comparisons of

the new data versus previous datal are shown‘in Figs. 4-10 at the tempera-
tures of 300°, 600°, 1000°, 1500°, 2000°, 2500°, and 3000°K. The major
differences occur in fhe troughs only. The change of the trough values at

L4600 cm-l for 1000°K comes through an error in the previous data. No experi-
mental data exist for the trough values at the temperatures of 600° and 300°K.
The new data are logical extrapolations from the high temperature results. The

results are given also in tabular form in Table I.

4.2 THE INVERSE OF THE LINE SPACINGS
While the format and the actual values of the absorption coefficients are
changed very little, the representation of the fine structure parameter has

been changed. In the case for pure collision broadening for HEO spectral lines,

H2O
a =Y d (2)
c c :

we write



where

(B) 7]+ (v

H,0 H
%2=EIGfSMP% 2 srp

P,0 (g%;) . (3)

Preliminary data of the individual line half widths for different broadeners
are the following (the same as given in Ref. 2). The data in parentheses

are guesses.

H O
*7
Y = Oo)'l'h‘
H,0
H,0 A
Yg o = (0-09)
2 .
H.O
YN? - 0.09
2
H.O
Yoe = 0.0k
2
H,0
Vg = (0.05)
2
H O
2
Y = 0.12
co,
0
Yoo = (0.10)

Values of the inverse of the line spacings (l/d) are given in this report.
These are idehtical to thé (l/dLR), used in Model 3a. For Model 3, values

of 1/4 are used, where
o

=i e &)
IR o l-e”



with 8 = 2300°K. For a binary mixture, Eq. (2) reduces to

HO 1/2 1/2 H
v.2 =y (o BB +0.09 EBY) + (1) B va] (5)

C

HQO H20
which has been used (with Y5 =Yy = 0.04) to reduce our experimental
2

dats of "a" to the values of 1/d (= l/dIR)' The concentration ¢ for our
conditions was calculated from a thermochemical equilibrium model.
The reduction of the experimental values of "a" to the parameter 1/d

assumes the validity of the representation of the collision half width
H O
¥*
through Eq. (3) or Eq. (5) and the three individual half widths v. = ,
HO
H20 H20 H.O 2
v , and vy . If in the future a new representation of v and/or
H20 02 c

new individual half widths are found to be more applicable, the fine
structure parameter "a'" can be obtained through Eq. (5) and the values

of l/d listed in this report. The concentration ¢ is given by

6

¢ = -.1002 + .2802 x 10’3 Tl -.1089 x 10~ T2 + 0291 x 10'9 T3 (6)

Data were obtained for the temperature range from 1250° to 2750°K in the

approximate spectral regions:

1150 - 2200 cm™t
3200 - 4100 cm™t
4750 - 5700 cm ™t
6700 - 7500 cu™t
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These spectral regions correspond to the major portions of the four
vibration-rotation bands of HEO. In all cases, the values of 1/d increase
toward the wings of the bands and become undetermined in the center of the
troughs and the values of l/d were extrapolated>into the trough regions.
Since the plots of the experimentally determined values of 1/d versus
temperatures were smooth curves (see Figs. 11-20), they were extrapolated
to 600°K and to 3000°K. A verification of these extrapolations to 600°K
will be made in the future through the use of Simmons and Rocketdyne data.
The set of 1/d versus w for T = 600°, 1000°, 1500°, 2000°, 2500°, and
3000°K is shown in Fig. 21, where all regions, which were extrapolated by
us, are given as dashed lines. A list of the values is given in Table IT.
In order to reduce the number of values to be stored in a computer

program, the 1/d were represented by a sinusoidal function:

on1/d = A sin (Bw+C) + D(T) (7)
where
A= 7941
B = .0036
C = -8.043
D(T) = -2.295 + .3004 x 1072 T -.366 x 1070 T°

In order to check this approximation, integrated emissivities were calcu-
lated based on (1/d) from Table II and on (1/d) from Eq. (7). The calcu-
lations were performed for a gas mixture of 50% H,0 and 50% N, at a total

pressure of 0.1 atm. The optical path ranged from 0.1 cm-atm to lOS

cm-atm.,
In Fig. 22, the total emissivities integrated from 1150 to 7500 cm-l are

compared. In Figs. 23 and 2h, the band emissivities at 1500° and 2500°K,

L.k



respectively, are compared. The difference between the results is small.

4.3 COMPARISON WITH EXPERIMENTAL DATA
The consistency of our results was checked by comparing the experimentally
measured emissivities with calculated values using the k and l/d from Tables
T and II. The results are shown to be consistent (see Figs. 25-32) for all
pathlengths (2, 5, 10, and 20 feet) at two representative temperatures
(1500° and 2500°K).

As an independent check, comparisons with Simmons' data are made for

temperatures greater than 1000°K. The results are given in Figs. 33 and 34,

4.4 ERROR LIMITS

It is difficult to assign specific error limits to the data we presented,
because they depend on many different parameters. We can estimate the
precision with which the data were taken. From the knowledge of the
statistical scatter, the accuracy of the intermediate and the final results
can be estimated. It was found that both precision and accuracy depend

upon the spectral regions, the temperature and the pathlengths. In addition
to these considerations, the uncertainty of the models themselves must be
assessed.

In order to give some overall error limits, we estimate the calculation
of integrated radiancies (or total engineering emissivities) based on the
data presented here to be within + 5% for pL S 20 ft-atm. For greater path-
lengths, the uncertainty is surely greater because it depends then more on
the individual foreign gas broadener parameters, which are uncertain and, in
some cases, are only guesses. For the calculation of spectral radiancies

(or spectral emissivities), we estimate the overall error limits to be within
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+ 20%. There are several exceptions to this value. The center of the
2.7-u band at the higher temperatures is known better than * 10%, while
all the trough regions and bands at the lower temperatures are probably
known with less certainty than * 20%.

We will now discuss the individual contributions to the overall
error limits. The precision of the individual data (in pV) is largely
determined by the signal-to-noise ratios of the system, the kndwledge of
the calibration blackbody source (energy, temperature) and the spectral
calibration (micrometer drum divisions versus wavelength). The signal-
to-noise ratio changes from 1 for low radiation levels to 100 for high
radiation levels. Low radiation levels exist in the bottom of the troughs
and in spectral region > 7000 cm-l at temperatures < 1500°K, and no reliable
data are obtained in these regions. The precision in determining the black-
body temperature is within + 1°K. The spectral calibration is precise within
+ 3 em™t.

The accuracy of the spectral data depends upon the conversion of the
output of the amplifier (WV) to emissivities. In the case of absorption
spectra, the accuracy is determined by the precision with which the data
were taken, and is, in general, poorer by a factor of 2. In the case of
emission spectra, the precision with which the gas temperature is known,
in addition to the precision of the amplifier output, determines the accuracy
of the spectral emissivities. Tne temperature of the gas is known within
4+ 3%. This value was established through the precision of the flow meters
and through the statistical scatterlof many temperature determinations. The

+ 3% precision in temperature means an inaccuracy of + 5% to + 30% in the



spectral emissivities from 3000 cm—l at 3000°K to 8000 cm-l at 1000°K.
(see Fig. 35).

An improvement in precision is effected by the curve fitting process
for ¢ versus T. We found that the RMS value of the deviations of the experi-
mental spectral emissivities is = % 5% for the major portions of the bands
and € £ 20% in the troughs down to the lowest temperature of 1250°K.

The deduction of the absorption coefficients and fine structure
parameters from the experimental data depends upon the knowledge of the
state parameters of the gas, the pathlength, and the band model employed.
As stated before, the temperature is known to within 3%; the total
pressure was always assumed to be 1 atm; the partial pressure for water
vapor and oiygen was calculated based on the assumption of chemical
equilibrium, and the uncertainty is unknown; the geometric length is
uncertain due to the temperature gradient at the two ends of the bufner
in the zones where the hot gas mixes with the cold nitrogen flow. Thermo~
couple readings at low temperatures and visual inspection at high tempera-
tures, where the flame exhibits an orange color, indicates a transition
zone thickness of approximately 4". At a nominal pathlength of 20 feet,
these 4" amount to an error of about 2%. A value for the uncertainty in
using a particular band model has not been established as yet, but will
be done in the near future. A measure of the validity of the statistical
model can be seen in the fit of (uﬂm (i%;))z versus u to a straight line
[see Eq. (1)]. Figures 36-38 show the RMS scatter (denoted by o) in the
fit of the experimental data to Eq. (1). Tais is not readily interpreted
in terms of accuracy of k and a. If the measurements are primarily near

the linear region of the curve of growth, the points in the transformed

b7



equation [Eq. (1)] have nearly equal ordinates. Thus k is well-determined,
with experimental accuracy of about # 0. The slope of Eg. (1) may be poorly
determined, and the error in a may be large. If the measurements are primar-
ily near the square-root region, the slope of Eq. (2) may be well-determined,
but not the intercept. Thus, the product ka is known, but k (and, hence, a)
may not be known separately with any accuracy. If the measurements are
located primarily along the transitional region of the curve of growth, k
and a may both be known with comparable accuracy, but with error greater
than % C. Only if the measurements extend well into both the linear and
square-root regions (so that o represents the uncertainty in k2 as well as

in the slope ka) will both k and a be determined with an accuracy of about

%2 0 and o, respectively. The trend exhibited in Figs. 36-38 is to be
expected. Low O values exist in the bands and at the higher temperatures,

while higher values exist in the troughs and at the low temperature.

4.5 INHOMOGENEOUS GAS MEASUREMENTS

In addition to the homogeneous measurements, the independent control of
four separate five-foot sections was utilized to make inhomogeneous measure-
ments. The experimental results are given in Figs. 39-44 in terms of

W’/cm2 cn™ for the following conditions.

Temp

Section Conce Fig. 39 Fig. 40 Fig. 41
A T 2480 1210 1210

c 37 b b

B T 1220 1520 1210

c Lk .18 Lk

c T 1180 2000 1180

e .13 .26 .13

D T 2480 2480 2480

[¢] 037 -37 '37



The experimental date are compared with calculated ones, using the Curtis-
Godson approximation with Model 3 and 3a. The agreement of the theoretical
and experimental values is within the uncertainfy of the temperatures. The
comparisons are made at 1 atm and the difference of the theoretical values
determined by the two models is at most 12%. In addition to the calculations
at 1 atm, calculations were performed at O.l atm, where no experimental data
exist. In that case, the largest difference of the theoretical values
amounted to 50% between the two models, Model 3a always being higher and,
therefore, being conservative.

In conclusion, we remerk that the simpler model 3a is preferable, giving
good agreement with experimental data at 1 atm and conservative values at

lower pressures.



SECTION 5

ANALYTICAL STUDIES

Studies have continued on optimizing the selection of band models for
use in particular situations. Certain results are summarized here in
regard to two topics: (a) the effect on non-Iorentz line shape and

(b) the choice of line intensity distribution function.

5.1 NON-LORENTZ LINE SHAPE
Experimental studies have been successful in demonstrating deviations
from Lorentz line shape in certain situations, e.g., in the troughs

5

.between the widely spaced lines of hydrogen halides,” and in the region
beyond a sharp band head (COE).6 In the former case, deviations were
noted between 2 and 20 cm"l from the line centers, and in the latter up
to 200 cm-l from the nearest line centers.

In the case of HF, abéve—Lorenfzian shapes were noted, and the wings
were empirically fitted’ to a form a(wfwo)-n, where n (which is 2 for
Lorentz lines) was observed to be of the order'of 1.8.

~In the case of 002 and CO, the line wings about 100 cm—l from the
line centers were found to be below-Lorentzian in shape.6 In these cases,
the experimenters assumed an empirical factor applied,to the line shape,
which factor decreased experimentally with distance from the line center.

In studying the behavior of models of lines where the local properties
do not vary abruptly, as near a band head, or in the far wings of a molec-
ular band system where the local intensity may drop off exponentially, we

are most concerned with the deviations in the near wings of the lines,

since this may have the greatest effect on the local emissivity properties.

5-1



We will investigate the situation where the absorption coefficient in

the wings of a line varies as (w- 0)_n:
-n
k(w) = ]w-wol for Iw-wol large . (1)

In analogy to the case of the Lorentz line shape, we assume

8,
k(w) = T o P , | (2)

where b has the usual meaning of half-width at half-intensity, and a is

proportional to the line intensity. From the definition

S = j k(w) do (3)

we obtain directly by integration

) - (Sbn-l g) £§ n sin(m/n)] . ()
b+ Iw-woln

For n = 2, Eq. (4) reduces to the usual Lorentz equation:

2

k(o) = 520 (5)
b o+ (w-wo)

From the definition of equivalent width of an isolated line,

W= f {l-exp[—k(w) u]} do, | (6)
]

we have

W= I {l-exp[— i In aw . (7)
0 ' ‘

n
b+ [w-wo
This equation is not immediately integrable. However, for investigating

the strong line region, we may study the asymptotic form

5-2



@

W< I { 1~ exp (- au‘ u)*ubl-n ] } &, (8)
0

which yields
1

———

W< 2" T (1

=3 NN

(9)

[}
Bk
S

I
-

or explicitly,
1 1 1
WS o -g-sin% 1 (1 - % ) ()" (su/v )* v (10)

An approximate form of Eq. (10) can be obtained by expanding in
powers of (n-2):

| - ~(n-2)/4
W < 2(Sbu)” (Su/v) [ 1+ .05 (n-2)]. (11)

For 1.7< n< 2.3, Bq. (11) approximates Eq. (10) within 1%, so that Eq.
(11) still provides a very close upper limit. For n = 2, both Eq. (10)
and Eq. (11) yield

1
W< 2(sbu)® (12)

the usual equation for the "square-root" region of a Iorentz line in the
strong-line approximation, i.e., when the line is strongly absorbed in the
region near the line center.

We note that in the strong-line region for a line of shape given by

Eq. (2 ), we have

p
W< ot ) (13)

Thus for n = 1.8, we have W = u'hss in the strong line region.
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If we consider a band composed of randomly located lines whose
intensities are distributed according to some normalized intensity dis-

tribution P(S), we have
W= jw(s) P(s) as i (1k)

For the case of an exponential intensity distributione

1

P(s) = Sa exp (-S/SO) , (15)

and the k(w) given by Eq. (2 ), we have

-] @®

y { 1 - exp r _ (bn~}/ﬂ) (n/2) sin (m/n)Su 1 }

0w =0 bn+|w-w0|n

n
]

xdw exp(-S/So) as . (16)

After lengthy manipulations, including interchange of order of integration,

we obtain an exact expression:

.
_ n
Ww=su [ 1+n sin(m/n) S,u/emb] . (17)
For n = 2, we obtain the customary expression
2 f
W= sou [ 1+ Sou/‘rrb] . (18)

On division by 4, the mean line spacing,Equation (17) yields, in

the limit of small Sou/d,

=



and, in the limit of large Sou/d,

[n_ggigm]l'l/“ [_S%‘i]l/n L (o)

If we identify these asymptotic regions with those of a modei7 comprised

o=

of lines of an equivalent intensity SE and equivalent spacing QE (using

Eq. (10)) we find

SO=SE[15‘T-s,in(%)1“(1-%)]-;1_:I (21)
a
a=aq [ Ban (Iyr(2-H] T, (22)

In terms of these parameters, we have

= S.u -2 . 2
W E n m n-1 1 n-1
-~ = = + | 2 g3 Z - =
-2 {2 D] [ra-D)]
1.
S,u .= -1
E
On introduction of the dimensionless parameters
By = 2m/a; (2k)
and
Xp = SEu/Enb » (25)
Eq. (23) vecomes
W
a BEen(xE) ? (26)



where

i) =g {1+ [Ben ()] [ra-3]
X x } - (27)
Again, we note that for n = 2, Eq. (27) becomes
_ : 1 - %
Qi) =m[1+5g] (26)

the curve of growth previously designza.ted’7 e(xE).
In Fig.U2, the curves of growth en(xE) are plotted for n = 1.8
(dashed), 2.0 (solid), and 2.2 (dotted). A wide enough range of xg 18

used to show the fusion of each curve with its asymptétes.
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5.2 LINE INTENSITY DISTRIBUTION FUNCTIONS
The selectlion of an appropriate line intensity distribution function
should be based at least to some extent on the theoretically anticipated
distribution of intensities in the spectral region which the model is
to represent, since it would be extremely arduous, if not coﬁpletely
impossible, to make an actual count of lines over many orders of magnitude.
Some models which are still commonly used presuppose intensity dis-
tributions which are based at least as much upon mathematical expediency
as upon physical reasoning. For instance, an intensity distribution in
which all lines are assigned equal 1ntensities\is clearly not an optimum
description for a high-~-tempersture mdlecular spectrum. However, under
this assumption, the curve of growth of a random band model is identical
to that of a single isolated line. Similarly the assumption of an expon-
ential intensity distribution, while more reasonéble, is not based on direct
physical reasoning, but is employed because it removes the Bessel functiomns
from the ladenburg-Reiche function and_leaves a simple algebraic form.
The distribution of intensities within a hypothetical band is frequently

described by a probability distribution P(S) which is normalized:

o ;

f P(Ss)as =1 . (29)
o]

Thus the probability that any arbitrary line has an intensity between

Sl and 82 is given by

.
[2 2s) as : (30)
s, | |

The probability distribution function is proportional to the number density

of lines with respect to intensity

P(S) = % (31)

o-T



Using the chain rule, we can write

.t @
FE T T . (32)

The dominant factor in the general expression for line intensity is

- the Boltzmann factor. From the approximate relationship

5 « exp(-E/kT) , | ‘ (33)
we find
a8 . -1 :
a--S- e S . (3)4')

- As a result of effects such as nonrigidity and multiple vibrational degree
of freedom, the number_density of energy levels will -‘increase with E. If

we postulate an approximate power law

: ’ m- L
& ai=[m(ss)] (@20 (35)
we have

p(s) =k 8% [ln .(SM/S,)] o (36)

From the normalization requirement,

S

[7 es)es =1, (37
SM R

where S, 1s the maximum and S /R the minimum intensity, we have

K = ()Rl . (38)
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We then have, explicitly,

m mtl
-1
B(s) = (w1) ™' [(sy/s)] / (mB) . (39)
For m = 0, this expression reduces to
B(s) = 5™%/1nR, (ko)
which case has been discussed previously.7
The average value of S is given by
= - m-1 (o : o
S =j' SP(s8) ds = (mt1)(1nR) I [msM/s] as , (41)
Sy/R -
which, for large R, is
§=8,T (mrt2)/(1oR)™ (k2)

1
Similarly, the average value of S2 is given by

o 1 oS no1
s? = [s2p(s) as = (mt -w-l Mt /s| s as , (43)
[s% B(s) as = (ut1)(20R) J”SM/R[ /5]

which, for large R, is
X 1 ’ +
§2 = §2T (w2) 2™/ (mR)™ .

By defining the parameters Sy and d; such that

Sp/dy = B/a | (45)
and
SE%/GE = g%_/d , (L6)



we obtain

w2
il

+
S/ (47

and

d(hmml/hmjr(MQ). (48)

%

The probability distribution functions for R = 106 and m = 0,1,2,

and 3 are shown in Fig.4t3. Note that in the region of smallest intensities

the slope is somewhat steeper than -1l. If we define

x = 1n (8,/8) . (49)
and
y = 1n B(S) , (50)
Eq. (39) becomes
y = 1n [(m+1)/sM (1nR)m.+1-] -x+milnx , (51)
from which we find
A (52)

Thus for x a -1l (S = SM/R) and m = 3, the slope % o -1.2.

It does not appear possible to obiain closed form expressions for the
curves of growth associated with P(S) of the form of Eq. (39). We can,
however, note a P(S) which is proportional to g2 (shown in Fig. 43 as a
dashed curve, with slope -2) is far more heavily biased toward the lower
intensities than the curves shown for m = 1,2,3. The normalized distribution

is expressed by
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]

P(s) Sy (R-1)"1 572 (5,/BESSS,,)

= 0 (otherwise) .
If this expression is convoluted with an exponential distribution

(for convenience), which broadens the distribution of intensities even

further, the resulting distribution is given by

p(s) = (8-1)"1 52 [(s, + §) exn(-5/5,) - (5, + BS) exn(-ES/s,)] -

By following the same procedure as in Ref. 7, we obtain the following
explicit expression for the curve of growth resulting from the P(8) of

Eq. (54):
w/a = 8y ¥, (%),

. Where

F (%) ="1:ET l:l+21rRXE/(1nR)2] [1+2WXE/(lnR)2] .
[1+2"RXE/(J_nR)2] +1 [1+2WXE/(:111R)2]

and BE and XE have the meanings defined previously.

This curve of growth is shown in Fig.(hh) as a dashed line. For
comparison, the Iadenburg-Reiche curve (solid curve) corresponding to
P(s) = 8(s -SE) and the curved h(xE) corresponding to P(S) = (S lnR)-l
exp(-S/ﬂSE) (dotted curve) are also shown. The mutual asymptotes are shown
as so0lid lines.

The curve F2 (XE) provides only a gross lower limit to the curves of

growth which would correspond to the P(S) of Eq. (39), shown in Fig. (L3).
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Fig. 2. Curve of growth at 2000°K for w = 3500 cm'l in terms of
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