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PLASTIC BUCKLING OF PLATES AND SHELLS 

UNDER BIAXIAL LOADING 

By James P. Peterson 
Langley Research Center 

SUMMARY 

A method of calculating the plastic buckling load of plates and shells under biaxial 
loading is described. This method uses available elastic buckling equations in making 
the plastic buckling calculation by substituting wall stiffnesses derived from a plastic 
buckling theory for the elastic orthotropic wall stiffnesses associated with the elastic 
buckling equations. 

This method permits the calculation of the buckling load of many structures of cur- 
rent interest which cannot be handled by available methods. 
and plates of conventional, sandwich, and laminated construction a re  easily calculated. 
The cylinders and plates may have stiffening members which may be eccentric (one- 
sided) and which may be made of a different material than the skin. 
the effect of transverse shear can be taken into account in the buckling calculations. 

Buckling loads of cylinders 

For many structures, 

INTRODUCTION 

Many aerospace structures buckle at s t resses  greater than the proportional-limit 
s t ress  of the material used in the fabrication of the structure. 
mally designed with the use of buckling equations for elastic structures in conjunction 
with estimates of the deleterious effects of plasticity on the computed buckling load. 
estimates are derived from experience with available plastic buckling analyses and from 
the plastic buckling tests of simple structures that are reported in the literature. 

Such structures a re  nor- 

The 

Solutions to plastic buckling problems are generally limited to simple plates and 
shells subjected to rather simple loadings (for instance, refs. 1 to 3). Notable exceptions 
a r e  reference 4, which treats clad plates; reference 5, which t reats  sandwich plates; 
reference 6, which t reats  a stiffened cylinder; references 7 and 8, which treat a conven- 
tional cylinder under hydrostatic loading; reference 9, which t reats  a stiffened cylinder 
under hydrostatic loading; and reference 10, which treats a rib-core sandwich cylinder 
under hydrostatic loading. 



However, solutions analogous to those of the corresponding plastic buckling prob- 
lems a re  available for elastic orthotropic plates and shells subjected to any biaxial 
loading. These solutions can be used to calculate the plastic buckling load of plates and 
shells of rather complex construction. The purpose of the present paper is to indicate 
this analogy between plastic buckling of plates and shells and elastic buckling of ortho- 
tropic plates and shells and thereby provide a ready means of calculating the plastic 
buckling load of many structures of interest for which solutions a r e  not otherwise avail- 
able. In addition, several examples a re  given to illustrate the utility of the analogy in 
computing the buckling load of typical structures which buckle at s t resses  greater than 
the proportional-limit stress. 

SYMBOLS 

The units used for physical quantities defined in this paper a r e  given both in the 
U.S. Customary Units and in the International System of Units (SI). Factors relating the 
two systems a r e  given in reference 11 and those used in the present paper a re  given in 
appendix A. 

constants defined by equations (D2) 

area  of stringer and rib or ring, respectively 

width of flat or curved plate, semicircumference of cylinder 

distance between ribs or  rings 

distance between stringers 

extensional stiffness parameter (see eqs. (2) and (4)) 

distance from centroid of laminated plate to centroid of lamina of plate 

bending stiffness parameter (see eqs. (2) and (4)) 

bending stiffness parameter of core element of sandwich (see eq. (C6)) 

elastic value of bending stiffness parameter 

bending stiffness parameter of face sheet of sandwich (see eq. (C5)) 



transverse shear stiffness of plate 

transverse shear stiffness of plate in x- and y-direction, respectively 

bending stiffness of plate in x- and y-direction, respectively 

bending stiffness parameters defined by equations (1) 

twisting stiffness of plate 

DQ 

DgX,D% 

DX, 4. 

DX74. 
- -  

Dxy 

D12 = 2Dxy + P p y  + P y K  

E Young's modulus 

EC modulus of core element 

- 
EC extensional stiffness parameter of core (see eq. (C4)) 

Es, Er  modulus of stringer and rib o r  ring, respectively 

Esec secant modulus 

Etan tangent modulus 

EWEY 

Ex,Ey 

extensional stiffness of plate in x- and y-direction, respectively 

extensional stiffness parameters defined by equations (1) 

G s G r  shear modulus of stringer and rib or  ring, respectively 

in-plane shear stiffness of plate Gxy 

Gxz,Gyz shear modulus of core of sandwich in xz- and yz-plane, respectively 

h depth of sandwich measured between centroids of face sheets 
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- 
NO 

P 

Qx9Qy 

r 

t 

t C  

4 

moment of inertia about centroid of symmetrically stiffened plate of stringer 
and rib or  ring, respectively 

torsion constant of stringer and rib or  ring, respectively 

buckling coefficient 

constant used in defining stress-strain curve 

plasticity factor defined in equations (2) 

length of plate or  cylinder 

bending moment in plate in x- and y-direction, respectively 

twisting moment in plate 

number of buckles (half waves) in buckle pattern in x- and y-direction, respec- 
tively (For cylinder, n denotes number of buckles in semicircumference.) 

normal forces in plate in x- and y-direction, respectively 

shearing force in plate 

applied loads in plate or cylinder wall at buckling in x- and y-direction, 
respectively 

value of BX for sandwich cylinder when shear stiffness of core is assumed 
large 

internal pressure 

transverse shear forces in plate or  cylinder wall in x- and y-direction, 
respectively 

radius 

skin thickness 

thickness of core element of truss-core or  web-core sandwich 



thickness of face sheet of sandwich 

so-called "smeared out" thickness obtained if mass per unit a rea  of wall  is 
divided by density of principal material component of wall  

displacement of a point in middle surface of plate or cylinder in x- and 
y-direction, respectively 

W displacement normal to surface of plate or cylinder 

X,Y axial and chordwise or circumferential direction, respectively 

a! plasticity factor defined in equations (2) 

B buckle aspect ratio 

px,h,pq plasticity factors defined in equations (2) 

E strain 

E €  strain in the x- and y-direction, respectively 
X' Y 

E e2, e3 variations in middle surface strain 

rl plasticity factor 

I-1 Poisson's ratio 

I-1e elastic value of Poisson's ratio 

Poisson's ratio associated with bending of plate in x- and y-direction, px, I-1y 
respectively 

P i ,  I*; Poisson's ratio associated with extension of plate in x- and y-direction, 
respectively 

U stress 

"i stress intensity (see eq. (3)) 
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U compressive yield stress corresponding to 0.2-percent offset (permanent set) 
CY 

stress corresponding to proportional limit of material UPl 

Us, O r  stress in stringer and rib or ring, respectively 

0x9 Uy s t ress  in plate in x- and y-direction, respectively 

cp angle between core element of truss-core or web-core sandwich and face 
sheet 

x1,x2,x3 variations in middle-surface curvature 

Subscript : 

i denotes ith lamina, except when used as subscript on 0 

THEORY 

A one- to-one correspondence exists between certain terms in plastic buckling equa- 
tions for conventional (isotropic, homogeneous) plates and shells under biaxial loading 
(for instance, refs. 2, 3, 6, 7, 8, and 9) and the corresponding terms in elastic buckling 
equations for orthotropic plates and shells (for instance, refs. 12 and 13). Although the 
correspondence is limited to problems in which structures are assumed to buckle under 
a constant (membrane) state of stress,  many problems of current interest a r e  included. 
The correspondence makes writing the solution to these plastic buckling problems possible 
simply by redefining stiffness terms in the existing elastic solutions for orthotropic plates 
and shells. Moreover, the correspondence is not limited to conventional plates and shells 
but can be applied to sandwich-like plates and shells (refs. 5 and 10) and to laminated 
plates and shells (ref. 4) such as those constructed of clad sheet materials. 

The plates and shells may be stiffened by stringers and ribs or rings which may be 
either symmetrically disposed about the middle surface of the skin or may be eccentric 
to the middle surface. 

The equivalent orthotropic constants for plastic plates a re  obtained by comparing 
corresponding terms from the two theories. For instance, for conventional unstiffened 
plastic plates and shells subjected to biaxial loading, the equations expressing the varia- 
tion of forces and moments during buckling in terms of the variations of middle-surface 
strains and curvatures can be written (ref. 3 or ref. 9) as 
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Dxy = D(l - P) 

1 - ag 

1 - ag 
J 

These equations have the same form as the corresponding equations from elastic buckling 

problems of orthotropic plates and shells. Moreover, the correspondence is not limited 
to these equations but continues to hold throughout the entire buckling problem. Hence, 
for conventional plates and shells, the equivalent orthotropic constants are identified as 
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where 

Esect B=- 
1 - p2 

 sect^ 
12(1 - p2) 

D =  

Etan 
(2 - p)2 Esec 

1 - -  
a =  

I -  p2 KpUi2 

Py=,@y 1 -=..)2 1 - 2 p  

pxY = -  41.1 l {  ux(Ty [ 1 + (:::)I 2 - px2 + (T Y 2)*} 2-1.1 

Poisson's ratio p may be taken either as 1.1 = - as in references 2 to 5, or as 
2' 

KP becomes unity and p = 2 1 - (i - /.Le)*, as in references 6 and 7. For 1.1 = -, 1 
2 

several of the other terms simplify to a lesser extent. 

The moduli E,,, and Etan are evaluated at the stress intensity oi of the plate 
at buckling with the use of a conventional stress-strain curve of the plate material. The 
stress intensity is given by 

(3) 

where ax and cry are the constant membrane stresses in the plate at buckling. 

applied to buckling problems involving sandwich-like plates and shells with isotropic face 
sheets by a redefinition of the stiffness parameters B and D in equations (2). For 
sandwich-like plates and shells 

Although equations (1) were written for conventional plates and shells, they can be 
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B =  2Esec4 
1 - p2 

(4) 
Esectfh2 + ~ s e c t f ~  
2(1 - p2) 6(1 - p2) i D =  

where the second term on the right-hand side of the expression for D is normally 
neglected in comparison with the first right-hand term, and the stiffness of the core is 
neglected in comparison with the stiffness of the face sheets. If more accurate buckling 
calculations in which core stiffness is taken into account are desired, the core can be 
considered to be a stiffening member such as a stringer or  rib. The inclusion of the 
effect of symmetrically disposed, load-carrying core elements (stiffeners) in the stiffness 
relationships is discussed in appendix B and expressions for the transverse shear stiff- 
ness of web-core and truss-core sandwich plates are given in appendix C. 

For symmetrically laminated isotropic plates and shells, equations (1) and (2) apply 
to each lamina and the plate stiffnesses can be written in terms of the lamina stiffnesses. 
For laminated plates - 

(Equations continued on next page) 
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where the Iamina constants are given by equations (1) and (2). Application of equa- 
tions (5) is simplified somewhat if Poisson's ratio p for each lamina is taken equal to 
1/2, as is normally done. 

The preceding equations for conventional, sandwich, and laminated plates apply both 
to  stiffened and to unstiffened plates. If the plates are stiffened by stringers, ribs, or  
rings, the appropriate modulus for extension and bending of the stiffening members in the 
buckling equations is Etm and the appropriate shearing modulus in expressions for tor- 

Both Etan and Esec tional stiffness of the members is Gsec where Gsec = 

for  the members are evaluated at the stress in the particular stiffening member at 
buckling which may be different from the stress intensity of the plate o r  from the s t ress  
in the plate in the direction of the stiffening member. 

2 0  + EL)' 

The stresses in the stiffening members and in the stiffened plate a re  given by the 
relations hips 
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where Hx and Ny are the applied loads, Es and E, denote the secant moduli of 
the respective members at the strain associated with the member E X  or E and B 
for a laminated plate is understood to be the summation of the B values for the indi- 
vidual laminae. For conventional or sandwich plates, it is convenient to assume values 
for ox and ay and compute and eY. Then the remaining quantities needed to 
determine the applied loads and the stiffness constants required to obtain the buckling 
load a r e  computed. This scheme also works for laminated plates if Poisson's ratio is 
taken equal to 1/2, as is normally done. 
laminae, it may be more convenient to assume a strain distribution defined by 
E ~ ,  determine ax and u for each lamina by trial and error with the use of equa- Y 
tion (3), and then compute the other needed quantities. 

( y> 

If Poisson's ratio is different in different 
and 

The equations presented in this section and an appropriate buckling equation for 
elastic orthotropic plates or shells (for instance, ref. 13 o r  appendix D) are all that is 
required for calculation of the plastic buckling load of many plate and shell structures. 
The plasticity factors and buckling equations of references 2 to 10 can be readily derived 
with the use of the presented equations. In addition, solutions to buckling problems for 
many structures not covered by published plastic buckling equations can be readily 
obtained. In the following section, some published plasticity factors and plastic buckling 
equations a r e  discussed to illustrate the use of the equations presented and some numeri- 
cal examples a r e  given for selected structures to illustrate the effect of plasticity on 
buckling of contemporary structures. 

APPLICATIONS 

The application of the equations of the previous section normally entails a trial- 
and-error solution to the buckling problem. 
assumed and the necessary stiffness constants (which a r e  functions of the stress level) 
a r e  computed. These constants a r e  then substituted into a stability equation for ortho- 
tropic plates or shells in order to obtain a computed buckling stress. If the computed 
buckling s t ress  does not agree with the assumed stress,  a new s t ress  is assumed and the 
process is repeated. This procedure is continued until the computed stress agrees with 
the assumed stress. 

A s t ress  level in the plate or  shell is 

In simpler buckling problems in which closed-form solutions of the buckling load 
in terms of pertinent orthotropic plate stiffnesses are feasible, plasticity factors which 
can be used to correct calculations made with the use of elastic buckling equations for 
isotropic plates and shells can be obtained. The need for a trial-and-error solution is 
thereby circumvented. Some problems of this type, for which solutions already exist in 
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the literature, are discussed first to demonstrate the use of the proposed method on 
simpler structures. 
tures are given to show the significance of plasticity in the design of contemporary struc- 
tures. Trial-and-error solutions are employed to obtain the latter results. 

Then results of numerical examples on more complicated struc- 

Closed- Form Solutions 

The applications discussed in this section make use of the buckling equation for 
orthotropic plates and cylinders presented in appendix D (eq. (Dl)). For a flat plate with 
negligible transverse shearing deformations, equation (Dl) reduces to 

where 

Hence for a wide plate-column (i << 1) 

and, with the use of equations (1) and (2), 

1 
2 For 1.1 = pe = -  equation (8) reduces to 

(9) 

the value given in reference - 2. , the plasticity factor q is 
1 . For p = pe = and for a cladding thickness given by "a" times DX again given by q = - 

De 
the core thickness., equations (l), (2), and (5) yield 
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where Esec and Eta with the overhead tilde denote the moduli of the cladding, E,,, 

and Etan without the tilde denote the moduli of the core, and the quantity - denotes 

the contribution of the cladding to the moment of inertia of the clad plate. 
tity g is given by 

l + g  
The quan- 

3 2 g = 8a + 12a + 6a 

Equation (10) was first presented in reference 4. 

The other plasticity factors in references 2 and 4 could be similarly rederived. 
For example, for simply supported long plates, equation (6) after minimization with 
respect to p becomes 

and the plasticity factor becomes 

When the stiffnesses for isotropic and laminated (clad) plates with IJ- = pe = 
substituted into equation (12), the corresponding plasticity factors of references 2 and 4, 
respectively, are obtained. When the stiffnesses for isotropic sandwich plates (eqs. (4)) 
are substituted into equation (12), a plasticity factor for sandwich plates which corre- 
sponds to the factor implied by equation (B10) of reference 5 for the shear-stiffness 
parameter s of that reference set equal to zero (large transverse shear stiffness) is 
obtained. Moreover, when the stiffnesses for sandwich plates with p = pe = and with 

are substituted into equation (Dl), equation (B10) of reference 5 is 
obtained. 
ticity in simple buckling problems of plates and shells. 

are 

1 

DQx = DQY = DQ Hence the presented equations provide an easy means of accounting for plas- 

Numerical Examples 

The three numerical examples given in this section include a ring-and-stringer- 
stiffened cylinder under axial load and internal pressure, a sandwich cylinder under axial 
load, and a ring-stiffened cylinder subjected to biaxial compressive loads. Both stiffened 
cylinders have the stiffening elements attached to the inside surface of the skin. 

Calculations for the numerical examples were made with the use of a digital com- 
puter and analytical expressions for Poisson's ratio and for the stress-strain curves. 
Poisson's ratio was taken as 

and the stress-strain curves were defined by 
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The stress-strain curves used a r e  given in figure 1. Material constants used in the con- 
struction of the curves are 

E . . . .  

Up1 . . . 

U c y . * .  

K . . . .  

Pe 

Material constants for - 
22 19-T87 

aluminum alloy 

10 500 ksi 
(72.4 GN/m2) 

45 ksi  
(310 MN/m2) 

60 ksi  
(414 MN/m2) 

3.0 

0.32 

7075-T6 
aluminum alloy 

10 500 ksi 
(72.4 GN/m2) 

55 ksi  
(379 MN/m2) 

72 ksi 
(496 MN/m2) 

2.2 

0.32 

HY-100 steel 

30 000 ksi 
(207 GN/m2) 

85 ksi 
(586 MN/m2) 

100 ksi 
(690 MN/m2) 

3.5 

0.30 

Ring-and-stringer-stiffened cylinder.- The stiffening members for the ring-and- 
stringer- stiffened cylinder analyzed a r e  shown in figure 2. Other pertinent dimensions 
of the cylinder a r e  wall thickness, 0.120 inch (3.05 mm); ring spacing, 20.0 inches 
(5.08 cm); stringer spacing, 3.0 inches (7.62 cm); radius, 200 inches (5.08 m); and 
cylinder length, 200 inches (5.08 m). The structure is representative of those which 
might be considered for the wall of a fuel or oxidizer tank of a large launch vehicle. The 
wall and stiffener material chosen (2219-T87 aluminum alloy) is considered to be weld- 
able. The stress-strain curve of this material is given in figure 1. 

Calculated results of the pressurized ring-and- stringer- stiffened cylinder for axial 
load and internal pressure applied simultaneously and proportionately a r e  given in fig- 
ure  3. The results were obtained with the use of a buckling equation (eq. (15) of ref. 13) 
for stiffened orthotropic cylinders. Several interesting phenomena a re  illustrated in 

+ - occurs at an internal pressure 2 figure 3. The maximum load for the structure 7 
of approximately 35 psi  (241 kN/m2). This load is associated with considerable plastic- 
ity; that is, the computed plastic buckling load carried by compressive s t resses  in the 
wall is approximately 68 percent of the computed elastic buckling load. At this load the 
average axial s t ress  in the skin and stringers is less  than the proportional-limit stress 
of the skin and stringer material under uniaxial load but, of course, the stress intensity 
in the cylinder wall is greater than the proportional-limit s t ress .  This stress 

- 
Nx P 
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Figure 1.- Stress-strain curves of materials used in numerical examples. 

r- Cylinder wall ::+ 
0.100 (0.254) 

(15.7) 

Ring 

(7.62) 

Stringer 

Figure 2.- Stiffening members for ring-and-stringer-stiffened cylinder. All 
dimensions are given in inches and parenthetically in centimeters. 
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- 0  

l o  

Figure 3.- Results of calculations to determine the buckling strength of the pressurized ring-and-stringer-stiffened 
cylinder under axial compression. 
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distribution indicates the difficulty that would be encountered in improvising a plasticity 
factor for this case as is sometimes done for simpler structures under simpler loadings. 
Moreover, the buckling mode for  the plastic cylinder is different from the corresponding 
elastic cylinder. The elastic cylinder at an internal pressure of 35 psi (241 kN/m2) 
buckles in a mode with m = 5 and n = 6, whereas the plastic cylinder buckles in a mode 
with m = 5 and n = 5, as shown by the lower plot in figure 3. At higher pressures, the 
modes differ by even more. For a pressure of 55 psi (379 kN/m2), for  example, the 
elastic mode is again m = 5 and n = 6, whereas the plastic mode is m = 4 and n = 0. 

The axial load carried by the skin decreases as the internal pressure increases, whereas 
the load carried by the stringers remains relatively constant. Both the rings and the skin 
participate in carrying the hoop-tension load caused by internal pressure. 
load at an internal pressure of zero (fig. 3) is slightly greater (-1.4 percent) than the 

The calculated in-plane stresses in the cylinder at buckling are given in figure 4. 

The buckling 

0 100 200 300 404 500 
I I I I I 

70 t 

0, 

ksi 

0 10 20 30 40 50 60 70 

P, psi 

500 

400 

300 

4 

Mly/m2 

200 

100 

0 

Figure 4.- Stresses in skin and stiffening members of ring-and-stringer-stiffened cylinder at buckling. 
ax and us are compressive stresses; 5 and ur are tensile stresses. 
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buckling load which would be computed with the use of reference 6. The use of equa- 
tion (35) of reference 6 assumes that ox = os and uy = or = 0 in contradistinction to 
the results shown in figure 4 and accounts for the small difference in predicted buckling 
load. The assumption of reference 6 tacitly presumes that prebuckling loading of the 
cylinder does not load the rings. Such a s t ress  distribution might be obtained, for 
instance, with rings which have negligible stiffness prior to buckling but have their cal- 
culated stiffness during buckling. Such a device is normally used in classical buckling 
problems of cylinders in determining the prebuckling stress distribution in the cylinders 
resulting from restraint by the supports at the ends of the cylinders. In the present cal- 
culation, the rings have their calculated stiffness both prior to and during buckling, but 
the restraint offered by the rings is assumed to result in a stress distribution which does 
not vary with the coordinates x and y. 

While the assumption ox = os resulted in a negligible e r r o r  for the special case 
of an axially loaded cylinder, sizable e r ro r s  would result from the use of this assumption 
for  a plate or cylinder under biaxial loading and the assumption should be replaced with 
the assumption used in the present example or some other suitable assumption. 

Sandwich cylinder.- ~- The sandwich cylinder analyzed herein. is typical of those which 
might be selected for the intertank o r  interstage section of a large launch vehicle. The 
cylinder has face sheets of 7075-T6 aluminum alloy, a radius of 200 inches (5.08 m), a 
length of 200 inches (5.08 m), and an aluminum honeycomb core with a solidity of 2.5 per- 
cent. The bonding material is assumed to have a mass of 0.15 psf (0.73 kg/m2). The 
face-sheet thickness tf and depth of sandwich h a r e  varied in order to arrive at 
desirable values of these dimensions for  a sandwich cylinder subjected to a given load 
N,. For this purpose, the core shear moduli a r e  taken to  be Gxz = Gyz = 13.0 ksi 
(89.6 MN/m2). This value of GXZ is roughly one-third of the shear modulus which 
would be obtained for the specified core from a conventional shear-stiffness test. The 
reduced value is used to account for the onset of plasticity in the core and for buckling of 
the core elements prior to buckling of the cylinder. A more elegant procedure to account 
for these effects is given in reference 14. Reference 14 also presents a method of 
accounting for that portion of the applied load carried by the core and bonding material. 
For simplicity, these effects a r e  neglected in the present calculation. 

Results of calculations made with the use of equation (Dl) a r e  given in figure 5 
where the parameter NxF is plotted against the buckling load zx for various values 
of the face-sheet thickness tf. Sandwich depth h varies along each of the curves. The 
parameter zx/i is a measure of the efficiency of the sandwich cylinder in carrying the 
applied load. This parameter is normally chosen as large as possible in order to  arrive 
at the wall configuration with the least mass. 

I 
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Figure 5.- Results of calculations to determine desirable proportions for sandwich cylinders under axial load. Linear dimensions are 
given i n  inches and parenthetically i n  centimeters. 

For a load of Hx = 11.0 kips/in. (1.93 MN/m), the maximum value obtained in the 
previous numerical example, the highest attainable value of GX/f is approximately 
47.8 ksi  (330 MN/m2). The corresponding sandwich proportions a r e  a face-sheet thick- 
ness tf of approximately 0.087 inch (2.21 mm), a value of t' of approximately 
0.230 inch (5.84 mm), and avalue of h/tf of approximately 22.0. The s t ress  in the face 
sheets at buckling ( ~ 6 3 . 2  ksi (436 MN/m2)) is well into the plastic region of the face- 
sheet material (see stress-strain curve of fig. 1) and is indicative of the need for con- 
sidering plasticity in buckling calculations for low-mass sandwich structures. The use 
of simpler methods, which imply elastic behavior, would result in considerably different 
wall proportions. The methods of references 15 and 16, for instance, suggest that h/tf 
should be approximately 80 and that approximately half of the mass of the sandwich wall 
should be allocated to the core material. The present calculation indicates that h/tf 
should be about 22.0 and that only about one-fifth of the mass of the sandwich is in the 
core material. 

The mode of buckling for the sandwich cylinder analyzed is the axisymmetric mode 
(n = 0). For buckling in this mode, the buckling equation (eq. (Dl)) simplifies 
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considerably; for moderately long cylinders with walls that experience moderate trans- 

can be written as 
verse  shearing deformations during buckling & < DG), the buckling equation (ref. 14) 

- Nx= - (  No 1 - - 4:J 

where 

- N o =  

and where % and & can be determined from equations (1) and (4). Use of equa- 
tion (13) instead of equation (Dl) in the given example would have resulted in predicted 
loads only slightly less than those given in figure 5. This difference results because 
equation (13) is not subject to the restriction that the buckle pattern must consist of a 
whole number of buckles. 

Ring- stiffened cylinder. - Dimensions of the stiffening rings for the ring- stiffened 
cylinder analyzed are shown in figure 6. Other pertinent dimensions are wall thickness, 
1.25 inches (3.17 cm); ring spacing, 20.0 inches (5.08 cm); radius, 200 inches (5.08 m); 
and cylinder length, 600 inches (15.24 m). The cylinder and rings are constructed of a 
steel with a compressive yield strength of 100 ksi (690 MN/m2). The stress-strain 
curve of the wall material is given in figure 1. The structure is representative of those 
which might be considered for the pressure hull of a submarine. 

Cy1 i nder wa I I 
~ - -  -- 7 -- 

1 ~ - -  

4 

13.0 
(33.0) 

I 

-0.500 (1.27) 

L 6.0 _I 
(15.2) 

inches and parenthetically in centimeters. 
Figure 6.- Rings for ring-stiffened cylinder. All  dimensions are given in  

Results of the calculations 
are given in figure 7 in the form 
of an interaction curve. The 
results which apply for axial and 
circumferential load applied simul- 
taneously and proportionately were 
obtained with the use of equa- 
tion (15) of reference 13. The 
elastic calculations indicate a 
rather rectangular interaction 
curve. That is, circumferential 
load Ey does not affect the axial 
load-carrying ability of the cylinder 
very much until g y  is somewhat 
greater than 2mx. At this point 
decreases in Nx do not result in 
very substantial increases in Ny. 
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Figure 7.- Results of calculations to determine the buckling strength of a ring-stiffened cylinder under 
biaxial compressive loads. 

A change in buckling mode is responsible for this behavior. For a small value. of NY, 
the buckling mode consists of many axial buckles and eight or  10 circumferential buckles 
(four or five buckles on the semicircumference). For a large value of zy, the buckling 
mode consists of a single axial buckle and six circumferential buckles. Note that at 
Ny = 2gX (hydrostatic pressure) the buckling mode consists of many axial buckles. 
Hence, use of buckling analyses (see, for instance, refs. 17 to 20) which assume that 
buckling occurs in a m = 1 mode would result in an incorrect estimate of the buckling 
strength of the example cylinder which has a length-radius ratio of 3; for a shorter cylin- 
der the e r ro r  in predicted strength would be even more. 

- 

The interaction curve for plastic buckling is considerably more rounded in appear- 
ance than the curve for elastic buckling; the peculiar shape of the curve is a result of the 
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characteristic increase in performance of the plastic wall material under biaxial com- 
pression compared with that of the material under uniaxial compression. The reduction 
for plasticity in the hydrostatic case is large, with the plastic buckling load being approxi- 
mately 62 percent of the elastic buckling load. No significant change in buckling mode is 
associated with the plastic behavior. The plastic cylinder buckles in a mode entailing 
many axial buckles (18 buckles instead of the 21 buckles in the elastic case) and eight 
circumferential buckles. For Ry/Rx somewhat greater than 2, buckling again is in a 
m = 1 mode. 

For buckling under hydrostatic pressure, the following s t resses  were obtained at 
buckling: 

ox = 68.4 ksi (472 MN/m2) 

9 = 104.3 ksi  (719) MN/m2) 

or = 87.8 ksi  (605 MN/m2) 

Note that the ring s t ress  is only slightly above the proportional limit of the ring material, 
whereas the circumferential s t ress  in the wall is greater than the compressive yield 
s t ress .  Hence, the assumption that oy = Or,  which is used in the application of many 
buckling analyses (see refs. 9 and 10, for instance), is not consistent with the stress- 
strain relationships used in the development of the analyses. 

One additional calculation of interest was made in connection with the results shown 
in figure 7 which were obtained with the use of Donnell-type theory (ref. 13) that is known 
to be somewhat inaccurate for low values of n. In order to obtain some idea of the accu- 
racy of Donnell-type theory in the present application, a check calculation assuming elas- 
tic behavior was made with the use of Sanders theory. The calculation was similar in all 
other respects to the elastic calculations of figure 7 in which buckling is indicated to occur 
in the mode with m = 1 and n = 3. The check calculation indicated that Donnell-type 
theory predicted the correct mode shape (m = 1 and n = 3) but predicted a load that was 
approximately 6 percent too high for this section of the interaction curve of figure 7. 

CONCLUDING REMARKS 

A method of calculating the plastic buckling load of a wide variety of plates and 
shells with the use of available orthotropic buckling equations is presented and discussed. 
The method is restricted to plates and shells in which the biaxial s t ress  prior to  buckling 
is uniform. Despite this restriction, the method is applicable to  many structures of cur- 
rent interest, many of which are not treated in the literature. 
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Plates and shells which may be readily analyzed by use of the proposed method may 
be of conventional, sandwich, or laminated construction. 
stiffening members either symmetrically disposed about the middle surface of the skin or  
eccentric to the middle surface; the stiffening members may be made of a different mate- 
rial than the skin. The effect of transverse shear stiffness on buckling may be taken into 
account in calculations for many structures. 

They may be reinforced with 

The method of analysis applies to plates and shells subjected to any biaxial loading. 
Hence, pressurized cylinders under axial compression or cylinders subjected to axial 
compression and external pressure may be analyzed. 

Results of three numerical examples a r e  presented to indicate the types of struc- 
tural problems which can be solved with the use of the method and to indicate the need for 
plastic buckling calculations in the design of contemporary structures. The results indi- 
cate that published methods for calculating the plastic buckling load of complex structures 
under hydrostatic loading a r e  based on assumptions that a r e  inconsistent with the s t r e s s  
distribution in the structure at buckling and which can result in significant e r ro r s  in com- 
puted buckling load in some instances. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., April 12, 1968, 
124-08-06-26-23. 
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APPENDIX A 

CONVERSION OF U.S. CUSTOMARY UNITS TO SI UNITS 

The International System of Units (SI) was adopted by the Eleventh General 
Conference on Weights and Measures in 1960. (See ref. 11.) Conversion factors fo r  the 
units used in this report are given in the following table: 

Physical quantity 

Length . . . . . . . . . . . 
Stress, modulus . . . . . . 
Mass distribution . . . . . 
Pressure . . . . . . . . . . 
Load per unit length . . . . 

U.S. Customary 
Unit 

in. 
ksi  

PSf 

kips/in. 
psi  

Conversion 
factor 

(*I 
0.0254 
6.895 X 106 
4.882 
6.895X 103 
1.751 X lo5 

SI unit 
(* *) 

meters (m) 
newtons/meter2 (N/m2) 
kilograms/metera (kg/m2) 
newt ons/met er2 (N/m2) 
newtons/meter (N/m) 

*Multiply value given in U.S. Customary Unit by conversion factor to obtain 
equivalent value in SI Unit. 

**Prefixes to indicate multiple of units a r e  as follows: 

I Prefix I Multiple 

109 
106 
103 
10-1 
10-2 
10-3 
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APPENDIX B 

SYMMETRICALLY STIFFENED PLATES 

The relationships given by equations (1) for stiffnesses of plastic plates of conven- 
tional, laminated, or sandwich construction can be readily modified to include the effect 
of stiffening which is symmetrical about the middle surface. 
then be applied, for instance, to sandwich plates with truss-like or web-like cores, with 
the core elements being treated as stiffening elements such as stringers and rings or ribs. 
The relationships may also be used with some improvision for problems entailing honey- 
comb cores (see ref. 14) if more precise calculations than would be obtained by neglecting 
the load-carrying capability of the core a re  desired. 

The relationships could 

The, modified stiffnesses (denoted by *) are  

-* - ESAS Ex = Ex + - 
bS 

D&, = D- + 2bs GSJS 
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APPENDIX B 

where the plate terms without an asterisk are those given in the body of the paper 
(eqs. (l), (2), (4), and (5)) fo r  conventional, laminated, or sandwich plates and must be 
evaluated at the stress intensity of the plate. The moments of inertia given for stringers 
and rings or ribs are those taken about the centroid of the symmetrical plate. The exten- 
sional modulus for a stringer or a ring (rib) is the tangent modulus of the member at the 
strain experienced by the member, whereas the shear modulus is a secant-type modulus 

evaluated at the same strain. 

Equations (Bl) a r e  similar to those given by equations (18) of reference 10 for the 
special case of a web-core sandwich plate except that the referenced equations make no 
distinction between the s t ress  in the face sheets and the stress in the core of the sandwich 
plate. Equations (Bl) also reduce to those of reference 9 for the special case of a ring- 
and/or stringer-stiffened cylinder of conventional construction when the stiffening is sym- 
metrical about the middle surface of the skin. In reference 9, as in reference 10, no 
distinction is made between the s t ress  in the skin and the s t ress  in a stiffening element. 
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APPENDIX C 

TRANSVERSE SHEAR STIFFNESS OF TRUSS-CORE AND WEB-CORE 

SANDWICH PLATES 

In order to apply the equations given earlier to sandwich plates and shells with 
web-like or  truss-like cores, the transverse shear stiffness of the core must be known. 
Calculations are normally made by using approximate expressions for  these stiffnesses 
such as those given in reference 21 for the elastic value of the stiffnesses; these expres- 
sions can be modified to account for the effects of plasticity. Such expressions are given 
herein. 

The stiffness in a direction parallel to the direction of the core elements for  both 
web-like &d truss-like cores is given by (ref. 21) 

where E, is the secant modulus of the core material evaluated at the uniaxial stress 
(strain) experienced by the core and P is solidity of the core, that is, the ratio of volume 
occupied by core elements to the total volume available between the face sheets of the 
sandwich. Equation (Cl)  was  derived on the assumption that the core elements acted like 
shear webs to inhibit shear displacements of the face sheets; hence, the secant modulus 
appears in equation (Cl) to account for plasticity. For a web-core sandwich plate, cp is 
equal to 90° and equation (Cl) is equivalent to equation (48) of reference 10. 

For truss-core sandwich plates, the stiffness perpendicular to the direction of the 
core elements is given by 

(C2) 2 DQ = E, sin cp cos cp 
- 

for a single truss and by 

- 1 for a double truss. For ,u = ,ue = z' the quantity Ec becomes 

- Esectc 
1 - p2 

E, = - 

where the secant modulus of the core material is evaluated at the unidirectional stress 
(strain) experienced by the core elements. In the derivation of equations (C2) and (C3), 
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APPENDIX C 

a shear-like deformation is assumed to result from plate stretching of the core elements 
while the core is subjected to the applied uniaxial stress. 

The expression for the stiffness perpendicular to the direction of the core elements 
for a web-core sandwich is complicated by the fact that bending deformations of both the 
face sheets and the core elements are considered to contribute to the shear-like deforma- 
tion; only deformations of the core elements were considered in the previous derivations. 
The stiffness is given by 

1 

"= bsh bs2 
+- 

12D, 24Df 

where refers  to the bending stiffness of the core element and is given by 

- D, = ~ s e c t c '  
12(1 - p2) 

The secant modulus of the core material is again evaluated at the unidirectional stress 
(strain) experienced by the core elements. The bending stiffness a is given by & 
o r  9. 
y-direction or in the x-direction, respectively. Equation (C5) was adapted from refer- 
ence 22, the source of the corresponding equation of reference 21, and is the equivalent of 
equation (37) of reference 10. 

- 
of equations (1) depending upon whether the core elements are alined in the 
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APPENDIX D 

BUCKLING OF SIMPLY SUPPORTED ORTHOTROPIC PLATES AND CYLINDERS 

The availability of a buckling equation for orthotropic plates and cylinders in which 
are distinct quantities is desirable for making the shear stiffnesses DG 

plastic buckling calculations involving sandwich- like structures. Such an equation is 
readily written for simply supported plates and cylinders subjected to biaxial in-plane 
loads with the use of reference 12 as 

and DQY 

&(“)2 + qy(Fr = A11 - A22A?3 A33A:2 - 2A12A13A23 

A22A33 - Ai3 

where 

2 - D12 m r  
A12 = DY(F) ++) (8 

A23 = ( D12 2 - -)(3(3 

and 
- - 

D12 = 2Dxy + p D + pyDx 
X Y  
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APPENDIX D 

Equation (Dl) was obtained by substituting the equations 

mrx 
1 

w = A sin - sin 

mnx 
1 Q~ = c cos - sin YJ 

into equations (7), (8), and (14) of reference 12 which are based on a small-deflection 
theory for buckling in which membrane prebuckling deformations of the plate or cylinder 
are assumed. The implied boundary conditions at a boundary x = 0 or x = 2 are 
w = Mx = v = Nx = Qy = 0 (refs. 12 and 23) and at a boundary y = 0 or y = b a r e  
w = M - u = Ny = &x = 0. The buckling load of a plate or cylinder is obtained from equa- Y -  
tion (Dl) by minimizing with respect to m and n, the number of half waves in the buckle 
pattern in the length and width directions of the plate, respectively. The smallest n 
consistent with the assumption of simply supported plates is n = 1. When the equation 
is applied to a cylinder, it is convenient to take b = 7rr and n = 0, 1, 2, 3, and so forth. 
If buckling is determined to occur in the n = 1 mode or the n = 2 mode, which corre- 
sponds to a lateral displacement of the cylindrical cross  section and to a flattening of the 
cylindrical section to an oval section, respectively, a more exact buckling theory should 
be used. Reference 12 is based on Donnell-type theory and buckling loads obtained for 
the n = 1 and n = 2 modes are not very accurately given by the theory for certain 
loading conditions (ref. 23). For both plates and cylinders m is taken to be m = 1, 2, 3, 
and so forth. 

Equation (Dl) is used in the body of the paper to compute plasticity factors and to 
compute buckling loads for plates and cylinders which buckle plastically. 
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