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CREEPING FIOW SOLUTION OF LEIDENFROST
BOILING WITH A MOVING SURFACE

by Kenneth J. Baumeister
Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio

and Glen J. Schoessow
University of Florida
Gainesville, Florida

ABSTRACT

The total vaporization time of water drops in Leidenfrost boiling
with supporting plate velocities up to 15 ft/sec has been correlated
with a standard deviation of 4.5 percent. The analytical model combines
stagnation and Couette flow profiles. In this paper, the vaporiza-
tion time for a drop film boiling on a moving surface is related to
the equivalent vaporization time for a smaller drop placed on a
stationary surface.

INTRODUCTTION

The liquid metal space power Rankine System is presently being
considered as a possible auxiliary power source for space applica-
tion. In the mist flow regime of its boiler, spiral inserts centri-
fuge entrained liquid droplets to the heated tube wall to provide
droplet free vapor to the turbine. At the wall, the liquid droplet
undergoes film boiling which resenbles the classic stationary
Leidenfrost phenomena, except that in this case a relative velocity
exists between the drop and the heated tube wall. The present paper
considers the effect of this relative velocity on the vaporization
times of the liquid droplets in Leidenfrost film boiling.

If liquid drops are placed upon a sufficiently hot surface,
vapor will be generated at the underside of the drop at a rate adequate
to support the drop (see Fig. 1(a) and (b)). This phenomenon is
usually referred to as stationary leidenfrost film boiling. Refer-
erence 1 considered the Leidenfrost phenomenon on a spinning wheel
(see Figs. 1(c), (d), and (2)). It showed that the velocity of the
heated wheel surface had a significent effect on the vaporization
time of the drop (see Fig. 3).

A model will be developed herein to predict the vaporization
time of drops on moving surfaces. This model is an extension of the
authors! earlier model for Leidenfrost boiling off of stationary sur-
faces (ref. 2). Table I lists the principal analytical results of
reference 2 in dimensionless form for a flat disk model as pictured
beneath the table.
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Leidenfrost boiling from stationary surfaces has been under
extensive study quite recently (refs. 1 to 10). Reference 10, by
Wachters, contains a comprehensive literature summary of some very
early, as well as recent, analytical and experimental work in this
area. For the present paper; however, Bell's and Hoffman's dis-
cussion in references 7 and 8, and Bell's educational monograph,
reference 9, contain pertinent discussions of some of the assump-
tions and limitations of the stationary lLeidenfrost model pre-
sented in reference 2 upon which the present model is built.

Recently, Poppendiek et al. (ref. 5) have developed a prac-
tical correlation for the heat transfer coefficient for helical fog
flow in a Rankine boiler using a stationary leidenfrost model. The
present analysis will provide a velocity correction factor which
will account for the relative velocity that exists between the
drop and the supporting surface.

LIST OF SYMBOLS

A area of drop

A* dimensionless area of lower surface (see table I)
Bl,2 constants, see table IT

Cl,2,...8 arbitrary constants

Cp specific heat at constant pressure

F dimensionless function defined by equation (3)

F, dimensionless function defined by equation (5)

f radiation factor, 1/]|1 + ehy — °

(reference 1)
g coefficient of gravity

gravitational constant (conversion constant between
mass and force units)

hy heat transfer coefficient on stationary surface

hp total heat transfer coefficient
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h*

t*

U*

3

dimensionless heat transfer coefficient (see table I)

(conduction mode only)

e (T, % - 1.4
(T, - T)

radiative coefficient,

hg evalusted at V/2

constant, equal to 1/2(1 - 3% Cy/u)

thermal conductivity

length, see figure 4

average drop thickness

dimensionless average drop thickness, see table I
correction factor

static pressure

reference pressure

C
Prandtl number, -ﬁﬁ

‘radius of drop

temperature

wall temperature

saturation temperature

temperature difference, T, - Ts

time

dimensionless time, see table T

velocity of plate relative to drop
dimensiqnless velocity defined by equation (4)

vapor velocity in x direction

volume of drop



V*

€1,

A¥

Vs
Ve

4
dimensionless volume of drop, see table I
vapor velocity in y-direction
half side of model, see figure 4
distance coordinate
distance coordinate
distance coordinate
constant given by equations (A21) and (A22), also 52 = C,
see bottom table II
vapor gap thickness
liquid emissivity
latent heat of vaporization

modified heat of vaporization, A* = %(} * =on

7Cp AT)'3
from reference 6

viscosity

vapor density

liquid density

surface tension

Boltzmann constant

latent to sensible hest ratio , equation (A27)

stream function

stationary 'stream function

Couette flow stream function

METHOD OF ANALYSIS

The experimental measured vaporization time of a discrete liquid

drop in Leidenfrost boiling can be estimated by a direct integration of
an energy balance on the drop:



Ny, g_fc’ = ho(V)A(V) AT (1)

where the total heat transfer coefficient, , and the drop area A
are dependent on the volume V of liguid that exists at any time t.
In equation (1), the total heat-transfer rate to the drop, represented
by the right side of equation (1), is set equal to the mass evapor-
ation rate times the latent heat of vaporization. The problem, of
course, is to relate hn and A to the properties of the liquid and
vapor, plate temperature, and the environmental conditions surround-
ing the drop.

The mechanism for energy transfer to the drop is assumed herein
(see appendix A) to be conduction across the vapor film (in creeping
laminar flow) and radiation to both the top and lower surface. Con-
duction and diffusive evaporation from the upper surface and sides of
the drop were neglected, If the vapor concentration above the drop
is low as in metasteble boiling (ref. 11), diffusive evaporation can
be extremely important, as Bell (ref. 3 and 9) points out and as was
verified experimentally by Wachters (ref. 10). However, the temper-
ature differences between the plate and the drop are assumed to be
very high in this problem. Also, the conduction under the drop is
much greater in this problem because of velocity effects. Thus, the
assumption concerning diffusive evaporation will be less restrictive
in this problem.

In addition, the shape of the drop as described by the expres-
sions in teble I will be assumed independent of velocity. Photo-
graphs in reference 1 show that the drop shape depends on velocity.
However, for the sake of mathematical simplicity, these deviations
will be neglected.

With the latter assumptions, only the heat transfer coefficient
becomes velocity dependent. Thus, to determine the vaporization
times as a function of plate veloecity, the following steps are re-
quired

(1) Determine the effect of velocity on the heat transfer
coefficient.

(2) Substitute the heat transfer coefficient and the geometric
relationships from table I into the energy balance, equation (1),
and integrate to find the wvaporization time of the drop.

The latter step is performed in the next section while the first
step, that of determining the heat transfer coefficient, is performed
in the appendix.

To simplify the derivation of the heat transfer coefficient, the
drop is represented by an equivalent square shape as shown in fig-
ure 4. The area of the square is set equal to the circular areas
listed on table I. A constant gap thickness is assumed beneath the
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drop. No flow is assumed in the z direction; however, later a cor-
rection is made for the flow in the z direction (see eq. (A33)).

The physical properties are assumed constant and evaluated at the film
temperature. Also, the medium surrounding the drop is assumed to be
saturated vapor and the vapor pulled beneath the drop by the action

of the moving plate 1s assumed to have the same temperature profiles
as that which exists beneath the drop. With these assumptions, the
heat transfer coefficient derived in the appendix, equation (A34),

is

h*
h* = 5 (2) - (A34)
1/2
[(x+ FZ)l/2 - 7] /
where F as given in equation (2) as
F = (2K - 1)(Prq>)1/2 U* (3) - (A26)

where K 1is an integration constant to be evaluated by experiment and
the dimensionless velocity U* given in equation (3) is

U U

e ™

Here, h¥ represents the dimensionless heat transfer coefficient
to a stationary drop in Film boiling. The expressions for h¥ are
given in table I. The denominator in equation (2) represents a the-
oretical correction factor which accounts for the effect of velocity
on the heat transfer coefficient. The theoretical F factor con-
tains the velocity dependent terms while U¥* represents the char-
acteristic dimensionless velocity.

U* = {4) - (A28)

Empirical Velocity correction

For large velocities, the theoretical heat transfer coefficient
is proportional to the half power of the velocity as a combination of
equations (3) and (4) will show. This seems to be incorrect, at
least for the range of data given in reference 1. Consequently, it
was necessary to modify F 1in an empirical fashion. A power factor
n is now introduced into equation (3) to give

F_ = (2K - 1)(P, )1/ 2p (5)
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This correction factor will be carried into the next section'to
solve for the vaporization time.

ANALYSIS OF VAPORIZATION TIMES

Equation (1) can be conveniently written in dimensionless form.
Expressing hp, V, A, and t in equation (1) in terms of the dimen-
sionless forms (listed in table I) gives

-AV* = h¥A* dt* (8)

The total heat transfer coefficient has been replaced by the
theoretical h¥*, equation (2), which considers only the conduction
mechanism. The relationship between h# and h* is

hi = - (7)

where f represents a radiation factor. The factor f 1is defined
in the list of symbols and derived in references (1) and (2). This
factor considers radiation to both the top and bottom of the drop.
The f factor was absorbed into the definition of t*.

Equation (6) can now be integrated for the various domains of
volume V¥ defined in table I. Because of the complexity of equa-
tion (2), a closed form solution could not be cbtained. However, by
evaluating the function F at a reference volume of V¥*/2 in the
volume range of interest, & simple closed form expression for the
vaporization time was obtained. The reference volume technique,
quite surprisingly, correlated the experimental data better than a
number of more complicated integration techniques.

Substituting the value of h* from equations (2) and (5) along
with h¥, 1*¥ and A* from table I into equation (6) and performing
the integration for the various volume domains shown in teble I gives
the results tabulated in table II.

The equations for the vaporization times, t¥*, in table II are
of the same functional form as that in table I for the stationary
case. In this case, however, V¥ is replaced by a velocity-corrected
pseudo-volume V* given in the last columm in table II. For the
case when U = O, the dimensionless velocity U* is zero. Thus,
F, is zero and the pseudo volume V' is identical to V*,

The integration for V* greater than 0.8 requires that the
integration be broken up into two ranges since the forms of equa-
tion (6) are different in each volume regime. Consequently, for
V* greater than 0.8, the integration is from V* +to 0.8 and from
0.8 to zero. A similar approach is used for V* greater than 155.
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Breaking up of the integration leads to the constants Bl and Bs
listed below table II. Of course, a different reference volume is
used for each volume range.

SIGNIFICANCE OF PSEUDO VOLUME V7t

When & drop of liquid with dimensionless volume V* is placed
on a stationary plate, the dimensionless vaporization time can be
estimated from the formulas given in table I. However, if the plate
were given a velocity with respect to the drop, the actual vapori-
zation time would be much smaller than the vaporization time pre-
dicted from the stationary equations, as deduced from figure 3.

The general expressions for stationary vaporization time, how-
ever, can still be used in the case where a relative velocity exists
between the drop and the plate. Equations in teble II indicate that
a smaller pseudo dimensionless volume V' if placed on & stationary
surface would evaporate in the same amount of time as & larger real
volume V* which is placed on a moving surface.

COMPARTSON OF EXPERIMENT TO THEORY

The experimental data of reference 1 was correlated by opti-
mizing the value of K in equation (3) and n in equation (5)
to give the best fit of the data. The integration constant K was
1.3 while the velocity correction parameter n was 0.4. As seen in
figure 5, these values correlate the data quite nicely with a
standard deviation of only 4.5 percent.

The value of n equal to 0.4 indicates that the heat transfer
coefficient is a function of velocity to the 0.2 power. This agrees
closely with the experimentally determined values of 0.171 and
0.227 listed in reference 1.

The major advantage of the present semi-theoretical correlation
as compared to the purely empirical correlation given in reference 1
is the possibility that the dimensionless groups and constants would
be universal and apply to all fluids. Some preliminary date taken
at the University of Florida by Charles Wood for Ethanol, Carbon
Tetrachloride and Benezine indicate that the present correlation is
applicable to a wide range of fluids.

CONCLUSIONS
The velocity effects on the vaporization time can be accounted

for by the introduction of a pseudo volume V' using the property
groups and constants predicted by a relatively simple flow model.
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APPENDIX ~- HEAT TRANSFER COEFFICIENT

The heat transfer coefficients from the plate to the drop are
obtained by solving the momentum and energy equations for flow and
heat transfer in the vapor gap beneath the drop.

For the assumptions noted in the body of the report (see

Method of Analysis Section) the governing differential equations are

Momentum:

Continuity:

Energy:

Boundary Conditions:

In boundary condition (A5),

0~ -g X, [Fu,
e x 7 Bx By

oo . OP az ,
Be F Bx 8y2

Ju , ow
x5y = O
(T, - T,)
qa =+ 3
u==0U w=20 T = Tw
u=20 w = w(d) T = TS
X = +X P = Pb at y =58

(A3)

(A4)

(A5)
(48)

(A7)

the drop is fixed and the plate is assumed

to move with velocity U, as might be approximated by the experiment

depicted in figure 2.

Static Force Constraint:

(pp, - pg) £V =

Ec
=X

(P - Py)L ax

at y =25

(A8)
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Interface Energy Balance (Neglecting Radiation):
k(TW - TS)

-pghw(3) = 3

(A9)

The differential energy equation has been replaced by the simple
conduction equetion (A4); however, a correction for the convection
heating of the vapor will be mede later using the results of refer-~
ence 6. Equations (A8) and (A9) are additional and necessary con-
straints which couple the energy and momentum equations. Equation (A8)
requires that the integral of pressure beneath the drop be equal to
the drop's weight. Equation (A9) says thet latent heat release at the
drop surface must be balanced by the heat conduction across the gap.
The bulk liguid is assumed to be at the saturation temperature.

Boundary condition (A7) deserves some special comment. Using a
uniform gap model to predict the heat transfer coefficient will re-
quire that the pressure at the front (-X) and the rear (+X) be dif-
ferent. As will be shown later this pressure difference is extremely
small. Because of the complicated flow pattern around the drop
(see fig. 2(d)) it is conceptually possible that such a pressure dif-
ference could occur, although such a pressure difference can be con-
sidered pseudo. A model could be developed in which the pressure is
equal at the front and rear by using the slider bearing model (ref. 12,
page 98). In this case the gap thickness would be a linear function
of position in which the slope could be determined by some added
constraint or experiment. However, the uniform gap model was chosen
because of its simplicity and because it does lead to a good corre-
lation.

Momentum Equations

The momentum equations are easily solved by use of the stream

functions:
q=- ?. (A10)
¥

+ %\}% (A11)

Using these definitions the governing momentum equations can be com-
bined into a single equation with continuity identically satisfied

(ref. 12, page 59):

d4 o4 o4

—_—+ 2 + ¥ =0 (A12)
<'8x4 szayz 8y4>

£
Il
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The problem now is simply to find a stream function which satis-
fies equation (Al2) and the boundery conditions. To find ¥, assume

Vo= vg(x,y) + ¥e(y) (A13)

The stream function v is the stationary stream function which would
result if a stationary plate supported the drop, while Vo 1s a
stream function representing Couette flow. They are superlmposed in
order to satisfy the boundary conditions.

Assuming that the variables are separesble, gives
Yg = x(Cp + Coy + Cay2 + Cyuy) (A14)
while V, can be found by direct integration of equation (Al2)
¥, = Cg + Cgy + Cqy® + Cgy® (A15)
Conbining the two stream functions, equations (Al4) and (Al5) in
equation (Al3), determining the velocities from equations (Al0) and

(All), and applying the boundary conditions in equations (A5) and (A8)
yields

2

u = 3xpE(ys - y?) + U[l -EL - (1 - x) ?in] (a16)
5

W = -52@ 5y¢ - y3) (A17)

Not all the constants C!s were determined from the boundary
conditions. The undetermined constants have been relabeled 52 and
K (see monemclature). The constant Bz and the gap thickness
will be determined later by applying equations (A8) and (A9). The
constant X will be discussed later in this appendix.

Pressure Distribution

Knowing the velocities under the drop allows us to determine the
pressure distribution beneath the drop. Substituting the velocity
distribution back into the momentum equations gives

%}1; 2 ~6xp? +J.§E_-_AL] (a18)

ES

- _6y)
. (A19)

=1
I
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Integrating the above equations subject to the boundary conditions
gives

popy = 2 2 L2y Loy - yr)| S =B (o
& iy
(A20)

Later, K will be teken as 1.3 (reasons to be given later). This
will lead to a pressure slightly below atmospheric (approximately
0.001 atmospheres) at the leading edge of the drop.

Coupling Momentum and Energy

Substituting the expression for pressure into the static pres-
sure balance, Integrating, and solving for Bz gives

pr - v . \
6 = (og, - pgle + U4 - 2) (A21)
gux? 282X

where L was set equal to 2X, that is, the drop was assumed square.

The perameter B2 can also be determined by the interface energy
constraints. BEvaluating w at y =03 in equation (Al7), substituting
this value of w into the interface energy balance, equation (A9),
and solving for Bz gives

(A22)
The momentum and energy equations are coupled by equating equa-
tions (A21) and (A22) to give after a little rearranging

54 + 8uXSU(2K - 1) 52 = 16uk ATX* (A23)
(pp, - pglev (e, - oglogVhe

Solving for the gap thickness gives

1/4 1/2
5 =( l6uk AT X4)/ (.‘/FZ +1 - ) / (A24)

- X oV

¥ 1/2
F o (2K - 1) Ul P X° (A25)
(o1, - Pg)k £T g

or identically after a little manipulation
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F = (2K - 1)(P0)L/ 2y - (A26)

where P, 1is the Prandtl number (see symbols) and

A*

o = o m (A27)
U* = Y = g (A28)
Og X S; - 8(65% 1

(see eq. (A3l) for right hand expression)

The latent heat, A, in equations (A24) and (A27) has been replaced
by an effective latent heat which is defined in the list of symbols
and derived in reference 6. This accounts for convection terms in
the energy equation in an empirical manner.

ILength, Area, Volume Relations
The length X and the volume V, appear in equations (A24)

and (A28). These parameters can be related to the geometrical forms
in table T by the following manipulations

V = Al = (2X)21 (A29)
Therefore
1/2
og
_%.= 41 = 4(—-é> 1% (A30)
X FLE

which now can be used in equation (A28). Also,

v 16V 16V*
e e (131)
X A 08¢ A%2

P18

Heat Transfer Coefficient

The heat transfer coefficient in dimensionless form for pure
conduction across the gap is
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X yx\/4
8 A%
h* = 5 _—= (A32)

k3(pp - pg)le/zpﬁgs/zx* 1/4 ( =T . )l/z

1/2,. 1/2
uATG/gc/

where the value of & from equation (A24) was substituted into the
first part of equation (A32) and V and X 1in equation (A32) were
related by equation (A3l). The non-dimensionalizing term used in
the heat transfer coefficient is the same one listed in table 1 for
the stationary drop.

For the case of zero plate velocity, equation (A32) reduces to

L\L/4
- (%) ~ h¥ (U = 0) (A33)

As can be seen in a comparison to the heat transfer coefficient in
table I, (V*/A*)l/4 is within twenty percent of the stationary heat
transfer coefficient which was derived for a symmetric circular drop.
Thus, the effect of flow in the 2z direction beneath the drop shown
in figure 5 is compensated for empirically by replacing (V*/.A*)l/4
by hX¥ which yields

h*

* *
n¥* = hy by

173 (A34)

, 1z e ) NV s o
[(F + 1) - :| [:(1 + iz) - ] Fi/2
F

This correction, however, is exact in the limit of zero plate velocity.

The denominator represents a velocity correction factor to the sta-
tionary heat transfer coefficient, h¥%.

K-Parameter

The value of F can not be determined as yet since it is a
function of the unknown parameter K.

As seen from equation (A34), heat transfer coefficient increases
for increasing values of K. At K = 1/2, however, h* equals h¥
and the velocity has no effect on the heat transfer coefficient.
Thus, K must be chosen such that X > 1/2,
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In addition to affecting heat transfer, the value of X directly
affects the velocity distribution, as given by the second term in
equation (Al6). This term is shown graphically in figure 6. Since
the moving plate is the cause of the real or pseudo pressure differ-
ence across the drop it is reasonable that no back flow occur; thus,

K £ 1. Consequently, K appears to be bracketed in the range
1/2 <K L 1.

The value of K was determined experimentally by correlating
the data of reference 1. The experimentally determined K was 1.3,
as discussed in the body of this report. It is quite remarkable that
the optimal value of K came so close to the upper theoretical 1limit,
as shown in figure 6.
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Dimensionless vaporization
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Figure 4, - Flow model.
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Figure 5. - Total vaporization correlation for K = 1.3 and
n=04

ylo

/—Drop surface

K values

172

1
/—Plate
surface 1.3
L A
-2 0 .2 .4 6 .8 10

Figure 6. - Coutte flow profiles as a func-
tion of K (second term in eq. (A16)).
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