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ABSTRACT 

Many satellites, such as ATS-A, ATS-D, DODGE, RAE, etc., have 
clamped to the surface of their central body long elastic members which 
when set into vibratory motion can significantly influence the motion of 
the central body. If such a satellite is reasonably symmetrical, we can 
predict its dynamic characteristics by modeling the entire satellite as 
a symmetric double-beam system; that is, by a rigid symmetric central 
body having clamped to its surface two long, diametrically opposed uni- 
form elastic beams with tip weights possessing identical physical and 
geometrical properties. In this paper, dimensionless equations which 
define the natural modes and frequencies of such a satellite system a r e  
derived and solved. The solutions a r e  outlined in graphical form and 
then used to solve the equations that describe the elastic response of the 
satellite to an arbitrary periodic forcing function. The results in both 
graphical and analytical form make it possible to predict with slide-rule 
accuracy the natural frequencies of any satellite that can be modeled as 
a symmetric double-beam system. The dynamic response equations 
have been applied to a particular problem associated with ATS-D. It is 
shown that if  the ATS-D microthruster were operated at any frequency, 
including the system resonants, the viscoelastic damping of the elastic 
beams would be sufficient to prevent the resonant-oscillation amplitudes 
from exceeding the elastic limits of the attached appendages. 
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THE DYNAMIC CHARACTERISTICS OF SATELLITES 
HAVING LONG ELASTIC MEMBERS 

? z - .  The equations developed in dimension- ~ u z  

sg> less form and the results given provide suf- 
ficient information to permit computing, with D 

by 
Harold P. Frisch 

Goddard Space Flight Center 

Lo L 2L 
L 

INTRODUCTION 

The design and computer simulation of an active control system for a satellite having long 
elastic members (booms) requires knowledge of each elastic mode of vibration that can be excited, 
and i ts  associated natural frequency. This is essential for system design, and helps to develop 
and verify the computer simulation of the entire coupled dynamic system. 

Such a system (as shown in Figure 1) is symmetrical with respect to a plane passing through 
its center of mass. Therefore, the natural modes of vibration can be separated into two groups: 
those that are symmetric about the axis of symmetry, and those that a r e  antisymmetric about the 
axis of symmetry relative to the point on the axis that is coincident with the system's center of 
mass. The axis of symmetry is defined as that which is normal to the undeflected shape of the 
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System, passing through the center of mass and in the plane of vibration. This symmetry permits 
one to derive the two frequency equations and the mode shapes of the entire system by simply solv- 
ing the vibration equation over the elastic portion of one beam twice: once with the boundary con- 
ditions associated with the symmetric modes of vibration, and again with the boundary conditions 
associated with the antisymmetric modes of vibration. 

The derived modes form a set of orthogonal functions; these can be used to obtain a se r i e s  
solution to the equation describing the vibrational motion of each point of the system. 

To obtain the solution the applied force distribution is decomposed into an equivalent force 
system. That is: 

1. A force distribution, symmetric about the system's axis of symmetry, which excites only 
the symmetric modes of vibration, and 

2. A force distribution, antisymmetric about the system's axis of symmetry, which excites 
only the antisymmetric modes of vibration. 

It follows from the principle of superposition that the system's dynamic response to the equiv- 
alent force system is identical with its dynamic respcnse to the actual force distribution. 

The derived equations, to illustrate these results, are used to solve a particular problem as- 
sociated with ATS-D. They are specialized so as to describe the response of the satellite system 
to a microthruster of periodic intensity located at the point where one of the booms is attached to 
the rigid central body. It is shown that the viscoelastic damping of the boom material itself is 
enough to prevent the peak bending moment at every point of the system from exceeding the critical 
buckling moment of the boom itself, even if the thruster excites a system resonant frequency. 

1. BASIC THEORY 

The equations and results presented here can be applied to any satellite that can be modeled 
as the symmetric double-beam system shown in Figure 1. This is an elastic system, which has 
two identical diametrically opposed uniform elastic beams with tip weights, clamped to the surface 
of a rigid central body. 
mass, and rotational inertia. 
continuities in mass  and stiffness along its length. 

The central body is assumed to be perfectly rigid and have finite size, 
Thus the elastic system under study is treated as one having dis- 

The present analysis first derives the orthogonal functions that define the normal modes of 
vibration and the corresponding frequency equations, in a form that may be readily applied to any 
similar system. These equations a re  then used to analytically solve the damped forced-vibration 
equation. The partial differential equation for the damped vibrational motion of every point along 
the systems length, when it is excited by a known force distribution, is 

d Z  d 2 Y ( x ,  t )  d 2 Y ( x ,  t )  dY(x, t) - 
dx2  dx 

- F(x,  t )  , - EI(x )  P(X> d t 2  + a t  
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where 

x = position coordinate measured positive from the boom tip, ft (Figure 1) 

t = time, sec 

Y ( X ,  t )  = transverse displacement at ( x ,  t ) ,  f t  

F(x,  t )  = external force distribution at (x, t ) ,  lb ft-' 

p ( x )  = mass distribution at x, slugs f t - '  

EI(x )  = bending stiffness at X ,  lb f t2  

p ( x )  = viscous damping coefficient at x, lb sec ft-2.* 

When the viscous damping coefficient p( X )  is proportional to the mass distribution p( X )  equation 
1.1 can be solved by separation of variables; the resulting solution is of the form 

where 

y, ( x )  is the nth normalized mode of the undamped unforced equations of motion of the entire 
system, and 

an  ( t  ) is the time-dependent generalized displacement coordinate associated with the nth mode, 
feet. 

These mode shapes y, ( x )  that a r e  to be used in Equation 1.2 must be derived from the equation 

and must satisfy the time-independent boundary conditions of the system. 

Because, when the system vibrates in any one of its normal modes of vibration the deflection 
of every point of the system varies harmonically in time, the solution to Equation 1 .3  is of the 
form 

where Y ( X )  defines the shape of the normal mode and is its  frequency of vibration (radians sec-l). 

'For a complete symbol list, see  Appendix A. 
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Directly substituting Equation 1 . 4  in Equation 1 .3  gives the differential equation 

d2 EI(x) ~ - - 
dx dx (1.5) 

Equdtion 1.5, along with its time-independent boundary conditions, defines an eigenvalue prob- 
lem. The eigenvalues, which are the solutions to the characteristic (frequency) equation of the 
problem, define the natural frequencies of the system, and the eigenvectors associated with each 
of the eigenvalues define the orthogonal modes of the system. 

Since Equation 1.5 has parametric discontinuities along its length which cannot be assumed 
negligible a geometric construction must be used to develop solutions to th i s  equation. 

Reference 1 states that the mode shapes that a r e  assumed to satisfy the equation 

must satisfy two basic criteria: they must impose as'little constraint as possible on the motion 
of the system, and they must satisfy the kinematic boundary conditions. It is also extremely use- 
ful but not essential that the constructed modes be orthogonal. 

The actual mode shapes yn (x), defined over the entire system length, that satisfy Equation 1.6 
a r e  obtained as follows: 

1. Note that the complete set of natural modes of vibration can be divided into two groups: 

a. Those symmetric about the system's axis of symmetry: "symmetric modes of 
vibration. 

b. Those antisymmetric about the system's axis of symmetry relative to the point coinci- 
dent with the system's center of mass: "antisymmetric modes of vibration." 

2. Let 

EI = bending stiffness, uniform along length of elastic beam, lb f t  ', 
p = mass distribution, uniform along length of elastic beam, slugs f t - l ,  

then solve the eigenvalue problem defined by the equation 
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over the elastic portion of half  of the system; that is, over the length of one beam twice, as 
follows: 

a. Use  the boundary conditions that define the effect of the central body's mass on the 
beam at its point of attachment, and the effect of the tip weight on the beam at its 
point of attachment, when the system is vibrating in one of the symmetric modes of 
vibration. 

b. U s e  the boundary conditions that define the effect of the central body's size and rota- 
tional inertia on the beam at its point of attachment, and the effect of the tip weight on 
the beam at its point of attachment, when the system is vibrating in one of the anti- 
symmetric modes of vibration. 

3. Reflect about the system's axis of sy.mmetry each derived eigenvector of Equation 1.7, 
symmetrically or antisymmetrically as dictated by the boundary conditions. The two points anal- 
ogous to the points at which the beams a r e  attached to the central body will then be displaced by 
a distance 2R, the length of the central body, from each other. Connecting these two points with a 
linear segment generates a function that is definable at every point along the system's length. 

This function satisfies Equation 1.6 at every point along the flexible portion of the system; it 
satisfies all boundary conditions and accounts for the length and rigidity of the satellite body. 
Furthermore, since the eigenvectors of Equation 1.7 a r e  orthogonal and the satellite length is 
small  compared to the system length, the symmetric and antisymmetric modes will  form two sets  
of orthogonal functions. It is easily shown that these two sets  are mutually orthogonal by noting 
that the integral of the product of an odd and an even function over symmetric limits is zero. 

Note that each mode shape as constructed is not unique but defined only up to a multiplicative 
constant. The mode shapes, however, can be made unique by requiring that the orthonormality 
condition 

P Z  L 

be satisfied for all integers n and m, where 

M, = total mass  of system, slugs, 

2L = total length of system, f t ,  

n # m, the Kronecker delta function 

8 n . m  1 i f n = m .  
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2. NATURAL MODES AND FREQUENCIES 

As previously mentioned, the natural modes and frequencies of the system are constructed 
from the solutions to Equation 1.7 along with the appropriate boundary conditions that define the 
symmetric and antisymmetric modes. 

In order t o  avoid notational difficulties it 
is convenient to define the parameter z over the 
elastic portion of half the system, as shown in Fig- 
u r e  2. 

TIP WEIGHT 
3 

RIGID SATELLITE BODY 

Since z is linearly related to X, Equa- 

Figure 2-Coordinate system used to derive 
frequency equations. 

and the boundary conditions defined at the points 
z = 0 and z = Lo = L - R ,  Lo being the length of 
one beam. This equation has the general solution 

y* ( z )  
= C, cosh h z  + C, sinh h z  + C, cos h z  + C, sin h z  , (2.2) 

where 

A 4  = pwz 
E1 (2.3) 

and c,, c,, c,, C, a r e  constants of integration. 

The actual values of h to be used in Equations 2.2 and 2.3 a r e  the solutions to the frequency 
equations of the system, which a r e  derivable from the equations defining the boundary conditions. 

The boundary conditions for the two cases mentioned are: 

Symmetric modes of vibration: 

z = o  

E1 
dz (2.4) 

Z'L0 
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Antisymmetric modes of vibration: 

m - $ y * ( z ) J  = 0 , 
dz 

z = o  

where 

W, = tip weight, lb, 

Ws = weight of rigid satellite body (without beams and tip weights), lb, 

1% = mass moment of inertia of rigid satellite body (without beams and tip weights) 
about the axis through the center of mass and normal to the plane of vibration, 
slugs f t 2 ,  

g = acceleration of gravity, f t  sec-2,  

L, = L - R = length of one beam, f t ,  

2R = length of satellite body, f t ,  

2~ = length of entire system, f t .  

The frequency equation associated with each case is derived by substituting the general solu- 
tion (Equation 2.2) in the four equations defining the boundary conditions. This yields four homo- 
geneous equations in the four unknowns, C , ,  C,, C3, C,, for each case. It follows that for a non- 
trivial solution to exist, the determinant of the coefficients of C,, C2 , C3 , C, must be identically 
equal to zero. The evaluation of this determinant yields a transcendental equation in A-commonly 
referred to as the "frequency equation.'' Thus: 

Frequency equation for symmetric modes of vibration: 

A direct substitution of the general solution, Equation 2.2, in the four boundary conditions, 
Equations 2.4, yields: 
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that is 

q 2 1  q 2 2  9 2 3  q 2 4  

q31 9 3 2  q33 q34 

q41 q42 q43 q 4 4  

c, + c, = 0 

C1coshALo + C, sinhAL, - C3 COSAL, - C, sinAL, = 0 

= , 

W 
- E I A ~  (c, - c,) + < J (cl tc,) = 0 

E1A3 (C1 s i n h  AL, + C, cosh AL, + C, s i n  AL, - C, cos hLo) 

(2.6) WT + - w 2  (C1 cosh AL, + C, s i n h  AL, + C, cos AL, t C, s i n  XL,) = 0 .  
g 

For a non-trivial solution to exist, the determinant of the coefficients must be equal to zero; 

qll 9 1 2  q13 q141 

where 

q,, coshXL, 

q22 s i n h  AL, 

q,, - COSXL, 

q,, = - sinAL, 

= s i n h  XL, + - WT AL, cosh AL, 
q 4  1 WB 

WT 

w * q4, s i n  AL, + - AL, cos AL, 

WT 

w* q,, = - cos AL, t --Lo sinAL, 

wB = pgL, = weight of one beam, l b  , 

- .  P2 
E1 A 4  

(2.7) 
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g 
h 

Directly substituting Equations 2.8 in Equation 2.7 gives the following: 

W S  

2 WB 
t a n h a ,  + tanAL, + - AL, (1+ secAL, sechAL,) 

- -  WT 

WB 
- -  

W S  

2WB 
2AL, - - (AL,) ( tan AL, - t anh  AL,) 

(2.9) 

This is the frequency equation for  the beam of length Lo having the prescribed boundary conditions. 
Furthermore, because of the symmetry of the system, it is also the frequency equation for the 
symmetric modes of the entire system. 

Frequency equation for antisymmetric modes of vibration: 

A direct substitution of the general solution, Equation 2.2, in the four boundary conditions, 
Equations 2.5, yields: 

h(C, tc,) - 1 (c, tc,) = 0 

C, coshAL, t C, sinhXL, - C, COSAL, - C, s i n  AL, = 0 

I S  
-EIR A 3  ( C 2 - C , )  + EIX’ (C, - C 3 )  t (C1 +C,) = 0 

E I h 3  (C1 s i n h  AL, t C, cosh AL, + C, s i n  AL, - C, cos AL,) 

WT 
t 7 u 2 ( C 1  coshhL, t C ,  s inhhL,  t C ,  coshL,  +C, sinAL,) 0 . (2.10) 

For a non-trivial solution to exist, the determinant of the coefficients must be equal to zero; 
that is: 

q l l  q 1 2  q 1 3  9 1 4  

9 2 1  9 2 2  9 2 3  q24  

q 3 1  q 3 2  q 3 3  q 3 4  
= o  

g4,  9 4 2  9 4 3  9 4 4  

(2.11) 
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where 

- 1 - 
9 1 1  - - R* q z l  = cosh AL, 

- 
q 3 3  - - 

1 ws* 
- +  R* - 2WB (xL,)* 

WT 

W B  
q, ,  = sinh XL, + -XL, coshXL, 

WT 

WB 
q,, = cosh XL, + --Lo sinhhL, 

WT 

W B  
q,, = sin AL, + - XL, cos XL, 

WT 

WB 
q4, = - cos AL, +-AL, sinAL, 

wB = pgL, = weight of one beam, lb , 

- effective inertia weight of rigid satellite body, lb , 
*Sg 

R2 
_ -  ws* = 

normalized satellite radius . R* = - R 
LO 

(2.12) 
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Directly substituting Equations 2.12 in Equation 2.11 gives the following: 

1 f a n h  AL, - t a n  AL, - 2AL, R* t a n  AL, tanh  AL, - (AL, R*)2 ( t a n h a ,  + t a n  AL,) 

- -- w s* R*2 (AL0)3 (1 + sec  AL, sech a,) 

1 + - ws* R*2 (AL,)’ ( tanh AL, - tanhL,) 

_ -  WT 2WB (2.13) 
WE io [2 t a n  XL, t anh  XL, + 2R* AL, (tanh AL, + t an  XL,) + 2 (R* AL,) 

2% 

Let 

I, = mass moment of inertia of a beam of length 2 ~ ,  about an axis normal to the length and 
passing through its centroid, slugs f t  2. 

Then 

(2.14) 

This expression can be used to rewrite Equation 2.13 in terms of the inertia ratio Is/IB. That is, 
by substituting 

(2.15) 

in Equation 2.13: 

XL, - t an  XL, - 2XL, R* t an  hL, tanh AL, - (AL, R*) (tanh hL, + t an  AL,) 

(2.16) 
t an  XL, tanh  AL, + 2hL, R* (tanh XL, + t a n  XL,) + 2(hL, R*)2 

WT 

WB 
~- 

This is the frequency equation for the beam of length Lo having the prescribed boundary conditions. 
Furthermore, because of the symmetry of the system, it is also the frequency equation for the 
antisymmetric modes of the entire system. 

Equations 2.9 and 2.16 a r e  transcendental equations that cannot be readily simplified except 
For any particular set of parameters, for extreme values of the dimensionless ratios included. 

however, the equations can be solved accurately by numerical techniques. 
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It is convenient to put those values of AL, that satisfy Equation 2.9 and 2.16, in a particular 
order. That is, let: 

(ALo)2n-l = the nth value of AL, (in increasing order of magnitude) that satisfies the frequency 
equation for the symmetric modes of vibration, Equation 2.9, 

= the nth value of AL, (in increasing order of magnitude) that satisfies the frequency 
equation for the antisymmetric modes of vibration, Equation 2.16. 

Thus, from Equation 2.3, the mth natural frequency of the system is given by 

where it is understood that 

(2.17) 

(2.18) 

Associated with each eigenvalue h, there exists an eigenvector y,*(z) that satisfies the differ- 
ential equation 

(2.19) 

and the four boundary conditions given by Equations 2.4 or 2.5. This function y,* (z),  along with the 
orthonormality condition, Equation 1.8, is used to construct y, (x), the mth natural mode of the 
entire system. 

The equation defining y,* ( z )  is derived as follows: 

m odd; symmetric modes: 

Let c,, , c2 , ,  c,,, c,, be the constants of integration associated with the mth natural frequency 
am. Directly substituting Am into the first three of Equations 2.6 and solving for the constants leads 
to: 

C,, coshh, Lo + C,, (sinh h m L o  +sin h m L o )  = C,, cos  Am Lo , 

(2.20) 
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r -  

p 
I 

Hence, 

(2.21) 

where 

sec  A, Lo (1 -t & A m  Lo tanh  Am 

sech A m  Lo (1 - 

Lo sech  A, Lo t a n  Am Lo 
~ (2.22) 

A m  Lo t a n  A m  Lo s e c  h, Lo t anh A, Lo * 

G m  

Substituting these equations into the general solution gives the equation defining yf ( z )  as 

yf (z) C, cosh A, z 1 f 4% A, Lo (1 + G,) tanh A, z f C, cos A, z sech A m  z I w= 
J w s  

- ~ A ,  Lo (1 + G,) s i n  A, z sech Am z (2.23) 4wB 

for all odd values of m. The evaluation of the magnitude of C,, will be discussed in Section 3. 

m even; antisymmetric modes: 

Let Clm, c,,,, , C3,,,, c , ~  be the constants of integration associated with the mth natural frequency 
Directly substituting A m  into the first three of Equations 2.10 and solving for the constants wm. 

leads to: 

C lm coshXm Lo f C,, sinh A, Lo - C,, cos A, Lo - C,, s i n  A, L, = 0 . (2.24) 

13 
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Hence, 

R* (A, Lo)* + 2Am Lo R* H, F 2 - e w* R* ( A , L , ) ~  1. C , m  = CIm 

(2.25) 

where 

sec  A; Lo (R* A,L, + tanh Am Lo) 

ws* 
- 2w, R*' (AmLo)3  (sec A,,, Lo + sechh ,  Lo) 

t t a n  A m  Lo sech A m  

w : 
2WB 

A m  Lo (R* Am Lo + t a n  Am Lo) - ~ R* (A, Lo)* (tanh Am Lo sec  Am Lo 
H m  = 

Substituting these equations into the general solution gives the equation defining y,* ( z )  as 

i t [ _ _ ~  w,* ] cos Am z sech A m  z + H, s i n  hm z sech Am z 

2 ~ ,  R* ( * m ~ o ) ~  + 2hm Lo R* Hm 

2 - - R* (A, , ,L , )~  
2WB i t [ _ _ ~  w,* ] cos Am z sech A m  z + H, s i n  hm z sech Am z 

2 ~ ,  R* ( * m ~ o ) ~  + 2hm Lo R* Hm 

2 - - R* (A, , ,L , )~  
2WB 

(2.27) 

for all even values of m. 
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3. CONSTRUCTION AND NORMALIZATION OF MODES 

In the preceding section the functions y 2  ( z ) ,  which a r e  to be used to construct the symmetric . 
and antisymmetric modes, have been derived up to the multiplicative constant c,,. By following 
the rules outlined for the construction of y, (x), the mth natural mode of the system, and applying 
the orthonormalization condition, Equation 1.8, w e  can uniquely define the mth mode. 

Figures 1 and 2 and the boundary conditions previously given show that the function y,* ( z )  , 
defined at every point in the interval 

is identical with the function y ,  ( x )  at every point in the interval 

L o + 2 R ( x ( 2 L ,  

when 

z = x - L o - 2 R .  

The determination of y, ( x )  over the full interval 

for the symmetric and the antisymmetric modes uses the following construction procedure: 

m odd, symmetric modes: 

For this case, the function y t  ( Z )  is defined by Equation 2.23 and 

for O ( x l L ,  

for Lo < x < Lo f 2R 

for Lo + 2R 5 x ( 2L . 

m even, antisymmetric modes: 

For this case, the function y; ( z )  is defined by Equation 2.27 and 

for O l X ' L ,  

Y , ( X >  = for Lo < x < L o  f 2R 

for L o f 2 R ( x ( 2 L .  

(3.1) 

(3.2) 
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It will be recalled that y, ( x )  as constructed is defined only up to the multiplicative constant 
C,,. This constant can be uniquely defined for each mode by requiring that the orthonormality 
cofidit ion 

(3.3) 

be satisfied for d 1  m. 

Besides predicting the deflection, we can predict the bending moment at each point of the s y s -  
tem if we h o w  the curvature of each mode. These are obtainable from the equation 

Y,*" ( z )  = (Clm C O s h X ,  z + C,,,, s inh  A, z -C,, cos Am z - C,, s i n  h, z) , (3.4) 

where the constants of integration are identical with those derived for Y, ( x ) .  We can obtain the curva- 
ture of the mode y, ( x )  defined over the full system length by applying the construction rules that gen- 
erated y, ( x )  from y,* ( z ) ;  that is, Equations 3.1 and 3.2. 

4. TRANSIENT AND STEADY-STATE SOLUTIONS 

With a complete set  of modes, it is possible to derive a ser ies  solution for Equation 1.1-the 
equation of damped forced vibration of the entire system. 

Substituting Equation 1.2 in Equation 1.1 gives 

Using Equation 1.6 further reduces this to the form 

where the additional substitution 

has also been made. The term 5 is commonly referred to as the "damping ratio" and is related to 
the constants of the system by Equation 4.3. It should be noted that the parameter p is the mass 
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per unit length of the beam alone. The equation states that P ( x )  is independent of X; hence, energy 
is uniformly dissipated along the entire system length. This is an approximation, since actually 
zero energy is dissipated across the length of the  rigid satellite body. 

. 

The summation and all dependence upon the coordinate x can be removed from Equation 4.2, 
by applying the orthonormality condition stated in Equation 1.8. Multiplying Equation 4.2 through 
by y, ( x )  and integrating over the entire system length reduces this equation to 

where 5, is the damping ratio associated with the nth mode and is given by 

n odd; symmetric modes excited: 

n even; antisymmetric modes excited: 

(4.5) 

Equation 4.4 is a differential equation that can be solved by means of the Laplace transform. 
Hence, 

(4.8) 
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where 

(4.9) 

and the initial values of an ( t  ) are assumed equal fo zero. 

The system being linear means that we can use the principle of superposition to determine 
the actual system response to the force distribution F(x,  t ) ,  by adding the response due to each 
individual force distribution of an equivalent force system. 

Let the equivalent force system be defined by the two force distributions F,  (x, t )  and F, (x, t ) ,  

where 

F, (x, t )  = F, (x) f ( t )  = a force distribution of periodic intensity that is symmetric about the 
system's axis of symmetry and excites only the symmetric modes of 
vibration, 

F2 (x, t )  = F, ( x )  f ( t )  = a force distribution of periodic intensity that is antisymmetric about 
tbe system's axis of symmetry and excites only the antisymmetric 
modes of vibration. 

The function f(  t )  appearing above is a continuous function of time; it describes the intensity 
of the force distribution F, (x, t )  and F, ( x ,  t )  at  time t. It will  be assumed for this analysis that 
f ( t )  is periodic with period t and expressible as a Fourier series. That is, 

where bm and dm a r e  the Fourier coefficients associated with the function f ( t )  given by: 

2m t 2  
f ( t )  COS t t dt  m = 0 ,  1 , 2  

2 

(4.10) 

(4.11) 

(4.12) 

F(x, t )  as it appears in Equation 4.8 can be replaced by the equivalent-force system defined 
above. Then, a direct substitution of Equation 4.10 in Equation 4.8 yields an expression that can 
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be readily inverted by convolution: 

where 

n odd; symmetric modes: 

r 2 L  

n even; antisymmetric modes: 

(4.14) 

(4.14a) 

and "*" is the symbol used to denote convolution. 

Once evaluated, the expression for an ( t )  can be substituted in Equation 1 .2  and the displace- 
ment at any point x along the system calculated for any time t. Furthermore, differentiating 
Equation 1 .2  twice and multiplying the results by E1 gives the bending moment at any point for any 
time t .  

Letting 

R, W ,  (1 - L:)1'2 = damped natu al frequency of nth mode, 

V, = 5, W ,  = inverse of t ime constant for nth mode, 

0 = 2-rr/t2 = frequency of applied-force distribution, 
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and performing the convolution operation called for in Equation 4.13, leads to 

+r lm I , ' c o s m B ( t - r ) e  - u  7 s i n f l n 7 d 7 + d m  I , ' s i n m O ( t - ~ ) c  - u  7 sinflnci]} (4.16) 

m =  1 

. (4.17) I 
This equation for an  ( t )  can be used to define the transient response of the system when ini- 

tially at res t  and then set  in vibration by the defined applied force F(x,  t ) .  In order to investigate 
the response at the point x of the system at time t ,  we substitute Equation 4.17 in 

to yield the transverse displacement, and in 

(4.18) 

(4.19) 

to yield the bending moment. 
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By observing how each term 

and 

(4.20) 

changes as a function of time, the contribution to the total response from each individual mode can 
be ascertained for the particular forcing function in question. 

In addition to the transient response, the steady-state response of each mode to the particular 
forcing function is of interest. In deriving the resultant steady-state response of the system, note 
that the steady-state generalized coordinate an  ( t > s T  given by 

+ L b m  m -  1 1 

is not necessarily in phase at the steady-state time t for all n, since it is obtained by evaluating 
a n  ( t  )w i th  the exponential terms deleted. 

5. SOLUTION TO FREQUENCY EQUATION 

It has been shown that the frequency equation associated with the symmetric modes of vibra- 
tion of the entire system is 

w s  

2% 
t anh  AL, + t a n  AL, t - AL, (1 + sec  AL, sech AL,) 

- -  WT 

WB 
_ -  

w s  
2AL, - 2w, (AL,) * ( tan AL, - t anh  AL,) 

(5.1) 
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and the frequency equation associated with the antisymmetric modes of vibration of the entire 
system is 

1 Panh AL, - t a n  AL, - 2AL, R* t a n  AL, tanh  AL, - (AL, R*) ' ( tanh AL, + t a n  AL,) 

- - I s  (AL0)3 (1 + sec XL, sech  AL,) 
WT 31B _ -  'B ' - I L ,  [2fanALotanhALo+2R*ALo 

By the proper definition of the parameters contained in these equations it is possible to pre- 
dict the natural frequencies of any system that may be modeled as the symmetric double-beam 
system shown in Figure 1. If the system to be modeled as a double-beam system has four or more 
elastic members attached to a rigid central body, the frequency equations given above yield only 
those frequencies associated with the system mode shapes that a r e  similar to the symmetric and 
antisymmetric modes defined. 

The physical parameters needed to solve the frequency equations of the double beam model 
are:  

Ws = weight of rigid satellite body (without beams and tip weights), 

I~ = mass moment of inertia of rigid satellite body (without beams and tip weights) about the 
axis through the center of mass and normal to the plane of vibration, 

I, = mass moment of inertia of a beam, of length 2L, , abokt an axis normal to the length and 
passing through its centroid, 

W, = tip weight, 

L, = length of a single beam, 

p = mass per unit length of beam, 

E1 = bending stiffness of beam, 

R = radius of symmetric satellite body, 

g = acceleration of gravity. 

Equations 5.1 and 5.2 show that the solutions to the frequency equations will depend only on 
the magnitudes of four distinct dimensionless ratios. 

In particular, the solutions for the symmetric modes involves parameters 

while the solutions for the antisymmetric modes involves 
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These can be calculated for the symmetric double-beam system from the above definitions and 
the equations 

w, = PgLo ? 

CURVE NUMBER w s / w ~  - 
1 0.0 - 
2 2.5 

4 3 5.0 - 
4 10.0 
5 25.0 

- 
- 
- 

9 6 50.0 - 

7 8 500.0 - 
6 - 
5 - 

8 7 100.0 - 

9 m 

- 
- 
- 
- 
- 
- 
- - 

3 - 
- 
- 
- 
- 
- 
- 
- 

I l l 1  I I I I I I I I I  

- 

4 5 6 

R R* = - 
Lo ’ 

7 

(5.3) 

Figures 3 through 7 attempt to provide sufficient information so that Equations 5.1 and 5.2 may be 
accurately solved for all practical values of the defined ratios. With these approximate solutions 
and the relation 

(5.4) 

it is possible to obtain a very good estimate of the first few natural frequencies of the satellite 
system in question. 

r i i  I I I I I I 1 1  I 1 1 1 1 1  I I i ~ T T T  I 1 1  I I I 

l9 

011111 

0 1 2 
. 1 1 1 1 u  

1 1 1  I i i i i I I 1 1 1  I I I I I I I 1 1  I I I I I I 1 1 1  1 1  I I 1 1  I I 1 

LLU 
3 

XL o( radians) 

Figure 3-Symmetric mode, W T N B  vs AL, for 
different values of W, NB. 
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Each curve labeled in Figure 3 plots WTPB v s  AL, as obtained from Equation 5.1 for the value: 
of Ws/WB tabulated on the figure. This figure contains sufficient information to give an accurate 
estimate of the first two values of AL, that satisfy Equation 5.1. The natural frequencies associatec 
with the estimated values of AL, correspond to the first two modes of vibration fo r  which the 
satellite body can translate but not rotate. For the double-boom system, these are the first two 
symmetric modes of vibration. 

A set of curves which provide sufficient information to  accurately estimate the natural fre- 

(as derived via Equation 5.2) for incremental values of both Is,/IB and R* in the 
quencies associated with the antisymmetric modes of vibration can be obtained by plotting 

wTPB vs  XL, 
range 

and 

Since this involves incrementally varying three parameters; the following approach is used to pre- 
sent the results in a more compact form. 

Intuitively one fells that the least critical parameter appearing in Equation 5.2 is R* . That is, 
for  satellites having long elastic members such that 

0 C R* '< 0 . 1  , 

the natural frequencies will  be essentially the same, no matter what the exact value of R* may be. 

Figures 4 and 5 lend graphic support to this intuitive notion and thus provide one with suf- 
ficient information to determine the magnitude range of inertia ratio Is,/IB over which R* plays an 
insignificant role in the estimation of the system's first two antisymmetric modal frequencies. 
That is, we show how sensitive the asymptotes and zero crossings of Equation 5.2 are to change in 
Is/IB and R* . Since it will  be shown that the curves WT/WB v s  AL, as derived from Equation 5.2 
have shapes similar to those shown in Figure 3, it may be inferred that any intermediate value of 
wT/wB between zero and infinity will exhibit the same sensitivity to changes in Is/IB and R* as do 
the asymptotes and zero crossings. 

Figure 4 plots I * / I ~  vs hL, for the values of R* tabulated on the figure. These curves a r e  ob- 
tained from Equation 5.2 when WT/WB is set  equal to infinity; that is, from 

(tanhAL,+tanXL,)  + (R*&O)'] 

(ALo)3 ( tan  AL, - tanh XL,) 
_ _  Is 
'B (5.5) 
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- - - 
CURVE NUMBER R* - 

1 0.001 - 
2 0.005 - 
3 0.010 
4 0.025 - 
5 0.050 - 
6 0.075 

- - - - - 
- 

- - - - - 
- - - - - - - - - 

- - - - - 

0 1 2 3 4 5 6 7 8 
hLo( radians) 

Figure 4-Antisymmetric mode, I s / 1  vs h L o  for different 
values of R*, when W T h B  = XI. 

- 
1 0.001 
2 0.005 E 
3 0.010 z 
4 0.025 - 
5 0.050 
6 0.075 7 
7 0.100 = 

- 
- 

- 

1 1  I T 1  1 1  I I I  I I 1.11 I 1 1  I I  I I  1 1 1  I i r r  rrrnln I I I I  I I I 1 1  I 1 1  I I I I I  1 1  I I I 1 1 1 1 1  I I I  I I I I  I 1 1 
CURVE NUMBER R* 

lllllLll 
1 

Figure 5-Antisymmetric mode, ls/lB vs AL,, for different 
values of  R*, when W,/fVB = 0. 
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I 1  I I l l m l m l l l l , , ,  ,,,,,,,,,II I , 1 1 1 1  

Similarly Figure 5 plots Is/IB vs AL, for  the same values of R*, as obtained from Equation 5.2 when 
wT/wB is set equal to zero; that is, from 

AL, - t an  AL, - 2R* AL, t an  AL, tanh AL, - (R* Lo) * (t.anh AL, + t a n  AL,)] 

(hLo)3 (1 + sec  AL, sech  AL,) (5.6) 
I s  _ -  
IB - 

Making use of the fact that the solutions to Equation 5.2 a r e  virtually insensitive to changes in 
the parameter R* over the limits defined, Figures 6 and 7 plot WT/w, vs AL, as derived from Equa- 
tion 5.2 for the values of R* = 0.01 and R* = 0.10 respectively and the values of I& listed on 
the figure. These figures contain sufficient information to give accurate estimates of the first two 
values of XL, that satisfy Equation 5.2 for any system that can be modeled as discussed. The 
natural frequencies associated with the estimated values of AL, correspond to the first two modes 
of vibration for which the satellite body can rotate but not translate. For  the double-beam system 
these a r e  the first two antisymmetric modes of vibration. 

Aside from providing the information needed for solving both frequency equations, Figures 3 
through 7 along with Equation 5.4 provide quantitative and qualitative insight as to how changes in 
the system parameters will  change the system's natural frequencies. 

The range of Ws/W, values listed on Figure 3 shows that the root boundary conditions for the 
symmetric modes vary between zero satellite weight (guided root) and infinite satellite weight 
(clamped root). Similarly, the range of the ratio magnitudes listed on Figures 6 and 7 show that 
the root boundary conditions for the antisymmetric modes vary between zero satellite rotational 
inertia (hinged root) to infinite rotational inertia (clamped root) for each of the listed ratios R*. 

For both cases, the variation in the tip boundary conditions from zero tip weight (free tip) to in- 
finite tip weight (hinged tip) is illustrated by choosing wT/wB as the vertical axis of Figures 3, 6, 
and 7. 

Figure 8 gives a ready reference for the general solution of the frequency equations in the 
limiting cases mentioned above. The figure shows the schematic diagram of each l imithg case 
along with the solutions to its frequency equation. Reference 3 gives the solutions for these cases, 
also for cases corresponding to other common beam boundary conditions. 

Figures 3 through 7 and Equation 5.4 suggest the following observations: 

1. The solutions XL, of the frequency equations are independent of the bending stiffness EI . 
Thus the system's natural frequencies a r e  directly proportional to the square root of the bending 
stiffness. 

2. The solutions XL, of the frequency equations have nonlinear dependence on the boom weight 
W,. Thus a simple proportionality relation between boom length Lo or mass distribution p and the 
natural frequencies exists only in special cases. 
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Figure 6-Antisymmetric mode, 

W T N B  vs A L o  for different 

values of lS/lBlwhenR*=0.01. 
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Figure 7-Antisymmetric mode, 

W T h B  vs XL, for different 
values of ls/iB, when R*=0.10. 
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3. As  the satellite-to-beam-weight ratio (XLO)  m 
GUlDED ROOT 

m = l  m = 2  m = 3  m > 3  Ws/WB increases, the solution (AL,,) associated 
with the first symmetric mode of vibration ap- 
proaches the value that results from a clamped- 
root condition. Figure 3 shows that for Ws/WB 

greater than 100 and WT/WB less than 20 the root 
may be assumed clamped and the frequency 
associated with the first symmetric mode of 

4m-5 #-L GgF:D- 0 2.365 5.498 7 TI 

GUIDED- 2m- 1 
1.571 4.712 7.854 7 n H 

HINGED ROOT 

vibration is approximately that of a clamped 
4m-3 0 3.927 7.069 7 n beam with tip weight. p L o  HIYEED- 

3.142 6.283 9.425 m n 4. Figures 4 and 5 show that for satellites 
having a satellite-to-beam-length ratio R* in 
the interval CLAMPED ROOT 

4.694 7.855 2m-1 $-Lo CLtETD- 1.875 2 n  0 < R* 5 0.10 

CLAMPED - 4m t 1 HINGED 3-927 7.069 10*210 4 the solution ( A L ~ ) ,  associated with the first 

antisymmetric mode of vibration will  be es- 
sentially independent of the magnitude of R* 

for all inertia ratios I ~ / I ~  greater than 0.10. 
For the range 

(XLO): 

L O  
w, =- 2 q  

Figure 8-Natural frequencies of uniform beams wi th  
different boundary conditions. 

Is 
IB 
- < 0.10 

and 

0 .05  < R* < 0.10  , 

the quantity R* becomes a significant parameter in Equation 5.2. This situation implies that the 
satellite's rotational inertia is small compared with the boom's; at the same time, the boom cannot 
be extremely long compared with the length of the rigid satellite body (a situation approaching that 
of a physically unrealistic system). Thus, for most actual satellites, the magnitude of R* and 
hence the actual satellite body size wi l l  be of second order importance in predictions of the sys- 
tem's first antisymmetric modal frequency. 

5. Figures 6 and 7 show that as the satellite inertia-to-beam inertia ratio l./IB increases, 
the solution (Lo) associated with the first antisymmetric mode of vibration approaches the value 
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that results from the clamped-root condition defined by curve number 11 on both figures. The in- 
ertia ratio needed to effectively clamp the root and hence restrict  the rotational motion of the 
satellite body is extremely large and strongly dependent on the tip-to-beam-weight ratio wT/wB. 
For example, if WT/WB = 1, then the inertia ratio Is/IB must be greater than 50 for the root to be 
considered clamped. 

6 .  Comparing the values of (hLo)2 that define the asymptotes of the curves shown in Figures 
6 and 7 with the true values of the asymptotes given in Figure 4 shows that for every satellite 
having an inertia ratio Is/IB less than 5, a tip-to-beam-weight ratio can be found such that the 
system wil l  vibrate as if the system had infinitely heavy tip weights. For example, if  the inertia 
ratio of the satellite were less than 1, then the system would vibrate as if its tips were pinned in 
inertial space by infinitely heavy tip weights, for any WT/WB greater than 5. 

7. A s  wT/wB increases from 0 to 3, the solutions (XLo),, n = 3, 4, - + . of the frequency equa- 
tions, associated with the second and higher symmetric and antisymmetric modes, undergo a rapid 
decrease irrespective of satellite body weight, size, and rotational inertia. A s  WT/W, is increased 
beyond 3, (XLo), becomes insensitive to any further change and approaches the solution associated 
with the case of a hinged tip. Thus, if the tip-to-beam-weight ratio exceeds 3, the symmetric 
double-beam system will  have its tips effectively hinged in inertQ1 space for the third and all 
higher modes of vibration. 

6. DYNAMIC RESPONSE OF ATS-D 

The introduction stated that this paper would solve a particular problem: to determine 
whether the microthruster on ATS-D could excite a resonant response of sufficient magnitude to 
buckle the long elastic members (booms) attached to the spacecraft body. 

In order to introduce conservatism into the model and reduce the problem to a form com- 
patible with this analysis, we make some simplifying assumptions: 

1. The actual satellite deploying four booms with tip weights may be adequately approximated 
by the symmetric double-beam system. 

2. The microthruster acts normal to  the system at the point on the satellite body coincident 
with the point at which one of the beams is clamped. The intensity of the microthruster may be 
approximated by a periodic triangular wave having a rise time unequal to the decay time and a 
peak intensity of one micropound. 
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Let 

t ,  = rise time of triangular wave, sec, 

t 2  = period of triangular wave, sec, 

10-6 = one micropound, lb, 

6(x)  = Dirac Delta function. 

Then the actual applied force distribution F(x, t )  is described by 

F(x, t )  = S ( x - L - R )  f ( t )  , 

where, in the time interval 

f ( t )  = 10-6 -L for  0 5 t 5 t ,  
t l  

This force distribution is replaced in the analysis by the equivalent force system described by 
F, ( x ,  t )  and F, (x, t ) ;  that is: 

F l ( x , t )  = F , ( x ) f ( t )  = s ( L - x ) f ( t )  

F2 (x ,  t )  = F 2 ( x ) f ( t )  = [S(L+$-x) -S(L-$-x)]f(t) .  

(6.3) 

(6.4) 

where 

F, (x, t )  = force applied at the center of mass, 

F, ( x ,  t )  = couple applied about the center of mass. 

It follows from Equations 4.11, 4.12, and 6.2 that the Fourier coefficients described in Section 
4 are: 

bo = lo-' 

m = 1,2, . . .  (6.5) 
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and that the constants K, described by Equations 4.14, 4.14a, 6.3, and 6.4 are: 

n odd; symmetric modes: 

n even; antisymmetric modes: 

K n  = Y" '(L + +) - y ,  (i - +) ' 

3. The vibrational motion wil l  be damped by the internal friction of the boom material only 
and this is describable by a viscous-type damping term in the analysis. Reference 4 presents the 
results of experiments aimed at precisily defining the magnitude of the damping coefficient 5 for 
De Havilland-type booms. It may be concluded from this that worst-case-type results may be ob- 
tained by setting 

5 = 1 0 - ~  . (6.8) 

4. The adjusted geometric and physical parameters that describe the double-beam model of the 
four boom ATS-D satellite are assumed to be approximated by the magnitudes listed in Table 1. It 
must be noted that the mass distribution, bending stiffness, and tip weight of the beam are exactly 
twice the corresponding values for a single boom of the actual satellite system. 

Table 1 

Adjusted P a r a m e t e r s  for  Double-Beam Model of ATS-D. 

Symbol 

P 

E1 

LO 

W T  

ws 
I s  

R 

P a r a m e t e r  

Mass  distribution of boom 

Bending s t i f fness  of boom 

Boom length 

Radius of ATS 

Tip weight 

Weight of ATS (without booms and t ip  weights) 

Rotational inertia of ATS (without booms and tip weights) 

Value 

0.8125 x slugs ft-' 

26 l b s  f t2  

123.5 f t  

2 f t  

16 l b  

641.4 Ib 

76.9 slugs f t  

To give accurate values of the first  n natural frequencies of the double-beam system, Equa- 
tions 5.1 and 5.2 must be solved numerically. It wil l  be recalled that Equation 5.1 is the frequency 
equation for the symmetric modes and that Equation 5.2 is the frequency equation for the antisym- 
metric modes. 

Table 2 l ists  the first ten values of AL, that satisfy these equations. The odd-numbered values 
correspond to the solutions to Equation 5.1, and the even-numbered values correspond to the solutions 
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Table 2 

First Ten Natural Frequencies of ATS-D. 

( a o )  n 
(radian) 

(ALo) , 0.88243 

(ALo), 2.8137 

(Lo), 3.9815 

( A L ~ ) ,  4.6516 

(ALo) 7.1223 

(hLo), 7.2675 

(ALo), 10.2635 

(ALo) 10.3144 

(ALo), 13.4048 

(ALo)lo 13.4291 

% 
(radian sec -1) 

a, 0.009133 

w 2  0.09285 

w 3  0.18592 

w4 0.25378 

us 0.59495 

w6 0.61945 

w, 1.2355 

w8 1.2477 

uQ 2.1075 

w l 0  2.1151 

T n  
(set) 

T, 687.99 

T, 67.670 

T, 33.794 

T, 24.759 

T, 10.561 

T, 10.143 

T, 5.0857 

T, 5.0356 

T, 2.9814 

TI, 2.9706 

NATURAL PERIOD = 687.990 SECONDS 

251 FT 'I\ -- - OO 
ATS 

POSITION x ( f t )  

Figure 9-First symmetric mode of AT5 system 
described in Table 1. 

NATURAL PERIOD=10.561 SECONDS 

to Equation 5.2. The table also lists the modal 
frequency and period associated with each solu- 
tion (AL,,), . 

Both the symmetric and antisymmetric 
mode shapes of the entire system can be gen- 
erated by using the values of (AL,,), listed in 
Table 2 and the other quantities given in Table 1. 

Figures 9 through 13 plot the normalized 
displacement y, (x) vs the position coordinate x 
for the first  five symmetric modes. The equa- 
tions used to define these mode shapes a r e  ob- 
tained by evaluating Equation2.23 for those A L t s  

with odd subscripts listed in Table 2, applying 
the construction rules given by Equations 3.1, 
and normalizing according to Equation 3.3. 

NATURAL PERIOD = 33.794 SECONDS 21 

Figure 10-Second symmetric mode of AT5 system 
described in Table 1. 

x NATURAL PERIOD = 5.086 SECONDS 

Figure 1 1  -Third symmetric mode of AT5 system 
described in Table 1. 

Figure 12-Fourth symmetric mode of AT5 system 
described in  Table 1. 
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Figures 14 through 18 plot the normalized 
displacement y, (x) v s  position coordinate x for 5 
the first five antisymmetric modes. The equa- x 

tained by evaluating Equation 2.27 for those 
XL, ' s  with even subscripts listed in Table 2, ap- 
plying the construction rules given by Equation 
3.2, and normalizing according to Equation 3.3. 

Besides the mode shapes of the system, it 
is also possible to generate equations that de- 
fine the normalized curvature of every point 
along each mode shape. This may be done by 

h 

NATURAL PERIOD =2.981 SECONDS 

tions used to define these mode shapes a r e  ob- 

8 251 FT 

POSITION x ( f t )  

Figure 13-Fifth symmetric mode of  ATS system 
described in  Table 1 .  

NATURAL PERIOD=67.670 SECONDS NATURAL PERIOD = 24.759 SECONDS 

Figure 14-First antisymmetric mode of ATS system 
described in Table 1. 

Figure 15-Second antisymmetric mode of ATS system 
described in Table 1 .  

NATURAL PERIOD=10.143 SECONDS 

Y * ( X )  

NATURAL PERIOD=5.036 SECONDS 

Z 

Figure 16-Third antisymmetric mode of ATS system 
described in  Table 1. 

Figure 17-Fourth antisymmetric mode of ATS system 
described in  Table 1. 
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substituting the values of c,, determined from the normalization of y, (x)  in Equation 2.21 or 2.25 
to determine C2,, C3,, and C,, . These normalized constants can then be substituted in Equation 
3.4 to give an expression for y; ( z ) .  This resulting expression can be substituted in Equation 3.1 

or 3.2, depending on whether n is odd or even, 
respectively, t o  construct y,' ( x ) ,  the normalized 
curvature of the nth mode. 

Figures 19 through 23 plot the normalized 
curvature y," (x) of the first five symmetric 
modes of the system (n odd) vs  position coor- 
dinate x. 

h 

Figures 24 through 28 plot the normalized 
curvature y," (x) of the first five antisymmetric 

X modes of the system (n even) vs position coor- 
( f t )  

dinate X. 
Figure 18-Fifth antisymmetric mode of ATS system 

described i n  Table 1. 

t 

Figure 19-Curvature of first symmetric mode. 

4 

FT 

Figure 20-Curvature of second symmetric mode. 

FT 

Figure 21-Curvature of  third symmetric mode. Figure 22-Curvature of  fourth symmetric mode. 
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- t  

Figure 23-Curvature o f  fifth symmetric mode. 

Figure 25-Curvature of second antisymmetric mode. 

I 

F1 

Figure 27-Curvature of fourth antisymmetric mode. 

0.7571 x 10-’FT - 2  

POSITION x ( f t )  251 FT 

Figure 24-Curvature of first antisymmetric mode. 

4 

Figure 26-Curvature of third antisymmetric mode. 

t 
2 1 0.2367 FT- ’  
- 0  
-c x 

Figure 28-Curvature of  fifth antisymmetric mode. 
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From Figures 9 through 28, the following observations can be made concerning the possible 
effects of vibrational motion on the ATS-D system: 

1. Figures 9 through 18 show that the satellite body and tip weights will be essentially pinned 
in inertial space for all modes of vibration except the first symmetric mode. 

2. Figures 14, 15, and 16 show that if any one of the first three antisymmetric modes of vibra- 
tion are excited, the rotational inertia of the satellite body is not large enough to prevent significant 
rotational motion of the body about the center of mass. 

3. For all modes of oscillation except the first antisymmetric mode, the peak curvature and 
hence the peak bending moment wil l  exist at the boom's root. 
(see Figure 24) the point of peak curvature will  occur at a point 45 feet from the root. The curva- 
ture at this point will  be about 1.5 times the curvature at the root. 

For the first  antisymmetric mode 

The object of this example is to determine whether the viscoelastic damping of the boom ma- 
terial itself can prevent the bending moment at any point along the boom from exceeding i ts  criti- 
cal  buckling moment when the system is excited at a resonant frequency. 

This may be done by directly comparing the critical buckling moment and peak bending moment 
of the system for each excitation frequency under study. We can avoid evaluating the complete ex- 
pression defining the peak bending moment, 

maxmaxEIY"(x,  t )  = maxmaxEI (6.9) 
X t  X t  

n = l  

by using the following fact: when the system is excited by the triangular wave whose period equals 
one of the natural periods of the system, the major contribution to the resultant bending moment at 
any point is associated with the particular mode excited at resonance. 

Thus, when-the excitation period t ,  defined in Equation 6.2 is given by 

2n 
wn t 2  = - 

and the r ise  time t is given by 

the peak bending moment is approximated by the expression 

max max E1 Y "  (x, t )  = maxmax E1 a, ( t )  y," ( x )  
X t  X t  

(6.10) 

(6.11) 

(6.12) 
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It will be recalled that for all modes of vibration except the first antisymmetric (n = 2) the 
peak curvature is at the boom root; i. e., at x = L f R, and that 

where, for n = 2, the peak curvature is 1.5 times 

t called for in Equation 6.14 can be performed 
by directly substituting Equations 6.3 through 
6.8 in Equation 4.22 and computing the maxi- 
mum value of an ( t  )ST in the interval 0 5 t 5 t 2 .  

- 
n 

the curvature at the root. The maximization on t 
1 6 ’  

$ 
0 r 
(3 10-2 

n 
The points marked on Figure 29 show what $ 

the contribution to the peak bending moment at c: 10-3 

the boom root would befor each mode i f  it were .> 
excited at i ts  natural period. That is, for the z 

v 

E 10-4 
m 
Y 

excitation frequency - 

Therefore, by applying this fact the maximization on x called for in Equation 6.12 can be per- 
formed. This leads to the expression 

S, =nth SYMMETRIC MODE 
AS, =nth ANTISYMMETRIC MODE - S I  

! 
- 

- AS1 
- 8  

AT POINT 45 FT FROM BOOM ROOT 

8 @AS2 
-AS,, 

RISE TIME = 1 /3  PERIOD 
PEAK INTENSITY = 1 MICROPOUND 

t s  3 

;Z AS4 
8 

for  n # 2 ,  

max maxEI Y ”  ( x ,  t )  
for n = 2 ,  

X t  

(6.14) 

max maxEI an ( t )  yn” ( x )  
x t  

Figure 29-Peak bending moment contribution at boom 
root from each mode for a triangular forcing function 
having a frequency equal to natural frequency. can be ascertained from the vertical scale. 

Thus, even if the damping ratio w e r e  as low as and the microthruster did excite a reso- 
nant frequency, the critical buckling moment-which is about one ft-lb-would not be exceeded. 

SUMMARY 

The equations developed herein may be applied to any satellite having long elastic members 
that can be modeled as a symmetric double-beam system, as shown in Figure 1. The following is 
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a summary of the equations and the conclusions that can be drawn by a close examination of them 
and the figures. 

1. Because of the system's symmetry, the normalized modes of vibration can be separated 
into two groups: symmetric and antisymmetric, respectively, about the system's axis of symmetry. 
Equations 5.1 and 5.2 are the frequency equations of' the symmetric and antisymmetric modes, 
respectively. 

2. The frequency equations a r e  written in t e rms  of the dimensionless parameters: 

(a) 

(b) 

wT/wB = ratio of tip to beam weight 

R L ,  = ratio of satellite body radius to  beam length 

(c) 

(d) 

Rrs/\VB = ratio of satellite body to beam weight 

I~/I, = ratio of satellite body to beam inertia 

The natural frequencies of the system may be determined with slide-rule accuracy by simply 
defining the above parameters and interpolating between the appropriate curves on Figures 3, 6 
and 7. 

3. The following conclusions may be drawn from Equations 5.1 and 5.2 and the corresponding 
figures. 

(a) For w w, > 100 and w w, < 20, the frequency associated with the first symmetric mode ./ T/ 
of vibration is approximately that of a clamped beam with tip weight. 

(b) For IS,/1, > 0.1, 0 < R L ,  5 0.1 and 0 s W T / W ,  5 a, the frequency associated with the first 
antisymmetric mode of vibration is approximately independent of R L , .  

(c) For Is/IB < 0.1, 0.05 < R L ,  < 0.1, and 0 (WT/W, <*, the quantity RL,becomes a signifi- 
cant parameter in the prediction of the first antisymmetric modal frequency. 

(d) For IS/1, > 250 and w,/w, < 30, the frequency associated with the first antisymmetric 
mode of vibration is approximately that of a clamped beam with tip weight. 

(e) For Is/IB < 5 and WT/WB > 10, the frequency associated with the first antisymmetric 
mode of vibration is approximately that of a similar system having i ts  tips hinged in 
inertial space. 

(f) For w w, > 3, all higher symmetric and antisymmetric modes of vibration can be ap- 
proximated by a similar system having its tips hinged in inertial space. 

T/ 

4. The equations defining the symmetric and antisymmetric mode shapes a r e  developed i n  
t e rms  of dimensionless parameters and are given by Equations 3.1 and 3.2. 
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5. The equations defining both the transient and the steady-state response of the system in 
t e r m s  of its normal modes of vibration are derived for an arbitrary force distribution of periodic 
intensity. These Equations are 4.17, 4.18, and 4.22. 

Goddard Space Flight Center 
National Aeronautics and Space Administration 

Greenbelt, Maryland, February 5, 1968 
630-12-02-01-5 1 
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Appendix A 

Symbol l is t  

a" ( t >  time-dependent generalized displacement coordinate associated with the nth mode, ft. 

b m  mth Fourier cosine coefficient. 

C,, C, , c,, C, constants of integration. 

d m  mth Fourier sine coefficient. 

E I ( x )  bending stiffness at X, lb ft ,. 
E1 bending stiffness along length of elastic beam, lb  ft'. 

F(x ,  t )  force distribution at (x, t ) ,  lb ft- ' .  

F, ( X ,  t )  F,  ( x )  f ( t )  force distribution of periodic intensity that is symmetric about the sys- 
tem's axis of symmetry and excites only the symmetric modes of vibration, lb  ft-I. 

F, ( x )  f ( t )  force distribution of periodic intensity that is antisymmetric about the 
system's axis of symmetry and excites only the antisymmetric modes of vibration, 
lb f t - I  . 

F, (x. t )  

2L 

LO 

MT 

m, n 

2R 

2R* 

acceleration of gravity, f t  sec-2.  

mass moment of inertia of a beam of length 2 L 0  about an axis normal to the length 
arid passing through its  centroid, slugs f t 2 .  

mass moment of inertia of rigid satellite body (without beams and tip weights) about 
the axis through the center of mass and normal to the plane of vibration, slugs f t 2 .  

length of entire system, ft. 

length of one beam, ft. 

total mass of entire system, slugs. 

integers 0, 1, 2 - - 
total length of rigid satellite body, ft. 

normalized length of rigid satellite body. 
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t time, sec. 

W *  
S 

X 

Y ( x ,  t >  

Z 

P ( x >  

a 

8n, m 

P ( X >  

P 

‘n 

5 

‘n 

G’ 
n 

e 

rise time of triangular wave, sec. 

period of triangular wave, sec. 

weight of single beam without tip weight. 

tip weight, lb. 

weight of rigid satellite body (without beams and tip weights), lb. 

effective inertia weight of satellite body, lb. 

position coordinate measured positive from the beam tip, ft. 

nth normalized mode of the undamped unforced equations of motion of the entire 
system. 

nth mode of the undamped unforced equation of motion of one beam, used to con- 
struct yn (x). 

transverse displacement at (x, t ), ft. 

position coordinate defined over flexible portion of one beam, ft. 

viscous damping coefficient at x, lb sec f t -2 .  

viscous damping coefficient of the beams alone, lb sec f t  2. 

Dirac Delta function. 

Kronecker Delta function. 

mass  distribution of the satellite beam system at x, slugs ft- l .  

mass  distribution along the beam, slugs f t - l .  

damping ratio associated with the nth mode. 

damping ratio measured experimentally. 

nth eigenvalue of the defined eigenvalue problem. 

n t h  natural frequency of system. 

frequency of applied force-distribution. 

inverse of the time constant associated with the nth mode of vibration. 

damped natural frequency of the th mode of vibration. 
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