- DRKE

NASA CONTRACTOR NASA CR-61226
REPORT

June 14, 19€8

NASA CR-61226

WORLD-WIDE CLOUD COVER DISTRIBUTION FOR USE
IN COMPUTER SIMULATIONS

Prepared under Contract No. NAS 8-21040 by
Paul E. Sherr, Arnold H. Glasen, James C. Barnes
and James H. Willand

ALLIED RESEARCH ASSOCIATES, INC.

GPO PRICE  $

.00
— i

CSFTI PRICES) $

Hard copy (HC)
Microfiche (MF)
# 653 July 85

For

NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER
Huntsvjlle, Alabama _

—H502 282

PAGE)
- 20
NUMS [CATEGORY)

PACILITY FORM 602

g
-3
Pet




June 14, 1968 NASA CR-61226

WORLD-WIDE CLOUD COVER DISTRIBUTION
FOR USE IN COMPUTER SIMULATIONS

By

Paul E, Sherr, Arnold 4, Glasen,
James C. Barnes, and James H, Willand

(Report dated January 18, 1967 - January 17, 1768)
(Final Report)

Prepared under Contract No. NAS 8-21040 by
ALLIED RESEARCH ASSOCIATES, INC.
Virginia Road
Concord, Massachusetts

For

Aero-Astrodynamics Laboratory

Distribution of this report i~ provided in the interest of
information exchange. Responsibility for the contents
resides in the author or orgunication that prepared it.

NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER




PREFACE

This cloud cover study is the only known work designed especially
for earth oriented space missions. Being a first effort, the conditioned
statistics ave particularly weak in some cases; however, judicious use of
the study should produce reasonable results,

It must be emphasized that these data should not be used for pur-
poses other than those for which they were designed. 1In particular. the
statistics should not be used for detailed cloud climatologies for
specific locations.

The research described in this report was performed by the Geophysics
Division of Allied Research Associates, Inc, under sponsorship of the
George C. Marshall Space Flight Center, Aerospace Envirommental Division
of the National Aeronautics and Space Admiunistration.

The authors wish to acknowledge the assistance of Messrs. S. Clark
Brown, O. E. Smith and William Vaughan of Marshall throughout the per-
formance of this study.

We also wish to express our thanks to Mr. C. William Rogers for his
analysis in the selection of prototype stations for each region, and to
Mr. James Pike for his assistance in the preparation of this report.
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ABSTRACT

Probability distributions for world-wide c¢loud cover have been pre-
pared for use in the simulation of earth-oriented observations from space. »
Five cloud groups, including one for clear and one for overcast skies,
are presented for 29 cloud climatological regions, for eight times of
day and for each month of the year. 1In addition, conditional distribu-
tions were prepared to represent the temporal and spatial conditionality
of the cloud cover 24 hours later or 200 nm away. These data are con-
tained on 1740 punched cards. An additional 140 cards define the mar
regions in latitude/longitude coordinates.

Marked changes in the cloud cover distributions corresponding to
changes in the sampled area size are demonstrated. Techniques are pre-
sented to allow the ground observations (representing approximately a
30 nm circular area) to be transferred into distributions representing
enlarged sample areas. Mathematical procedures are also presented to
scale the conditional distributions to other timec and distances.

Engineering and simulation applications of the cloud data bank are
discussed, and twc examples are given. One example demonstrates a Monte
Carlo approach for establishing the sighting probability of a given set
of landmarks. The other example uses an analytical approach to deter- )
mine probable cumulative area coverages for a photographic mission using
N orbital passes.

Printouts of the data, discussions of the data collection effort,
and suggested subroutines for using the data are presented in the
appendices. i ’
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1. INTRODUCTION

Cloud cover is a significant operational element in all earth-oriented space
experiments. The experimental success fcr many space missions is almost wholly
dependent on the amount of obscuriag cioudiness and on the operational procedures
adopted to cope with it. Future earth-oriented experiments, especially those con-
cerned with multiband synoptic photography, multichannel radiometry, infrared
spectroscopy, and laser systems are all known to be extremely sensitive to the
earth's cloud cover. In addition, proposed passive micrcwave systems are prob-
ably affected by certain cloud covers and certainly by rainfall intensities greater
than 3 few millimeters per hour.

To perform proper mission analysis and simulation during the planning of
future missions, and to determine the probable success of already planned earth-
oriented space missions, statistical data on world-wide cloud distributions are
required. These cloud statistics musi be in a form that permits their easy use in

& computer sabroutine in mission analysis or simulation computer programs.
1.1 Objectives

The basic objective of the study reported in this document was the creation of
a master file of tabulated cloud statistics and cloud distributions on a world-wide
basis. A rea:irement was that these statistics be tabulated and made available either
on IBM punched cards or magnetic tape such that statistical analyses of cloud amounts
could sasily Le performed for monthly, seasonal, and annual reference periods for
selected stai:.ons on the earth.

In addition, conditional statistics have been generated to take adequate ac-
count of the time and space dependence of the cloud regime at one point on that of
anothe~ point which is nearby in either space or time. The tabulated statistics
must include provisions for taking account of the diurnal variation in cloud cover
throughout the day and night.

Several secondary objectives are also apparent. For example, a comparative
analysis is desirable to determine the relationship between cloud cover as it might

be viewed from a satellite versus that observed from the ground, so that the probability
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that the earth's surface can be observed from a satellite can be inferred from ground-
observed data. An engineering interpretation of the tabulated cloud statistics and
cloud distributions in te rms of requirements for an earth satellite sensor operation
should be performed as 2 demonstration of the use and validity of the tabulated
statistics.

Several guidelines were provided in the contractual statement. These included
the following:

1. A mini.num number of stations should be selected for the purpose of
characterizing the monthly, seasonal, and annual distributions of cloud types for
selected regions which typify the diverse cloud types and frequenciesr.

2. The statistical data will be drawn from existing records, where possible.
and extrapolated, interpolated and evaluated for appropriate areas over the earth.

3. Day-night and monthly reference periods inay be feasible.

In addition to these stated guidelines, it became cbvious early in the perfor-
mance of the work that much could be gained from tr;ps to NASA centers and to var-
ious NASA contractors to determine requirements for cloud cover data in current
missior planning and simuletio.. endeavors. This task has been included as a re-

quirement and objective ot the contract.
1.2 Specific Tasks

Certain specific tasks were involved in meeting the objectives. Five major
tasks were defined. These included: (1) the definition of homogeneous cloud climatic
regions; (2) the survey and collection of appropriate conventional and satellite cloud
statistics; (3) the definition of mission simulation requirements; (4) the data tabula-
tion; and (5) the assessment of engineering applications with a validation or test of
the tabulated statistical data.

In the first task, earlier work on cloud climatology was reviewed to assess
whether large-scale homogenous cloud regions could be defined such that the statistics
from a single station within the region would adequately represent the entire region.
This task led to the selection of 29 regions to represent the world-wide cloud clima-
tology.

The second task was to survey and collect data to validate and establish that
the regions did indeed represent homogenous cloud climatological regions. It was
also necessary to determine whether representative data of sufficient record length

could be obtained for all the chosen climatic regions. Where such conventional
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cloud climatological data did not exist, procedures for suitably synthesizing the data
had to be established. In addition, it was determined that the cloud climates of certain
Southern Hemisphere regions were replicated by a seasonal re;rersal of Northern
Hemisphere stations, and that such Northern Hemisphere stations had a more reliable
data base than any of the stations within the given Southern Hemisphere regions. In
particular, many Southern Hemisphere stations had periods of record shorter than
five years and many had only daylight observations.

During the mission simulation requirements definition study, effort was con-
centrated on visiting contractors and NASA centers directly involved in the simulation
of manned and unmanned earth-oriented experiments from space. As a result of thesc
visits, the simulation requirements for cloud cover data were established and a cloud
model was defined. Data formats were defined and certain procedures for daca
manipulation were also developed. These data manipulation techniques principally
involve the requirement for varied sampling area size associated with different
sensors and different orbital heights. It was determined that cloud cover distributions
are very dependent on viewed area size and thus some provision had to be made to
allow the proper cloud cover probability distributior to be derived depending upon
the viewed area size requirement. It was determined that ccnditional statistics for

points near in time or distance to an initial point were also required.
1.3 Data Types

As indicated in the tasks outlined above, we have assembled two types of
cloud cover data for use in computer simulations. Unconditional cloud cover statis-
tics are frequency distributions of fractions of the sky covered, expressed in per-
cent frequency. Because the diurnal and annual variations of cloud cover are im-
portant in maost regions, the unconditional data are stratified or subdivided into
distributions for each month and for 3-hour intervals throughout the day.

Conditional distributions are required for many potential applicetions of the
data. These answer questions like, "What is the probability that the cloud cover over
a certain area is 10/10 if it has already been observed that the cloud cover over a
similar area 200 miles away is 10/10?" This probability iv clearly higher than the
unconditional probability of 10/10 at either point. We have assembled estimates of
statistics from which such conditional probabilities can be generated, both in the
space and time domains. Insufficient data were available to stratify these by time
of day. A seasonal stratification has been provided.

Later sections of this report will elaborate on the nature and uses of these
two types of statistics.

A, £ STk A s o4 o
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Z. REQUIREMENTS FOR CLOUD DATA

Nearly all earth-oriented ex.periments from space, whether they be photo-
graphic, manned sightings, or experiments using other electromagnetic sensors,
are cloud sensilive to some degree. For example, if an experiment involves use
of a camera-bearing orbiting platform as a means of photographing a specific area
of the world to determine growth of some particular crop, the mission must operate
during a particular season or month and svcceed in photographing the desired area
through cloudless skies. It may be possible to accept a photographic montage of the
required area made up of pieces taken on a2 number of successive orbital passes
some time apart; here the aniount of film that must be expended to assure coverage
becomes important, along with the e’apsed time between adjacent pictorial segments.
Since space experiments are necessarily expensive and require a great deal
of planning and operational control, computer simulation has become common. These
simulations permit organization of orbits, communications, power profiles, and time
lines for the conduct of experiments and of multi-experiment raissions. Many simu-
lation programs permit the inclusion of contingencies on a statistical or Monte Carlo
basis. The presence of cloud over a ground target represents a contingency of more
frequent occurrence than most; however, the incorporation of the cloud cover con-
tingency has had to await the generation of suitable statistics and suitable procedures.
The present study represents a first effort to provide an adequate set of data and
procedures.

2.1 Simulation Requirements

Computer simulation may be used for a variety of purposes. A number of
gereric examples are described below.

2.1.1 Experiment Feasibility

Once the feasibility of senscrs and asscciated equipment is established, it
still remains to be demonstrated that experimental objectives have a reasonabl.
chance of success in the real cloudy world. It is not sufficient to know that the earth
is about 45% cloud covered if the sensing system requires a cloud-free area of con-
siderable size; far fewer than 55% of ca.:didate targets will be cloud free, and those
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that qualify will tend to cluster in a few climatologically cloud.free areas. Deter-
mination of the number and area distribution of such cloud-free areas to be encountered
on the mission, and the statistical variabilily of that number, requires the applica-

tion of suitably orgarized cloud statistics. (A sample solution is given in Section 9.2

of this report.)
2.1.2 Experiment Equipment Design

If the results of feasibility determination appear favorable, it is next desirable
to specif, appropriate features of the experimental equipment in such fashion that the
experimental return is maximized. Continuing our example of the experiment requiring
a large clear area, it may be desired to choose the activation of the experiment by:
(i) an onboard time:, operating at regular intervals w ithout consideration of the cloud
field; (2) a controlier programmed to activate the experimrent at certain specific times
derived from forecasts based on independently acquired meteorological satellite data;
(3) an optical cloud sensor that activates the experiment when conditions are right;

(4) ar astronaut, alarted by forecast, using optical gear to identify and verify freedom
from cloud. A cost-performance trade-off analysis would have to consider that
aiternatives (1) and (2) require some means of determining that the field of view was
in fact cloud free if it is not obvious frorn the data themselves. Alternative (3) may
be unsuitable if the sensor threshold results in experiment activation under the mar-
ginal conditions that would be encountered just before the spacecraft moves cover a
truly clear area. Here the question becomes one cf establishing a suitable delay to
maximize the probability of success.

It ie clear that the alternatives have been listed in order of prcbable cost and
of probable yield of good data. Cost effectiveness can only be judged by actual
simulation of the performance of the experiment in each mode. '

2.1.3 Experiment Time line Preliminary Profiles (looking at one
experiment at a time)

Contiruing the example of the experiment requiring a large cloud-free area,
let us assume that alternative (4), requiring astronaut attention for each execution,
has been tentatively chosen. As a first approach to mission planning, simulating the.
performance of this experiment as if it did not compete for astronaut attention can

give a clear idea of frequency and duration of calls for attention and of the interaction
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betw een the astronaut's physical capabilities and experiment performance. A pos-
sible outcome of this situation would be a decis’on to rewurn to alternative (2) with

a capability for astronaut override when he is available.

2.1.4 Experiment Integration (time line profiles looking at many
instruments which comprise a single mission)

Some spacecraft systems, notably manned missions, mwust be organized so
that not all experiments can be operated simultaneously. This restriction may result
from mutual interference, peak power restrictions, limitation of on-board recording,
telemetry capacity, or simply competition for attention of astronauts or ground con-
trollers. A part of experiment integration then involves the establishment of time
line rules which permit reasonable data yields while conforming to all constraints.

A first approach might be to establish a set of fixed time lines that obey the constraints
and then by simulation to evaluate the data return expected; if satisfactory, the time
lines can stand. A more sophisticated approach, certainly essential in manned mis-
sions, is by szzmulation to evolve a set of objective techniques for the day-by-day or
orbit-by-orbit construction of time lines based on cbservation and /or prediction of
cloud cover. The data return from such fluid time lines is likely to be materially
greater than from a more rigid system. The requirement for suitable cloud statistics

in either case is self-ohvious.

2.1.5 Mission Analysis and Optimization (this includes such items as
logistics, data handling, sleep cycles, communications, integration
with other contingencies, fuel stores, etc.)

The final synthesis of a manned mission occurs tu:ough the "mission simula-
tion program' or a hierarchy of such programs. It is here that required adjustments
can be made to make the mission reach its objectives within the constraints of saftey,
payload, and the other system limitations. The complexity of such programs suggests
that cloud-contingent elements be simulated on a sampled basis rather than through-

out the mission. If possible, the results of the time iine generator should be included.
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2.1.6 Dynamic Programming (the resal-time reprogramming of future
mission activities based on cumulative mission accomplishmert,
current status,sand a simulation of future activities to determine
the optimum program)

A truly sophisticated mission simulation pregram will include simulation of
dynamic programming. At any given point in the mission, the different experiments
will have satisfied various fractions of their mission objectives as a result of cloud
and other contingencies encountered. Simulation of the remainder of the mission can
lead to an optimized strategy to maximize the total mission achievement. The same
set of strategies can then be transferred to the real tin.e dynamic programming of
the mission. Here, a mixture of short-range forecast and cloud climatology provides
the cloud background for simulation.

Simulation thus can be seen to require a set of cloud climatological data of
fairly universal application. While other uncertainties in simulation preclude the
necessity of extreme accuracy, the climatological data should have at least the fol-

lowing properties:

1. Provide global coverage

2. Provide cloud cover distributions in a readily useable, standard form

3. Give distributions by season, time of day, an” some readily defined
climatological region or grid

4. Provide expression of the spatial and temporal coherence of cloud
cover

5. Provide for the expression of cloud cover distributions on a variety

of scales of observation.
2. 2 Design Objectives

The design objectives of the study discussed ia this report were the prepara-
tion of a set of cloud statistics, on a world wide basis, for use in simulation of
earth oriented experiments. To accomplish these objectives, we have performed
a statistical analysis of cloud amounts for monthly, seasonal and annual reference
periods, tc- various times of day, for selected stations which typify the various
cloud types and frequencies over the glcbe. 1n addition to the task of assembly of
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such a bank of statistical data, we have also collected for each of the selected cloud
climatological regions a set of both time and space conditional probabilities. Pre-
liminary techniques for modifying these distributions for variable distances, times,

and scales have been established.
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3. DESIGN OF CLOUD CLIMATOLOGICAL REGIONS

The practical use of cloud statistics in computer simulation routines dictates
the subdivieion of the earth into nominally homogeneous cloud climatic regions. The
number of such regions is arbitrarily set by consideration cf the data volume that
must be handled by the computer and by the amount of suitable data available to us.
Since tabulations are required of the diurnal variation of cloud cover, of spatial con-
ditional cloud distributions, and of temporal conditional distributions, the number of
regions was kept relatively small.

This section describes how 29 regions were defined from standard climatol-
ogy. This information was obtained from general cloud summaries, both conven-

tional and satellite observations, and cloud data from selected siations.
3.1 Climatological Systems and Cloud Cover Information Used

3.1.1 Standard Climatological Classification Systems:

—
.

"Clirnatic Types of the Earth, ' after K&ppen, (Haurwitz and Austin, (1944)).
. 2. '""Climates of the Earth," Trewartha (1943).

"Distribucion of the PrincipaI'CIimates of the Earth,' Thornthwaite (1941).

(2

3.1.2 General Cloud Summaries:

1. '"Mean Monthly Cloudiness in Percentage of Sky Cover,' (based on con-
ventional data). Landsberg (1945).

2. '"Global Cloud Cover for Seasons,' (based on satellite data), Clapp (1964).

3. '"Northern Hemisphere Monihly Cloud Charts, ' (based on all available
data), USAF -ETAC (1967).

4. '"Analysis of Mean Cloud Amounts for 1ll Landmarks, Winter and Summer
Seasons,' (based on satellite data), Barnes, et al (1967).

5. '"Average Monthly Cloud Cover for the Global Tropics,' (based on satel-

lite data), Sadler (1966).

11




3.1.3 Cloud Data for Individual Stations

1. '"Mean Sky Cover, Sunrise to Sunset, Monthly and Annual, for the United
States,'' (based on conventional data), United States Weather “ureau (Office of Clima-
tology, 1961).

2. "The Annual and Diurnal Variations of Cloud Amounts and Cloud Types
at Six Arizona Cities, ' (based on conventional data), Sellers {195&).

3. ‘'Mean Monthly Cloud Cover Over the USSR, ' (basad on conventional data),
Elliott (1960).

4, '"Uniform Summary of Surface Weather Observa‘.ons, '' for selected sta-

tions (conventional data summaries), National Weather Records Center.
3.2 Design Proceduares

The procedures employed in the design of the cloud climatological regions

are summarized below:

1. The climatological classification system of K8ppen was transposed to a
~ large base map of the earth.

2. Climatological boundaries determined by criteria based orn temperature

alone were deleted.

3. Over land areas, the regions were redrawn to conform mcre closely with
the systems designed by Trewartha and Thornthwaite. These systems are some-
what simpler than K8ppen's, and the Thornthwaite system is bassd more strongly on
precipitation differences, which would be related (at least to -ume degree) with

i cloudiness. The Kbdppen system was the only one extending over ocean areas.

) 4. Boundaries of the initial map, based on the above general climatological

¢
B
»
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considerations, were redrawn with reference to world-wide maps of mean monthly
cloud amounts.

5. Further modifications were made in tropical areas, based primarily on
the satellite observations summarized by Sadler. Sin-e conventional data are par-
ticularly sparse throughout the extensive trcpical ocean areas, the climatclogical
regions were redrawn to conform closely with those derived from the satellite Cata.
These regions were derived from mean monthly cloud amount charts by differen-
tiating regions with considerable, moderate, and little cloudiness throughout the

year, and regions with various magnitudes of seascnal change in cloud amount.
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6. Similar but less extensive modifications were made in extratropical areas,
based on the ETAC cloud summaries. Seasonal distributions of mean monthly cloud
amounts were ploited for several grid points in areas where climatological region
boundaries were uncertain. From comparisons between these distributions, the
boundaries were redrawn.

7. Final adjusaments to the climatological region boundaries were made in
selected areas from comparisons of the seasonal distributions of mean montnly
cloud amounts for individual stations. For example, the design of the regions within
the United States was completed in this way.

8. To facilitate computer programming, the climatological region map was
adjusted to consist of straight line boundaries, falling on even degrees of latitude
and longitude. The resulting regionalization is shown in Figure 3-1.

9. Predominant cloud types and estimated diurnal cloud amount distributions,
based on general climatological conside.ations, were assigned to each region.

10. The cloud climatological regions were numbered consecutively from 01
through 29. As scen 1n rigure 3-1, most regions are repeated two or more times
throughout the world.

For the interested reader, eack of these procedures are discussed in some

detail in the paragraphs below.
3.2.1 Use of Standard Climatological Classification Systems

The initial procedure in the design of the climatological regions was the pre-
paration of a preliminary climatological map based on the standard classiiication
systems. A combination of the Trewartha (1943) and Thornthwaite {(1941) systems
was used over land areas; Koppen's more complex system (Haurwitz and Austin, 1944)
provided the only information over the oceans. The Thornthwaite system is based
more strorgly than the others on precipitation differences, and so is more applicable
to the design of a cloud climatology. In any case, classifications based on-tempera-

ture differences alone were disregarded.
3.2.2 Modifications Based on Cloud Cover Information
The preliminary climatological map was modified tiirough information pro-

vided by existing cloud amount summaries, based both on converntional and satellite

data. These modifications were limited, in general, to the area between 60°N and
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6005, the area of primary interest, Furthermore, few cloud data were available from
the polar regions. World-wide charts of mean monthly cloud amounts, prepared by
Landsberg (1945), and seasonal charts from Clapp {1964), were used as references.
Further modifications in tropical areas were derived from Sadler's data (Sadler, 1966)
and in extratropical areas from the ETAC (USAF, 1967) data. Detailed studies over
limited areas‘ {Office of Climatology, 1961), (Sellers, 1958), (Elliot, 1960) and data
summaries for individual stations provided the information for final adjustment of
boundaries.

Due to the large amount of ocean in tropical areas, cloud summaries based
on conventional data are of limited value. Therefore, the design of the climatological
regions in tropical areas was based primarily on satellite-observed clcudiness, as
studied by Sadler (1966). Results of the study by Barnes, et al (1967) were also
referred to in cpecific areas.

Sadler determined the mean cloud cover for each 2-1/2° block between 30°N
and-30°S frora once per day satellite observations from May 1966 through February
1967. The cloud amounts were extracted from nephanalyses, and since TIROS data
were used for the earlier months, complete daily global coverage was seldom avail-
able. Mean monthly cloud amounts for each block were computed from the daily
values. In the design of the climatological regions, global analyses of these mean
monthly cloud amounts were used.

Limitations to the use of the Sadler study include the relatively short data
period, the availability of only one observation per day, and the large size of the
areas from which cloud amounts were extracted. The significance of the 2-1/2°
blocks, as compared to the smaller area viewed by a ground observer, will be dis-
cussed further in Section 7. Despite these limitations, however, this study was
believed to provide the most meaningful data available for the design of cloud clirna-
tological regions in the tropics,

Since no satellite cloud studies of the scope of the Sadler study were available
for extratropical areas, studies based on conventional data were referred to for mod-
ification of the original climatological regions. Northern Hemisphere cloud charts,
obtained from ETAC (USAF, 1967) provided the principal data source. These charts,
prepared from the Global Weather Central daily analyses for 0000 GMT and 1200 GMT,
give monthly mean cloudiness and frequency of occurrence of clouds at each of the
1977 GWC grid points.
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3.2.3 Application to Simulation Programs

For application to compute:r simuiation programs. the climatological region
map was adjusted to consist of straight-line boundaries. To accomplish this, the
earth's surface was considered to be made up of 2°x2° blocks, and the boundaries
were drawa to conform to the blocks. This trade-off for simplification of program-
ming significantly affects climatological accuracy only in areas where the natural
boundaries are determined by coastlines or mountain barriers. Among such areas
are the west coasts of Nortn and Sluth America (see Figure 3-1).

The mean monthly cloud cover was the principal factor in differentiating be-
tween climatological regions. The absolute cloud amount, the season of maximum
cloudiness, and the n.agnitude of the seasonal change were all taken into account.
Some consideration was also given to cloud type, with each region being designated
as having predominantly convective clecudiness (tropics) or predominantly synoptic -
scale cloudiness (extratropical areas). For example, areas off the west coasts of
continents where widespread stratus is common, were so designated. Studies such
as those by London (1957) and Seide {1954) provided some guidance in assigning cloud
types. Through general climatological considerations and cloud summaries for spe-
cific stations, the probable diurnal variation in cloud amount was also determined for
each region.

Separate climatological regions have generally been designed for land and
ocean afqas. Certain regions, however, such as numbers 03 and 04, contain mostly
ocean, b\{t also some continental land areas and many islands. Since these are trop-
ical regions, considerable difference in the cloud regimes, particularly in the .
diurnal variations, might be expected. [n such regions the input statistics were
necessarily derived from land stations, and, therefore, properly apply to land areas.

-In extratropical areas, statistics for ncean regions were summarized from ocean
ship stations. Also, in the design of the climatclogical regions, mountainous areas
were not éesiginated. In such areas, cloud regimes could be significantly different
(generally greater cloud amounts) than indicated by the statistics for that particular
region.

As can be seen in Figure 3-1, many regions have a relatively narrow merid-
ional dimension, a reflection of more rapid char.ges in cloud climatology with lati- -
tude than with longitude. The results of the conditional probability computations
for a north-south group of stations, discussed in Section 4. 2.4, tend to confirm the )

choice of narrow regions. -
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3.3 Descriptions of Regions

A description of each cloud climatological region is given in Table 3-1. It
must be remembered that these descriptions are generalizations, based primarily
on seagonal distributions of mean monthly cloud amount. The final cloud statistics
for each region were derived from a representative station, as discussed in Sections
4 and 5. These statistics involve cioud amount frequency distributions, and therefore

are in a more detailed form than is presented by the general descriptions given in
Table 3-1.
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Table 3-1

General Description of Climatological Regions

1 2 3 4 5 6 7 8 9
- - P a -
c ko] e - ] €
—_ 3 -~ L4
s : FEz z|%:2 3 Be | <32 2
2 e ~fE |[§E_ ¢ | SExSE £E s E EES
e’ ks S 2o< [Z<3FP [ Z<asL EF ) g2< | g2<
* = k= < 2 e ™ < of _~
i 5 a a3 [53T& | §3%a v3 | 5iF [ 4%3¢
o5 Se : s28 88c. | 833 £2 | 358 | 35534
wZ oaQ 3 @0 [2E032 | 20az Lo >0 | TZ0=
01 Essentially Major Desert Small <20 <20 -- Small -—--
Clear Area
02 Little Sub-Desert Small <40 <40 -- Small ----
t Cloudiness Areas
03 Tropical Near Equator Small >60 >60 Convective | Large 1600
Cloudy
04 Tropical North or South Small ~50 ~50 Convective | Laroe 1600
i Moderate of Region 03
: Cloudiness
fos ; Desert Cver Ocean - Small ~50 ~50 Stratiform | Large 0800
i ., Marine off Weat Coasts , ;
E 06 Desert Over Ocean - Extreme >70 <30 Stratiform | Large 0800 ;
Marine West of Peru !
Cloudy |
Winter :
07 Desert Over Ocean - Extreme >70 <30 Stratiform | Large 0600 |
Marine West of Baja
Cloudy California
Summer
08 Mid Latitude North America Extreme <40 ~70 Synoptic Small ———-
- Clear Scale
Surnmer
09 High Latitude | North America, Moderate ~70 ~50 Synoptic Srnall ——--
- Cloudy Asia Scale
Summer
10 High Latitude | Agwia, Extreme ~70 <30 Synoptic Small .---
- Clear North Amezica Scale
Winter
11. Mid Latitude Northern Moderate| ~50 ~70 Synoptic Srnall -
- Land Hemisphere Scale
12 Tropical - North of Moderate{ >60 ~50 Convective | Large 1600
Cloudy Region 03
Sammer
13 Mid Latitude Northern Moderate ~60 >70 Synoptic Small “eee
- Ocean Hemisphere Scale
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Table 3-1 Cont'd
! 2 3 4 5 6 7 8 9
14 High Latitude | Northern Moderate >80 ~70 Synoptic Sm.all .-
- OGcean Hemisphere Scale
15 Polar Northern Small ~60 ~60 Synoptic
Hemisphere Scale Small -
16 Tropical - North of Extreme >70 <40 Convective | Large 1600
Seasonal Region 03
Change
17 Tropical - Northern Moderate ~50 <30 Convective | Large 14,00
Clear Hemisphere
Winter Near Region 16
8 Mediter- Northern Extreme ~30 - Convective .Small .-
ranean Hemisphere
Europe, Western -- ~60 Synoptic Small —.--
North America Scale
19 Sub Tropical Northern Moderate <50 -- Convective | Large 1600
Hemisphere -- ~60 Synoptic Small —.--
~30N Scale
20 Sub Tropical Northern Moderate ~50 -- Convective | Small —---
- Ocean Hemisphere -- >60 Synoptic Small -
~30N Scale
21 Tropical - South of Moderate ~50 >60 Convective | Large 1600
Cloudy Region 03
Summer
22 Mid Latitude Southern Moderate >70 ~ 60 Synoptic Small -———-
Ocean Hemisphere Scale
23 High lLatitude | Southern Moderate ~10 >80 Synoptic Small .-
- Ocean Hemisphere Scale
24 Polar Southern Small ~60 ~ 60 Synoptic Small .---
Hemisphere Scale
25 Tropical - South of Extreme <40 >70 Convective | Large 1600
Seasonal Region 03
Change
26 Tropical - South of Moderate <30 ~50 Convective Large 1600
Clear Region 25;
Vinter Africa,
Australia
27 Mediter- Southern Extreme -- ~30 Convective | Small con=
ranean Hemisphere
Australia, Chile ~60 .- Synoptic Small con-
Scale
.28 Sub Tropical Southern Moderate -- <50 Convective | Large 1600
Land Hemiasphere ~60 - Synoptic Small ceen
~308 Scale
29 Sub Tropical Southern Moderate .- ~50 Convective { Small cema
- Ocean ~308 >60 -- Synoptic Small —eem
Scale
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4. DATA SOURCES
4.1 Unconditional Distributions
4.1.1 Data Search

Following completion of the initial climatological region selection, discussed
in Section 3, data were obtained for approximately 100 observing stations distributed
throughout the world, For zs many regions as possible, single representative sta-
tions were selected from ihis sainple, and unconditional cloud statistics were derived
from the data summecries for this stations. As discussed more fully in Section 5,
the cloud climatologies for several Southern Hemisphere regicns were taken as beirg
seasonal reversals of similar Northern Fiemisphere regions. ¥or some regions,
where representative 2ata could not be obtained, these statistics were modified from
those of other regions, based on climatological considerations.

An initial selection of stations was mad- to obtain data to represent the
cloud climatic regions. The initial search was based on station locations indicated
on Northern and Southern Hemisphere upper air Raob and Rawinsonde network charts
(NWRC, 1962, and NWRC, 1963. Station names and coordinates were checked in the
W eather Station Index (U.S. Naval Oceanographic Office, 1964). A visit to the
Nationa) Weather Records Center, revealed that useable data were not available for

several of the originally selected stations. Wherever possible, nearby statioas were
substituted. The final data sample consisted of 108 stations.

4.1.2 Data Form

Cloud observations from different parts of the world are summarized in various
forms. In addition, observational times, and even observing techniques, vary from
place to place. The data summaries from which the unconditional distributions were
derived where three basic forms: (1) Revised Uniform Summary of Surface Weather
Observations (A-F), (2) Original Uniform Summary of Surface Weather Observations
(A and B), and (3) NIS*or N-Summary. Of the 108 stations, the Revised Uniform
Summaries were available for 33, the Original Uniform Summaries for~23, and the -

NIS Summaries for 52 stations. Most of the NIS Summaries were designated as Old
Type N-Summaries. In addition, ten years of raw data (on magnetic tape) were obtained
for six ship stations. Unconditional distributions were derived directly from these data

* National Intelligence Survey
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The Revised Uniform Summaries provided the most useable data. For these
stations, cloud amounts are summarized in tenths by percentage frequency; frequen-
cies are given for threc~hourly groups for all months. The stations for which the
Revised Uniform Summaries are available are concentrated in only a few climatoic-
gical regions, particularly those within the United States. These summaries also
exist, however, for several United States Air Force bases throughout the world.

Original Uniform Summaries for most stations are in a similas iorm, except
the number of observations is given instead of the percentage. ."or some stations,
however, the cloud amounts are not broken down by tenths, but by categories such
as clear, scattered and low broken; for these summaries, it was necessary to assign
a cloud armount to each category.

The N-type Summaries were in the least useable form, since the summarizing
procedures vary from station-to-station. The most common form gives the mean
number of days per month with the following sky covers: 0-1/8, 0-2/8, 3-6/8; and
6-8/8, Moreover, the data are generally available for only a few hours of the day.
These summaries, therefore, required considerable ;'eworking to be of use for the

intended application.
4.1.3 Representative Stations

The stations representative of each region, from which the unconditional statis-
tics were derived, are given in Table 4-1% The type of data summary available and
the number of years of observation are also given. The climatological regions for

which the statistics were modified from other regions are so indicated.
4. 2 Conditional Distributions

Cloud statistics conditional with regard to time and to space were compiled
for each climatolcgical region. From the temporal conditional distributions, the
cloud amount probability distribution for '""tomorrow' can be determined given a cloud
amount ''today. ' Similerly, from the spatial conditional distributions, the cloud
amount probability distribution for a location at a specified distance from a base loca-
tion can be determined for a given cleud amount at the base location.

% Validation of represenrativeness of the stations can be found in Section 5. i. 3 and
Appendix A,
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Table 4-1
Representative Stations for Unconditional Distributione
REGION TYPE OF YEARS OF
NUMBER STATION COORDINATES DATA RECORD
1 Dhahran, Saudi Arabia 26-17N 50-09E 2 11
(Airfield)
2 Tripoli, Libya 32-54N 13.17E 1 19
\Wheelus AFB)
3 Angeles, Luzon, P. 1. i 15-11N 120-33E 1 21
(Clark AFB)
4 Tampa, Florida 27-5IN 82.30W 1 23
(MacDill AFB) P
5 Los Angeles, California 33-56N 118-23wW 1 19
(WBAS) Hours 10-19 (May-October)
Modified
6 Talara, Peru 04-32S 8l-14W 2 5
0l and 22 Hours-Synthetic !
? Synthetic Data -
8 Mountairn. Home, ldako 43-03N 115-51wW 1 20
(AFB)
9 Fort Yukon, Alaska 66-35N 145-18W 2 18
: (WB)
|
10 Harbin, China 45-45N 126-38W 3 7
11 Belleville, Illinois 38-33N 89.51W 1 27 N
{Scott AFB) |
|
12 Ban Me Thuot, Vietnam 12-4IN 108-07E 1 10
(City Airport)
13 Ship D 44-00N 4l-00W 4 10
{Atanuc)
14 Adak, Alaska 51-53N 176-38W 1 25 '
(NS)
15 Resolute, NWT, Canada 74-41N 94-55W 2 7
16 Fort Kobbe, Canal Zone 08+«55N 79-36W 1 19
(Howard AFB)
17 Bangalore, India 12-57N  77-38E 3 7
(Hindustan Airport)
18 San Francisco, California 37-37N 122.23W 1 18
{WBAS)
19 Shreveport, Louisiana 37.30N  93.40W . 27 )
(Parksdale, AFB)
20 Ship V 31-00N 164-00E 4 10
{Pacific)
21 Seasonal Reversal of Region 12 Legend for Type of Data:
(1) Ravised Uniform Summary (A-F)
22 Seasonal Reversal of Region 13 (2) Original Uniform Summary (A and B)

23 Seasonsal Reversal of Region 14 _ {3) NIS Summary
{4) Raw Data {Ship Stations)

24 Seasonal Reversal of Region 1§ b =
2% Seasonsl Reversal of Region 16; Houre ! ., 13,16 for May - September Modified
26 Sensonal Reversal of Region 17
27 Seasonal Reversal of Region 13 .
28 Seasonal Reversal of Region 19
29 Seasonsl Reversal of Region 20 ,

' !
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Satellite ooserved cloud amounis were used to derive the conditional statistics
because the effort involved in summarizing raw conventional cloud data from various
parts of the world would have been prohibitive. Satellite observations were obtained
for most of the climatological regions; probability distributions for the remaining

regions were adopted from the statistics available for hopefully cormnparable regions,
4. 2.1 Data

For tropical areas, between about 30°N and SOOS, little new data extraction
was necessary, as use could be made of data on hand from previous studies. From
a study of the cloud obscuration of terrestrial landmarks to be used in the Apollo
Navigation System (Barnes, Beran, and Glaser, 1967), daily satellite-observed cloud
amounts were available for 100 landmarks (stations) in the tropics. Although these
stations were not evenly distributed, observations were available for most tropical
climatological regions. The cloud amounts in this data sample were extracted from
within circular areas of one degree latitude diameter.

Data collected in the study by Sadler (1966), see Section 3. 2. 2, were also
examined for possible use in deriving the corditional probability statistics. As dis-
cussed in Section 4. 2. 2, these data were found to be not useful for these purposes.

In extratropical areas, cloud amounts were extracted for several locations
(stations) within each major climatological region. The statistics for some regions,
particularly those of smaller size, were modified from the results for other regions.
The stations for which data were extracted, generally five to ten for each region,
were usually oriented along an east-west line providing uniform distributions for the
computations with regard to distance. As in tropical regions, the cloud amounts
were for one degree circular areas.

Summer and winter (Northern Hemisphere) data samples were obtained. The
summer sample, obtained from Nimbus II AVCS photography consisted of all available
observations during June, July, and August 1966, the period of operation of this satel-
lite, The winter somple consisted of observations taken during December, January,
and February, 1966-67, by the ESSA-3 satellite. A limited data sample was also
obtained from the ESSA-5 satellite, for June, July, and August 1967, For discussions
of short sample periods, etc., see Section 5. 1, 2,
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Although tne nominal camera resolution of the Nimbus AVCS photography is
0. 5 miles, compared with two miles for tne ESSA satellites, the improved picture
quality of the ESSA photography provided data of at least comparablce value. The
summer 1967 sample from ESSA-5 provided an opportunity for a limited comparison

with the Nimbus data for a similar period in 196€.
4. 2.2 Temporal Conditional Distributions

Computations for temporal conditional distributions were carried out for time
periods of 24 and 48 hours. Observations from several stations within the same cli-
matological region were combined to provide a more meaningful data sample. In
most regions, from five to seven s ations were used. Ir addition, probabilities
were computed cn a seasonal rather than monthly basis, to further increase the sam-
ple size. Even so, samples were materially smaller than desirable.

The results indicated little conditionality past 24 hours, therefore, only the
24 hour probabilities were included in the final statistics. Methods were developed
for computing temporal conditional statistics in other increments of time (see Sec-
tion 6). ,

For regions 13 and 20, temporal conditional distributions have been compiled
from raw ocean ship observation data during processing of these data for uncondi-
tional distributions. It is reassuring to find that these co-apilations are similar in
kind to those obtained from much shorter samples of satellite data.

The statistics derived from the Sadler satellite data sample were strongly
biased toward middle cloud amounts (3, 4, 5 octas), and therefore, were not used,
These results emphasized the magnitude of the sampling area size problem, dis-

cussed in detail in Section 7.
4. 2. 3 Spatial Conditional Cistrikution.

In each regional group of stations, a '"base' station was selected to become the
"given'' for each of the other stations in the group. In the tropical data sample the
statiorns were not evenly distributed. The stations selected for tiie 2x*ratropical
regiors were evenly distributed in ar east-west direction. In both samples, distances
between stations varied from approximately 100 to 1,000 nm. As with the temporal

distributions, seasonal compilations were made to incr:ase the size of the dawa sample.
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In additior. to the compilation of conditicnal cloud frequency distributions,
correlation coefficients were computed as a guide to the significance of the statistics.
In general the corrslations were found to decrease rapidly with distance, characteris-

tically reaching a value of 0. 6 at an average distance of about 200 nm.
4. 2. 4 North-South Data Sample

As discussed above, the spatial conditional data points for most of the clima-
tological regions were oriented in an east-west direction. To examine th~ effect of
this orientation,. a sample was also obtaired for a group of five stations oriented north-
south, from region 11 for a single season. The data were extracted from ESSA-5
photoy raphy for the summer of 1967.

The resulting unconditional cloud frequency distribution for the five stations
comabin.d is, of course, very similar to that obtained for a group of east-west stations
in the same region. Temporal conditional distributions are also similar to those
romputed for the east-west sample. In the spatial domain, however, the correlation
between stations apf ~ars to decrease with distance more rapidly in the north-south
group of stations. .While the correlations are simitar in the two groups for stations
about 120 nm apart, a much lower correlation was obtained in the north-south sample
for stations about 300 nm apart (a correlation coefficient of 0. 14, compared to 0. 64
for the east-west Zroup).

The decrease in correlation in the north-south direction probably reflccts the
more rapid changes in cloud climatology with latitude than with longitude. This re-
sult tends to confirm the choice of a narrow latitudinal dimension for many of the

climatological regicns.

26




nr e b e

o wn g P ATAT TR

5. DESCRIPTION OF DATA
5.1 The Basic Statistics - Unconditional Distributions
5.1.1 Discussion of Data Sources

For purposes of simulation of earth observation from space on a global ba=:2,
the earth's surface has been divided into 29 regions, chosen to have reasanably
hornogeneous cloud cover distributions., The problems of delincation of humuogeneous
regions are discussed in Section 3. Region boundaries have been arbitrarily set to
fall on even 2° lines of latitude and longitude to simplify computer determination of
the region in which a selected surface point occurs.

A single observing station with a reasonable length of good record is used to
characterize the region, even where areas of the same regional designation occur
widely separated from each other about the globe. Tests indicate that this is a
reasonable procedure if the chosen station is in fact representative of the region
(see Section 5. 1. 3). However, in some regions the paucity of summarized data
makes necessary the adoption of cloud cover distributions without validation.

Cloud cover distributions, as discussed in Section 4. 1, are summarized in
different ways by the various meteosrological services, and there are somewhat
varying instructions to the observei. As will be appreciated from the considerations
of Section 7, a major factor affecting representativeness cf individual distributions
is the field of view available to - or used by - the observer. Restricted fields will
tend to produce more U-shaped distributions.

Because of the problems of representativeness and of probable cloud amount
overestimation (see Section 5, 1. 2) it seems unnecessary to present cloud cover dis-
tributions in much detail. Reduction of the number of classes into which the cover
is distributed permits greater data compaction and speedier computatior, Five
cloud cover categories have been designated, as displayed in Table 5-1. The allo-
cation of cloud to category is based on consideration of simulation requirements

(see Section 2).
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Table 5-1
Cloud Category Designation

Category Tenths Eighths (Octas)
1 0 0
2 1,2,3 1,2
3 4,5 3,4
4 6,7,8,9 5,6,7
5 10 8

[t will be noted that the intervals are unequal in size and that the categorization
from data in tenths differs slightly from that from data in eighths. The bulk of the
data available was expressed in tenths of sky cover; about 25% of the summaries were
expressed in eighths. It is possible to adjust distributions tc make the data expressed
in eighths absolutely comparable to those expressed in tenths, but this involves some
assumption as to the distribution of cloud cover within a cloud cover group. More-
over, the magnitude of any adjustment would surely be smaller than the error in-
herent ir. assuming that a chosen station is representative of its region.

In the two regions with N-type summaries (see Table 4-1), the available data
are not only expressed in eighths but in a grouped form that does not explicitlv give
.the frequency of clear or overcast. In these cases, the frequencies were estimated
by plotting and extrapolating the available data (also see Appendix A).

Other than cloud climatological region, the factors having the greatest effect
on cloud cover distribution are season and solar time. Accordingly, the cloud dis-
tributions are given for each month of the year and at three-~hour intervals in the
solar day. In those cases where an equivalent cloud climatological region occurs in
both hemispheres, the seasons are inverted by shifting six months, and a new re yional
designation is provided. Validation tests have shown this to be a reasonable proce- )

dure, beiter than accepting data from a location known 1 be unrepresentative.
5.1. 2 Data Quality

Cloud cover data obtained irom surface observations are not strictly compar-
able to cloud cover as it would be seen from space (see Section 5. 5). The surface
observer usually has a limited field of vi;aw, maximum radius of about 30 miles,
dependent upon ambient visibility and obstructions. However, the observer tends
to weight the inner few miles rather heavily, as he is told that half of the dome of

the sky occurs above an elevation angle of 30°.
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The observer's view of cloud sides, particularly in the half of the dome of
the sky below 30%, causes him to ove.estimate the cloud cover in most types of scat-
tered or broken cloud situations. Studies of the degree of overestimation have been
made by Appleman {1962), Lund (1965 and 1966), McCabe (1965), ard Watson (1965),
anmong others.

Because of the heterogeneity of our data sources and the lack of useful data
on cloud type versus cloud cover, we have made no effort to compensate for this
known overestimation. The degree to which the mean cloud cover is affected by
overestimatior & very much dependent upon the nature of the observed cloud distri-
bution. Regions hat exhibit "U" or "J'* shaped distributions, with low probability of
broken cloud, will not be greatly overestimated. Regions of bell-shaped cloud cover
distribution, where broken cloud is preponderant, will suffer significantly more
overestimation than other regions.

Certain compensating factors make it undesirable to attempt broken cloud-
amount correction in any event. Photographic-type observation is perturbed by cloud
shadows. The amount of shadow extending beyond the vertical projection of the cloud
is controlled by many of the same factors that lead to the observer's overestimate of
cloud amount.

Wide-angle photography or infrared scanning will also suffer reduced coverage
from views of cloud sides in the portions of the field of view removed from the space-
craft subpoint. In this case, other atmospheric effects that accompany partial cloud
cover may work to reduce coverage even more sharply than the ground observer's
cloud cover overestimate would indicate.

Coverage by radiometers or radars will be limited by the interaction of the
wings of the acceptance beam (beyond the half-power points) with clouds. Charac-
teristic earth surface spot sizes are sufficiently large in most cases to compare
with inter-cloud gaps, so that the fraction of the surface available uncontaminated by
cloud may be distinctly smaller than the cloud cover would indicate.

In manned experiments where it is required that the astronaut find a ground
target, it is usually necessary tuat the target be acquired when it has approached a
depression angle of about 45°. This gives a sufficient opportunity for study or in-
strumental observation as the spacecraft passes overhead. The combined effects of
the perspective view of cloud sides and the confusion resulting frrom the differing rel-
ative motion of cloud layers and the ground, very likely reduce the prohabiiity of
successful acquisition and tracking to a value comparable to that predicted fom the
ground observer's overestimate of cloud cover. We hope that controlled experiments

can be performed in the Apollo Applications program to evaluate these efiects,
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5.1.3 Data Validation

Certiin assumptions have been made in laying out our apprcach to the data

presentation. We here will examine their validity.
5.1.3.1 Regional Homogeneity

Wherever possible, cloud cover distributions for all stations availaktle within
a region have been compared with sariples of the tabulated statistics oi the chosen
stations. Usually, comparisons were made for a winter and a summe:1 month, and
for two times of day, usually early morning and late afternoon. Such comparisons
were made for 15 of the 20 basic regions.

Figure 5-1 shows the cloud distribution for Region 11, which covers the
northeastern United States and North Central Europe. Distributions for six stations
are shown, ranging in apparent climate from that of Minot, North Dakota, through
Kennedy Airport at New York City, to Furth, Germany. The "prototype'" we have
choser for the region is Scott AFB, at Lelleville, Illinois. It can be seen that winter
cloud cover is remarkably similar at all stations; summer cloud cover is more
variable, particularly in the incidence of clear and overcast skies. However, the
character of the summer distributions are quite similar.

Figure 5-2 shows distributions for Region 1, comprising desert areas.
Dhahran is the "prototype.' The data have been graphed in the only common form
available. Distributions are so similar the year around that we did not reverse the
seasons for Alice Springs, Australia, ¢ - ough a slight improvement in representa-
tiveness would have resulted from such a reversal.

Appendix A presents all distributions used for validation.
5.1.3.2 Seasonal Reversal

In 9 cases, prototype data from the Northern Hemisphere, available in suitable
form, were used to de{iné the cloua climatologies of Southern Hemispheréregions,
where suitable data were not available, The other 11 regions either occur in only
one hemisphere, or occur in both hemispheres without need of seasonal transposition.
We have verified the validity of the procedure in three of the seasonal reversal cases.
Figure 5-3 compai‘es the cloud cover distribution of Adak, in the Aleutians, with
Campbell Island, South of New Zealand, and Laurie Island, in the South Orkneys east
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of the tip of South America. Daytime observations were also available from Stanley,
in the Falkland Islands. It can be seen that with the possible exception of Laurie
Island and Stanley in the winter, exposed to Antarctic polar outbreaks, agreement is
excellent.

Appendix A gives the distributions used for validation of the seasonal reversal.
5.1.3.3 Length of Record

One criterion for the selection of the prototype station for a region was that,
if possible, it have a record of at least 10 years duration. * Since single months
were summarized, this implies a target of 300 obs- rvations for each time of day.
About half of the stations used had hourly observations, which were averaged in
groups of three adjacent hours, to give the eight 3-hourly distributions.

The necessity of long record was made amply clear by an experiment per-
formed with satellite aata read from the mosaics of ESSA-5 and Nimbus II. Cloud
cover was read from 60-mile diameter circles centered on the stations shown in
Figure 5-4, for the summer season (June, July and August). Data from ESSA-5
were observed at 15C "~ local time, the Nimbus II data at noon. Ground-based obser-
vations indicate only little diurnal change between these hours. Yet, as seen in
Figure 5-4, the distributions are fairly dissimilar. A sample application of the
X -test shows it improbable that distribuiions were drawn from the same popuiation.

The dissimilarity may come from any of several sources. First, it may be
that resolution difference between TSSA-5 and Nimbus II affects the distribution.
However, it would be expected that resolution difference would principally effect the
relative number of clear days, which are not greatly different.

Each sample consists of 85 observations (a few days are missing). Distribu-
tion of this number of observations into 5 groups would of course give a certair. ex-
pected variability. However, the effective number of independent observations is
fewer than 85 becalse of the day-to-day persistence of the weather, so that increased
sample-to-sample variability may be expected.

The year-to-year variability in cloud cover is also significant. We suspect
it may be the principal contributor in cloud cover variability, since we find the vari-

ability within the same year from one point to another in the same region to be fairly.
small. This is typified by the distributions shown in Figure 5-5 drawn from marginal
totals of joint distributions leading to spatial conditional distributions.

* Four of the stations used did not meet the 10 year data criterion. However, only one
of these four stations had less than 7 years record, and that station (Bangalore, India)

had a 5 year record.
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5. 2 Conditional Distributions
5. 2.1 Condit onal Probabilities

The conditional probability of the occurrence of event x 1f event y is already

known to have occurred is written as P (xly) and is defined as
P(x!y) = P(xy)/ Py

where P(xy) represents the probability of the joint occurrence oI the events x and y
and P (y) is the marginal total .Z_(I Pxy).

Presentation of the conditional probabilities i the form ot an n times n
entry table, n being the number of cloud categories (5 in the present case). Charac-
teristically, the diagonal elements of the table, representing the probability of the
same cloud group occurring in both-the given and the dependent location, are the
largest.

3. 2. 2 Spatial Conditionals

Figure 5-6 gives a schematic of the variation of conditional cloud probability
of clear skies (cloud gronp 1) as a function of distance from the given station. At
zero distance, the probability is zero for other given cloud groups, 100 for cloud
group 1. As the distance between locations increases, the probability tends toward
the unconditiona' probability of clear sky. Some difficulty occurs in defining the
condiiional probability in situations where the areas over which the cloud cover is
described overlap; however, niost applications do not require information at this
range.

Figure 5-6 has been drawn to illustrate effects that are noted, not universally
in real data. When the distance between points somewhat exceeds the probable radiu-
of clear areas in the region, the conditional probability P (1 , 1) may fall below the
unconditional level, to return at some later point, In a few cases, cscillations occur
out to some distance, which may result either from insufficient data or {rom sy=optic
scale waves. Similarly, the conditional probability of clear skies in the vicinity of
an area of scattered cloud may exceed the unconditional probability of clear. Some
of the conditional relationships found are somewhat mystifying and can most easily

be ascribed to chance variations resulting from data insufficiency (see Section 5. 2. 5. 1).
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5. .3 Use cf Spatial Conditional Distributions

We are not nrepared at this time to lefine a generalized mathematical function
describing the decay of conditional probatility with distance. In its place we have
adopted a simplified procedure to permit general use of the data without invoking data
volumes and computational complexities that cannot be justified by lie quality of the
available conditional data. For each region and montk, distributions are presented
at a nominal distance of 200 nm. In general, the data have been taken without mod-
ification from pairs cf satellite observations approximateiy 200 nm apart. When-
ever possible, data from the same region are grouped to increase sample sizes;
unfortanately, this was seldom possible.

The data are intended to be used by assuming a straight line probability decay
between unity and the 200 nm value {nr on-diagonal conditionals (P (3|3). etc. ),
between zero and the appropriate 260 nm value for off-diagonal conditionais (P(3i2),
etc. \.

Th+ straight line is to terminate at the appropriate unconditional value. Since

the sum

z P(ylx) =1 for any x

it is necessary that 21l conditional probabilities defined by a given cloud cover be
replaced by the equivalent unconditionals if the siraight line process places one con-
ditional prc 1bility on the wrong side of its matching unconditional level. Thus, if

at a distanc: of 250 nm.
P(l|5)>P(l), then P(1]5) = Pil), P{2 ‘5) = P{2), P5|5 = P (5}, etc.

Ot if 2(5]5)<P(5), the same substitutions are requirec.

The probable effect of this mode of use can be assessed from Figure 5-6.
The diagonal conditiorals may be overestimated .. distances other than 200 nm. The
region of underestimate is usually small. The ofi-diagonal conditionals may be af-

fecled either way, depending upon the shape of the curve.
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Experiments using these data for purposes oi validaticn suggest that the weakest
part of the procedure lies in the substitution of unconditionzls when the conditional
distribation cannot properly be defined by the straight line approximation. In Figure
5.6, the straight line approximation to P (1 IZ) passes P (1) at about 180 nra, If P(Z'Z)
(not shown) is still materially above P (2) at 200 nm, the etfect of coherence will have
been lost. We hope in future efiorts to substitute a modified procedure which would
permit good expression of conditional probabilities at fair distances while guarding
against the type of an absurdity that can result from extrapolation of straighrt line

approximations.
5. 2.4 Temporal Conditionals

The behavior of temporal conditional cloud probability with time is not dis-
similcr from that of the spatial conditionals with distance. The bulk of onr data was
derived from sun-synchrcnous satellite observations, and thus represent observations
taken at 24 hour intervals, It was found that, in general, 24-hour persistence can be
demonstrated, as indicated by the diagonal values of the coaditinnal prchability tuhle ,‘
exceeding the matching unconditional value. In a number of cases, hnwever, apparent
antipersistence occurred, where relatively improbable cloud events showed no ten-
dency to persist 24 hours. Much of the apparent antipersistence is probably real,
some the result of short data samples, and some the result of the cloud cover under-
estimate in satellite data. A survey was made of cases of antipersistence to see
whether these were real or artifacts in the data. Table 5-2 summarizes a January
sample of zll 29 regions; 5 diagonal conditional probability elements were examined
in each region at the 24-hour interval. The hypothesis is made that if antipersistence
is a real rather than randem effect, a suitable stratification of the data should show
definite trends. Accordingly, the count of numbers of cases of antipersistence
(diagonal less than the 1300 local unconditionai probability) was stratified according
to whether the region was primarily continental or maritime, Northern Hemisphere,
Tropical, or Southern {{emisphere. A xz test performed on the tabulation gives a
1% probatbility that this distribution could arise by cnance.

This demonstration, by geographic stratification, that the occurcrences of
antipersistence are probably real, at least in part, also lends some confidence to

our estimates of persistence for the remaining (80% ) of the cases.
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Table -2

Geographic Siratification of Cases of
Apparent 24~-hour Antipersistence

(note: 5/35 incdicates 5 out of 35 cases, etc.)

—
Continental Maritime

Northern
Hemisphere 5/35 5/15
Tropics 6/10 7/40
Scuthern
Hemisphere 3/10 3/35

.

We have given some validation to the 24-hour satellite estimates of conditional
distributions by examination of temporal distributions generated from raw ocean
weather ship data. These were compiled from observations made at 6 hour inter-
vals, so that the btehavior of the conditional distributions at shorter intervals can
be assessed. Figure 5-7 shows characteristic diagonal values for ocean ship Victor
in winter. Like most ocean weather stations, it is in a region {20) of rapidly moving
weather systems, where clear skies are rare. Broken clouds and overcast are
about equally probatle. )

it can be seen that the straight line approximation to P (SIS) results in a fairly
substantial overestimate of n~rsistence. An even poorer approximation is provided
for P(2]2) and P (3]3) which becomes antipersistent even at 6 hours, presumably
irom diurnal effects. (It has been found from the ocean weather ship data that diurnal
efiects are material at sea, textbock lore notwithstanding. ) It should be appreciated
that this case, selected from the Northern Hemisphere maritime winter season, is
one of the worst cases.,

Almost all potential mission simulation applications of the cloud climatology
data "fly'* over the same area at intervals of less than 4 honrs, about 12-hours,
about 24 hours, or more. Of these, only the conditional probabilities at the 12 hour
interval may be seriously misrepresented by the straight line approximation. This
r.ould be of material consequence, for example, in overestimating the probability of
success of sequential day-night surface temperature comparisons by infrared radi-

ometry. Accordingly, some care’is required in 12-nour applications. We do believe,
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however, that the straight line approximation will generally give better simulation
results than 2n assumption of independence. It is hoped that in the near future con-
diticnal data can be developed for a substantial selec.ion of regions at intervals of
6 hours or less; permitting a less crude descriptigm of temporal conditionality.

A procedure for dealing independently with diurnal effects while maintaining

temporal conditional relations is outlined in Section 6. 5
5. 2. 5 Quality of Conditional Distributions
5. 2. 5.1 Data Quantity

The problems of data quantity can be appreciated from consideration of‘the
way in which the conditional probabilities are generated. The starting point is a
25-elemeant joint frequency table. Our characteristic data samples had 85 to 90 pairs
cf observations. In a number of joint distributions, a few elements along the diagonal
contained most of the entries, leaving a scattering elsewhere. At first it seemed
that the best solution to this problem in the absence of greater data amounts, would
be to group data from several regions. However, because the region: were defined
by their cloud clirnatological dissimilarity, it was found that this procedure would
result in serious distortion of joint prcbabilities along the diagonal, thus destroying
the major part of the significance of the distribution. To put this observation on a
firmer statistical basis, xz tests of homogeneity were performed to see if candidates
for grouping could be considered as being drawn from the same parent distribution.
The results indicated that in spite of the small-sample sizes, the null hypothesis of
homogeneity could not be accepted. As an example, the first test was performed on
distributions for Regions 11 and 18 in winter, yielding )(2 = 46. 0 with 24 degrees of
freedom, significant past the 1% level.

A further consideration mitigating the effect of small sample size is that the
frequency of reference to an element in the conditional probability table should be
in direct proportion to the number of observations that were used to define that ele-
ment. Thus, the variance that can be tolerated in estimating the probability of the
frequently occurring joint events is greater than in the case of the more probable
events. By the same token, care should be taken in applications of these statistics
that the results do not depend critically upon the occurrence of improbable joint

events, the probability of which may be poorly estimated. As an example, if in our
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satellite data sample only one case of clear sky occurred, the conditional probability
table would dictate that any clear day must be followed by whatever cloud cover suc-
ceeded the clear day in the data sample, all other transistions being excluded. The

probability of two successive clear days would be zero.
5.2.5.2 Qualitv of Souvrce Data

The satellite data were "'observed" by a skilled meteorological technician
with extended experiznce in the handling anc interpretation of satellite TV data.

Data sources were mosaics of Nimbus II AVCS data prepared by Allied Research for
the Goddard Space Flight Center and similar machinc¢-prepared mosaics of data from
ESSA-3 and ESSA-5. Variations in exposure and processing of Nimbus II data made
consistent quantitatlive judgment of cloud cover quite difficult, adding an element of
variability beynnd that to be expected from normal subjective judgment.

Thke area from which :loud was to he read was delineated by 2 transparent
template placed over the cloud field in a position dictated by the machine-superposed
geographical grid marks. These are frequently in error by a degree or more, with
occasional major errors resulting frcm failure of picture time coordination. Except
for cases of obvious gross error, the technician was instructed to use the grid fer
reference even where it disagreed with landmark evidence.

A few tests were run 1o assess the prchable error of this class of manual
data ex'raction, which is really not different in kind from cloud cover estimation by
ground osservers. It was focund that data extracted under the same ground rules
were reasonalby consistent (see Fig. 5-5), but that the unconditional (marginal) dis=~
tributions could be materiallv changed by altering instructions t> the data extractor.

Not unexpectedly, the marginal distributions of the satellite data were found
to give much smaller cloud covers than the corresponding conventionally observed
cloud data. The greatest d partures came from the Nimbus II data sample, where it
was apparently difficult (o differentiate thin clrud and small clouds. Table 5-3 com-
pares the unconditional frequencies in the worst cas~ found. While it is probable that
Tampa and the part of the Gulf of Mexico immediately to its west may be cloudier than
the more maritime parts of the region used in the satellite sample, the differences
are still extreme, The explanation must lie in th prevalence of sub-resolution size
cumulus, resulting in a shift from the scattered and partly covered g roups into clear;
and the one degree satellite sample sie which may almost universally exceed the size
of the large cumulus and cumulonimbus providing overcasts at Tarnpa, thus shifting

them into cloud cover ~lasses vacated by the unresolved small cumulus.
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Table 5-3

Cumparison Between Data Samples
For Region U4 - Summer Season

Cloud Anmrcunt August Perrentage l Frequency
in Octas Tampa Nimbus II (1966) ESSA -5 (1367)
0 3% 52% 35%
1-2 28 31 32
3-5 15 11 : 16
6-7 21 4 12
8 33 2 14

Section 6. 8 wiii discuss how the overest... _ted cloud covar of the grcund
observer, in the unconditional distributions, the underestimated satcllite cloud cover
used in the temporal and spatial conditional distributions, and the overestimates of
cloud coherence and persistence resulting from the use of th. straight line approxi-
mation all tend to compensate each other in characteristic applications.

An overall assessment of the quality of the conditional probabilities cannot be
made without reference to their intended use. The techniques to be described in
Section 6 have been sele~ted to make effective use of the appropriate prope.ties of
the conditional distributions with only occasional apparent minor errors arising
irom their relative inaccuracy and bias toward clear skies (see Section 5.4). Used
in the recommended fashion in appropriate simulation situations, we believe that
these data will give results materially more realistic than those derived from simple

assu~.ptions on cloud climatology.
5.3 Data Confidence

A table of data confidence levels, prepared for all 29 regions, is gresented
as Table 5-4. In this table we have assigned a confidence code for both the uncon-
ditional and conditional cloud statistics and in the case of the conditional statistics
for both space and time. This confidence code is a simple 1 through 3 system, where
1 denotes good data obtained directly from long-period record in the case of the uncon-

ditional statistics and from computed conditional statistics for the specific map region
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Table 5-4

Data Confidence Factor

Conditional Gtatistics
Climatological Region Unconditional Statistics
Space Time
1 1 1 2
2 1 1 1
3 1 1 1
4 1 i 1
5 2 3 3
6 2 3 3
7 3 3 3
8 1 1 1
9 1 1 1
10 2 1 2
11 1 1 1
12 1 1 2
13 1 2 2
14 1 1 1
) 15 1 1 1
16 1 1 1
) 17 2 2 2
18 1 1 1
19 1 1 1
20 1 1 1
21 1 1 2
22 1 2 2
23 1 1 1
24 1 1 1
25 2 1 1
26 2 ' 2 2
27 1 1 1
28 1 1 1
. 29 1 1 1
Legend
1 Good {Unmodified)
2 Fair (Modified)
3 Poor (Synthetic)
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in question in the case of the conditional statistics. A code of 2 denotes a confidence
level of fair, indicating principally that the statistics for these regions have been
modified from long term record data or from computed conditional statistics for
other regions, based on climatology and good m.teorological judgment. A confidence
code of 3 indicates relatively poor data, that in some cases has been synthesized,
bascd on firm meteorological considerations, because no satisfactory cloud data for

that region exists.

5.4 Comparison Between Satellite Observed ana Surface
Observed Cloud Cover

A recent study carried out at Allied Research (Barnes et al, 1967) has shown
that satellite observed cloudiness is generally less than surface observed cloudiness.
In this study, which used Nimbus II and ESSA-3 AVCS data, cloud amounts were
estimated for one degree latitude circles, centered on specific landmarks to be used

in the Apollo program.

5.4.1 Comparison with Norraal Cloud Amounts for Seiected
Landmarks

Sateliite observed cioud amounts were ccmpared with normal ground observed
cloudiness for 1500 LST, for a sample of the staiioas shown in Section 9. 1. The
ground observed cloud amrsunt is greater than the satellite observed in all except one
instance (see Table 5-5). The average difference in percentage mean is 20 with the

maximum difference for any station being 44,
5.4. 2 Comparison with Concurrent Observations

The ESSA -3 observations were compared with concurrent observations for a
sample of landmarks, For the five rnonth period, the average difference between the
normal mean cloud amount and the satellite observed cloud amcvnt is 164 (Table 5-6);
the average difference between the concurrent ground and satelliic obscsved cloudiness
for the nine landmarks is also 16%; the maximum difference for any landmark 1s 23%.
For a three and one-half month summer sample, the differences were somewhat
greater, In all cases, the cloud cover estimated from the satellite photographs was
less than that estimated from the ground. Other comparisons were also made, with

gimilar results.
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Table 5-5

Comparison Between Actual Satellite Observed and Normal Ground
Observed Cloud Amount. (ESSA-3 Sample) From Barnes et al (1967)

B ik i e ot A T O

Landmark Reporting Ground S (%) G (%) G-S (%)
Index No. Station

3 Miami 36 53 17
334 Jacksonvilic 40 55 15
317 Galveston 51 58 7
20 Kingston, Jamaica 34 58 24
300 San Diego 29 39 10
510 Yuma 16 30 14
60 Georgetown 41 78 37
336 Talara (Dec, Msg. ) 26 40 14
96 Ben Guerir 18 51 33
81 Recife 18 62 44
85 Dakar 24 41 17
524 Cairo 18 45 27
801 New Delhi 05 25 20
811 Accra 24 45 21
814 Kyushu 58 52 -6
Mean G-S = 20

~ Range of Values = -6 to 44

(3]
It

Satellite Observed Amount: Mean for Period 9 October 1966 - 2§ Fsbruary 1967

Q
"

Ground Observed Amount: Normal Mean for 1500 LST October - February
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Tabie 5-6

Comparisons Between Satellite Observed, Normal Ground Observed,
and Actual Ground Observed Cloud Amounts; Mean Sunrise-Sunset
Cloud Amounts Used. (ESSA-3 Samgle)

Landmark Reporting S NG AG NG=-5 AG-S§
Index Ground (%) (%) (%) (%) (%)
Number Station
3 Miami 36 53 59 17 23
334 Jacksonville 40 57 60 17 20
330 Tampa 30 53 52 23 22
5C New Crleans 51 56 58 5 7
316 Corpus Christi | 43 59 63 16 20
512 Abilene 25 50 44 25 1@
511 El Paso 29 39 3% 10 5
510 .. Yuma 16 31 30 15 14
300 San Diego 29 45 42 16 13
Mean Difference = 16 16
S = Satellite Observed Amount, Mean for 9 October 1966 -
28 February 1967
NG = Normal Ground Observed Amount, Mean Sunrise to Sunset Value

for October 1966 -~ February 1967

AG = Actual Ground Observed Amount, Mean Sunrise to Sunset Va! e
for October 1266 - February 1567
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5.4.3 Comparison of Dirtributions

Distributicn of ground-observed (tabulated) data and of satellite data are com-
pared in four regions in Figure 5-8 (sumr.er) and Figure 5-9 [winter). It is seen that
the distributions are quite different in the summer, some features being inexplicahle
except perhaps by the short satellite data sample. In the winter, the distributions are
quite similar except ir. Region 4, where poor resolution of small clouds has affected
the data, and perhaps Region 9, where the data analyst's atter .p. to separate cioud

and snow may have been unsuccessful.
5. 4.4 Discussion

The landmarks used in w.is study were located between 35N and 35S, where
cloudiness is predominately cellular (convective). Fuarthermore, for the sample of
stations in the United States the greatest differences were observed during summer,
when a larger percentage of the cloudiness is cellular. It appears that a part of the
differe. ~2 arises because small cellular clouds are nst resolved by the satellite
camera systems (i. ., satellite underestimate). A :.gnificant partis, however,
due to the overestimation of cloudiness in surface obscrvations.

Previous investigators have found indications that observers may cverestimate
cloud cover. Appleman (1962) compared cloud amounts extracted from aerial photo-
praphs with surface ohservations, and Barnec (1966) compared cloud amounts extrac-
ted from TIROS nsphanalyses with surface observations. In both of these studies
cloud amounts extracted from the conventional data were greater.

In a study to determine clear lines-of-sight through the atmosphere, McCabe
(1965) states that, since half the sky dome over which an observer integrates his tctal
sky cover is less than 30" zbove the horizon, the observer's view is often blocked
more by the sides of clouds than by their bases. Lund (1965) has computed the aver-
age "earth cover" for Tampa in August, based on a cloud model with typical cloud
dimensions. His computed "earth cover' is as much as 407 iess than the observed

average cloud cover.
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PERCENT FREQUENCY
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Figare Y-8 Comparison of Ground Observed (Tabulated) and
Satellite Data for Four Regions in Summer
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PERCENT FREQUENCY
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Figure 5-9 Comparison of Ground Obs<:rved (Tabulated) and
Satellite Data for Four Regions in Winter

51

e e e e
N ..
o, T
L ,



In summary, cloud amounts extracted from satellite photography have been
found to be zenerally less than those from surface cbservations. The true cloudi-
ness very likely liea between these two estimates, due to: (1) sate'lite observations
underestimating cloud cover, especially because small cumulus cells cannot be de-~
tected at existing camera resolutions; and (2) surface observations overestimating
cloud cover, because the observer looks at the sides of clouds as well as their bases,
Further studies comparing concurrent satellite and surface observations are needed
to establish more realiably the magnitudes of the errors and determine tie influences
of cloud amount and cloud type; one such study i3 currently underway at Allied Research
under Contract No. NAS 5-10478.

5.5 Example of Tabulated Cloua Cover Data

Table 5-7 presents an example of the tabulated data in a con-
venient format. Computer printouts of the entire data blank and the
map region card decks can be fou.ad in Appendix B.
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Table 5-7

Example of Tabulated Cloud Cover Distributions

CLIMATILOGICAL REGINN NUMBER 1 STATISTICS FOR MONTH 1

UNCONPI TIONAL PROBABILITIES CONC]JTIONAL PROBABILITIES

TIMF (LSTH 24 HOUR TE4PIRAL T 220 NM SPATIAL
Nt 06 7T 10 13 16 19 22 1 2 3 4 5 1 ? 3 4 5
06?2 63 249 44 42 .39 b6 .59 1 .85 ,PR .06 .02 ,2 T ,8]1 .77 .03 09 .0 .

-

olb .12 417 .16 o418 ,19 18 ,15

N

«78 212 .05 +05 &3 2 .70 410 o0 L,20 LO

o6 07 <10 409 AT L1IN 10 .NA

G
1

3 .75 o1N .10 05 &) ¥V 2 .57 429 .0 14 ,0
13

Z2ML=O

ell 410 14 (20 22 ,20 17,10 6 B0 405 .05 05 05 N & .50 ¢ ,07 .29 ,14

«7"T 08 o1 11 V1 .12 ,0Q ,78 S «80 N8 ,05 <05 .22 s .0 0 .0 M 9a
CLl!ATQLOGICA( REGION NUMBER 2 STATISTICS FOR MANTH 1
UNCONDI TIONAL PROBARILITIFS CONDITIONAL PROBABILITIES -

TIME (LST) 26 MOUR TEMPORAL 250 NM  SPATIAL
C1 06 A7 10 13 18 19 22 1 2 3 & 5 1 23 & 8

27 .28 422 18 17 .17 .23 , N 1 «73 406 0% +11 .26 1 63 11 ,"2 21 .M

219 416 o727 21 21 o19 022 420 G 2 -70 410 410 <05 435 G 2 oS50 0 ,N0 .2 .50

: 1 . 1
o1 «NB o1l 10 012 013 412 ,12 V 3 260 413 oG 1% 613 V'3 ,20 o0 .20 20 .40
- E E €

022 23 ¢33 .35 -32‘.33 §26 24 N & ,43 04 .66 025 422 N & .22 o0 ,22 422 o34
e12 <15 14 16 18 .18 .17 ,13 5 .29 N7 ,03 +35 .26 £ 2% o .12 .13 ,50
CLIMATOLOGICAL REGIDN NUMBER 3 STATISTICS FOR MONTH

UNCONDITIONAL PROBABILITIES CONDITIONAL PROBABILITIES
’ TIME (LST) : 24 HOUR TEMPORAL 200 NM  SPATIAL

01 06 "7 10 13 16 19 22 1 2 3 & 5 1 ? 3 4 S

1T 418 .95 N4 (N1 N1l .74 ,09 L 1T .16 ,17 42 .Oé 1 430 .20 L26 ,20 .10

€26 025 e21 419 411-013 618 022 G 2 «05 418 26 042 o111 G 2 ¢ .25 425 o850 .0
: 1

1
032 o13 013 016 o416 17 613 413 V 3 402 015 427 39 41T V 2 o 0 46 .46 ,08
E . F

027 223 433 432 241 439 34 .34 N & 03 009 421 ¢50 J1T7T N & o o 0% 73 ;22,

020 o21 «28 429 3N e30°431 422 5 4C5 406 .18 .52 o2l 8 o) o0 0 o461 959
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FRECEDING PAGE PLANK NOT FILMED.
6. CLOUD MODEL AND DATA MANIPULATION

6.1 Introduction

For the present purposes the cloud cover of the earth!'s surface is defined as
the fraction of definite arca covered by the vertical prcjection of the clouds within
the area. In gen(_eral. the same cioud cover prevails over a number of contiguous
areas. As seen on the grand scale frora weather satellites, most clouds form part
of large scale organized clcud systems. These systems maintain their identity from
day-to-day, while moving at 'speeds characteristic of synoptic systems. The cloud
systems, and subsystems within them, move and deform contiriuously., New systems
are born, only oci:asionally explosively, while old systems dissipate more graduall);.
Accordingly, the cloud cover over one area cannot be considered independently of
that over another nearby area, nor is the cloud cover today necessarily independent
of that yesterday.

Computer simulation oi earth observation from space involves ''flying" the
mission over rﬁany samples of the cloud field that might be observed. - The use of
rea! cloud fields, described by satellite observations or surface observations, would
seem appropriate FHowever, it is difficult to cbtain a sufficiant sample tc get reason-
able statistical stability.

During the early phases of our study of simulation applications of cloud covér
data, consideration was given to possible techniques of generating sequences of com-
puter maps of cloud cover that would have suitable properties of spatial and temporal
coherence. This approach was rejected on grounds of imrpracticability because of the
large amount of computation involved, the large memory requirements tc obtain suf-
ficient density, and the waste of computed data that would occur in the subsequ;:nt
simulation. In its place, we have adopted a procedure of computing conditional cloud
statistics '"'to order," following the path of the simulation., The simulation of cloud
then takes the form of a simple Markhov chain proceeding from each potential earth

observation to the next (see Section 6. 8 for discussion of the propertiuvs of this chaia).

) 6.2 The Cloud Model o L

The cloud model to be used for simulation results f:om the following consider-
ations: 7
‘ a) Each observation from space has agsociated with it a certain characteristic
area of the earth's surface over which the cloud cover must be described to evaluate
the success of the observation. This may vary from a few;a.cres for ground truth
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sites to some 50, 000 square miles for atmosph. ric sounding experiments. The re-
quirements for finding a small area, whether by an astronaut in real time or later in
the data presentation, increases the min: 1um size of area to be considered, since
geographic '"lead-ins' are required. A practical minimu'm area is perhaps a 20 mile
diameter circle, corresponding (fortunately) to the grcund observer's field of view

b} The cloud cover distribution is a strong function of the size of the area
over which the cloud is d=scribed, ranging from a bimodel 0 and 100% frt 2 very
small area to a possible constant 40¢ for the glcbe as a whole., Evidence from this
study suggests that the distribution chianges quite rapidly with viewed area size over
the range of interest.

c) Most earth oriented-observations will be made from fairly low orbit,
ranging from 150 to perhaps 600 miles. Thus, the attempted observations will occur
-in a éequential chain in orbit order, or in the form of isolated diverted attempts to
observe specific targets. Observations from earth synchronous hezight would also be
made in ;)rganized sequence. 7

d) The same psint may be observed at intervals of about one orbit, two orbits,
12 hours, 24 hours, or much longer. The success of ceftain experiments r;-nay depend
on the ability to make unbroken sequential observations.

. e) Computer simulation of cloud contingent evenis may take one of two forms:
(1) derived statistical distributions of certain parameters of miss;ion or experiment
success; (2) Munte Carlo simulation of the contingent parts of the mission or experi- -
ment. Hyb:id applications may also occur; it may be desirable to work out probability
distributions of the observational success consequences of cloud cover, then perform
a Monte Carlo simulation using observational success as the randbm variable rather
than cloud cover. Such a hybrid system could have bezn used in the simulation exam-
ple of Section 9. 1.

The cloud '""model'' adopted to meet taese requirements and those of computa=
tional convenience has the following description:

a) The earth is divided into a number of regions, described by 29 regional
types. The cloud distributions, conditional and unconditional, are the same every-
where within each region. ) ,

b) Regional boundaries are 2lso ixﬁpermeable boundaries between cloud systéms
so that there is no conditionzlity across boundaries. This is literally true for many
boundaries, ‘and seems to be effectively true for many of the others.
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c) Because cloud covet must always bs interpreted in terms of its effect on
otservation before it can be used effectively in simulation, only 5 categories are used
to describe cloud cover., The most innortant events, clear and overcast, are given

unique categories ‘
d) Diurnal and seasonal cloud variations for most regic:s are so sisong that

unconditional tabulations at 3-hour intervals and by month are giver.
e) Spatial and temporal conditionz1 distributions are given for one distance
(200 nm) and one time interval (24 hours). Only two seasons are represented, and
no account is taken of any diurnal changes in the conditional distributions.
f) The assumpticn is made that spatial conditionality is independent of direc-
tion (it isn't). Serious consequences of this assumption are avoided by the limited
meridional extent of most regions and the impermeability of region boundaries.
g) Conditional distributions for distances and times otier than those presented
are to be found by straight line interpolation (or extrapolation) between the given ele-
ments and the degenerate (0 or 1) conditionality a* zero distance or time.

h) Joint probahility di~tributions of dependent events are to be found by
P{ab) =P(a)+ P(b|a)

_However, since P(a) and P(b{a) are drawn from different populations, P(ab) # P(ba).
Further, the two marginal distributions P' (a) = £ P (ab) and P! (b) =‘:§ P (ab) will not
- be equal. -

' i) Sample cloud covers are generated by a simple Markhov chain process; the
cloud cover of the first pdint encountered in a region is found from a random sample .
from the appr’épriate unconditional distributi—qn. Subsequent zloud covers are foundyc —~
from random samples from an appropriately scaled distribution conditional on the
cloud cover of the prior sample, If the space between observations exceeds 800 miles
or 36 hours, # new unconditionalﬁ start is made to the chain. ‘

6.3 Glossary of Terms

B

We have chosen for convenience to keep track of the variour scaled and unscalad
probability distributions by use of a set of FORTRAN mnemonics whkich are somewhat
descriptive of the content of the distribution. Table 6-1 defines thess mnemonics., These
- terms will be used throughout the remainiag sections to dpiigni.ta the varicus distri-
butions. Techniques for computing the distributions will be delc:ibéjd {n the remain- )
" der of Section 6 and 7. ‘ - . C /
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Table 6-1

Definition of Terms

UNCON
SCOND

TCOND

SUNCON
CONNEW
CONDIS
CONTIM

SCSCON

5CTCON

- TSCON

TSSCON

DICON

DITCON

Unconditional Distribution for Sampiirg Area Size 3060 nm.

Spatial Conditional Distribution for Sampling Area Size 30-60 nm and
Distance 200 nm from UNCON.

Temporal Conditional Distribution for Sampling Area Size 30-60 nm
and 24 -hours after UNCON: '

Scaled Unconditional Distribution for Enlarged Sampling Area Size.
Conditional Distribution Scaled for Enlarged Sampling Area Size.
Spatial Conditional Distribution Scaled for Distance Other than 200 nm.

Temporal Conditional Distribution Scaled for Time Other than
24~hours, :

Spatial Conditional Distributicn Scaled for Both Enlarged Area Size
and Distance Other than 200 nm.

Temporal Conditicnal Distribution Scaled for Both Enlarged Area Size
and Time Other than 24-hours

Conditional Distribution Scaled for Both Time and Distance for
30-60 nm Sampling.

Conditional Distribution Scaled for Time, Distance and Enlarged
Sampling Area Size.

Pseudo-Conditional Distribution Matrix Generated while Scaling
TCOND fo;qaiurnal Effects.

Diurnally Scaled Temporal Conditionals,

58




R A

W,

b e e e R

L e e W e

AT

6.4 [ caling for Distance

Data for 200 miles distance from the initial point are tabulated in the data bank.
We present here the mathematical technique for scaling these conditional statistics
for distances other than 200 nm. As mentioned in paragraph . 2, the assumption
is made that the conditional probabilities decay linearly with distance. This decay
will be demonstrated and discussed in paragraph 6, 4. 1 below.

The procedure for scaling for distance based on the linear assumption is thus
a relatively simple on.. Two conditions are imposed. The first concerns the area
within 200 miles i. e., scaling for distances less than 200 miles, the secend is for
scaling beyond 200 miles. For scaling within 200 miles, one uses the following two
formulas. For probabilities on the diagonal on the 5x5 conditional matrix i. e.,

1 given 1, 2 given 2, etc. one uses

Scale (d)

PC)=1-—5

{1-SCOND) (1)
If the value in question is not on the diagonal i. e., probability of 1 given 2, 1 given 3,
etc. the following formula is used for scaling

P (C) =_§_9_;_"5‘z_@)_ (SCOND) ° (2)

_ When the required disiance is greater than 200 nm, the following condition is
also imposed, For values on the diagonal, the scaled values (scaled using the formulas
immediately above) must remain greater than the unconditional probability of the diag-
onal value, 1. e,, the scaled probability of 2 given 2 must be greater than the uncon-
ditional probability of 2. If this test fails, the entire horizontal line of the 5x 5 matrix
is replaced with the uncoanditional statistics as demonstrated in Table 6-2 below. In
a similar manner for values not on the diagonal, the scaled values must remain below
the unconditional probability of the given cloud group, i.e., P(2[1) and P(Zl 3) etc.
must be smaller than the unconditional probability of 2. If this test fails, the entire:
horizontal line of the 5x 5 matrix is also replaced by the uncoaditional statistics.

Thus if either the diagonal value is less than the unconditional value or if the non-
diagonal value on any given line is greater than the unconditional value,the whole line
is replaced by the unconditional statistics. This amounts to saying that if either of
these tests fail, the cloud cover statistics for this cloud category beyond this point
are no longer conditional upon the first point but rather assume the unconditional
distributions. S
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6.4.1 Validation of Scaling for Distance Frocedure

Region 11 has been chosew. to exemplify the decay of the conditional probatil-
ities with distance. Figures 6-1 through €-5 are graghs showing the decay of the con-
ditional probabilities with distance for winter and summer. In Figure 6-1 for example,
the decay of P(li 1) etc. demonstrated. Note that the linear assumption of decay
(a straight line drawn between probability 1. C and the value n..arest 260 miles) approx-
imates the deca; of P(lll), P(Z!Z). P(3|3), etc. The poorest approximation occurs
in tne middle cloud groups, in particular 2 (3|3). Note, hcwever, that beyond approx-
imately 200 raiies, most of the statistics are approximated by the unconditional pro-

bability.
6. 4. 2 .Example for Scaling for Distance

. Two examples are presented below to demonstrate the scaling of the con(ii-
tional probability distributions (as tabulated in the data bank) for distances other than
200 nm. In examgle one (Table 6-2) the scaling has been accomplished for a-distance
of 350 nm. Note that, in this case, the additional test for SCALE greater than 200 nm
(see paragraph 6.4 above) has been imposed. The difference in the 5x5 matrix shown
at the top of the Table (SCOND) values and those shown at the bottom (new -CONDIS)
values are significant. -

In Table 6-3 we show an example of scaling for distances less than 200 miles
(160 nm). The additional test for conditionality with regard to the unconditional pro-
babilities is not iinpoagd in this case. Note the increas~ in the values on the diagonal
of the 5x5 matrix between the SCOND and the CONDIS matrices shown in Table 6-3.
Thus as one moves closer than 200 nm the conditional probabilities become more
‘diagonalized (i. e., the cloud cover at the second point is mo re dependent on cloud

cover at the first point) when the distances are less than 200 nm.
6. 5 Scaling for Time
Scaling the conditional distributions for time is handled in a somewhat similar

way to that for distance, In this case, we assume that the statistics are no longer
" conditional (see paragraph 6. 5. 1 below) for times beyond 36 hours.

.
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e

ON the diagonal

p(C):l.-EEE%fil (1 - TCOND)

OFF the diagonal

Scale (T)

P(C)=—33

(TCOND)

The first formula is used for values which lie on the diagonal of the 5x 5 matrix
while the second formula is used fcr those which lie off the diagonal (similar tc the

discussion in paragraph 6. 4 above).
6.5.1 Example of Scaling for Time Less than 24 Hours

Data are presented in Table 6-4 exemplifying avscaling of the TCOND (time
conditionals) for an observation 20 hours after the initial observation. The forrulas
presented in paragraph 6. 5 {(above) have been used to scale the TCOND values, This
results in a new 5x 5 conditional distributioxi (CONTIM). Note that as time decreases

from 24 to 20 nours the values of the parameters on the diagonal increase.

6.6 Diurnal Change

The 24-hour conditional distributions, and any scaling of them for other time
intervals, contain no direct provision for introducing the effect of diurnal variation,
which in some regions is the principal factor affecting cloud cover. A recommencded
procedure is as follows:

1. Generate a pseudo-conditional distribution (DICON) between the uncondi-
tional distributions at the local times of the first and second cloud events. This can
be done by first forming a joint prcbability distribution between UNCON (A), the
unconditional distribution of event A, and UNCON (B) the unconditional distribution
of event B (later in time than A). The assumption is made that the event B corre-
sponding to a specific event A is the one occurring at the same cumulative probability
level in the unconditional distribution at the second time as does the event A in the
unconditional distribution at the first time. This satisfies the intuition that diurnal
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(B)

Y

Table 6-5

Comnputation of a Pseudo-Conditicnal
Distribution for Diurnal Variation

UNCON
EVENT
Cloud (A) (B)
Category Prob. Cum. Prob. Cum,
1 .2 .2 .3 .3
(A) 2 .5 .7 .3 .6
3 .2 .9 .2 .8
4 .05 .95 1 .9
5 .05 1.0 .1 1.0
UNCON
Event (A) Event (B)
Joint
Cloud Rated Cell Rated Cloud
Category | Probability Probability Number Probability Probability Category
1 .2 { .2 I-1 .2 } .3 1
.1
g — 7
2 .5 .3 2-2 .3 } .2 2
.1 !
o T~
3 .2 { 3-3 _ } 2 3
.1 .1
\
3-49 ——
4 .05 { 05— .1 } .1 4
\
.05 }
5 . 05 { .05 5-5 . 05 .1 5
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Table 6-5 (cont'd)
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change is superposed on more grosa synoptic scale varianility, so that if event A
represents a lesser cloud cover than normal, the succeedi~_ ‘ent B should also
represent a smaller cloud cover than normal at that time. -3 an aid to the reader,
we define PA(I), PA(Z), etc. to be the probability of cloud group 1, 2, etc. for
event A, and PB(I), PE(Z), etc. to be the corresponding probabilities for event B.

The cloud categorization intervals fall at different cumulative probabilities in
the distributions of events A and B. Thus it is necessary to divide up the intervals of
the distribution of event A and assign them to intervals of the distribution of event B,
assuming uniform distribution within an interval. To form the joint probability ma-
trix shown in Table 6-5(C), we fir 1 the fractional part of PA(I) that is contained in
(jointly distributed with) PB(I ). In the example shown in Table 6-5(B), all of PA(I)’
0.2, is contained in PB(I). Thus, 0.2 is entered in the joint probabilitvy matrix at
position A = 1, B = 1 (cell number of joint ‘able), Since PB(I) is 10% greater than
PA“ ), this additional 0.1 in 'PB(I) could not have occurred jointly with PA(I).
Therefore, it is placed in the matrix (Table 6-5(C)) at position A = 2, B = 1.

In a similar way, we rate (jointly distribute) PA(Z) with PB(Z) and find that
only 0.3 are contained in both. Therefore, 0.3 is located inthe joint matrix at
A =2, B=2 Again there is an additional part to be allocated; this time 0.1 of ’
PA(Z) must have ocurred with PB(3); it 18 thus entered in the matrix at A = 2, B = 3.
(For Monte Carlo computational procedures, it may be more convenieat to . »rk with
the UNCON cumulative probabilities. )

.'I‘his process is continurd for all categories as shown. These individual
¢ 1tries, divid~d by the marginal total UNCON (A), become the entries in DICON
(CB CA)'

If any element of UNCON (A) is zero, a suitable flag should be entered in the
cell number of the joint distribution into which an entry would fall if that element
were very small. In forming the DICON matrix, by division thro 'h each rox by the
corresponding element of UNCON (A), the rvle is ''flag divided by zero is 1.0."

This results in an appropriate entry in DICON to take care of the eventuality of a

"forbidden'" event A materializing as a result of other manipulations. If an element

of UNCON (B) is zero, no special provisions are required, as the resulting distzi-
bution will "'lock out' that category.
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2) Form the diurnal - temporal conditional distribution (DITCON) by

5
DITCON (ai bj) = kfl DICON (ai )’ CONTIM (Ck bj)

where CONTIM is the scaled derived temporal conditional appropriate to the time
interval.

3) Use DITCON in place of the temporal ccuditicnal in question. The DITCON
operation is not required for time intervals of less than 2 hours or approximately
24 hours,

If it is desired that the resuiting distribution avoid total iockout of cloud cat-
egories of zero probability in UNCON (2), the formula for DITCON may be reversed

5
DITCON (a; |b;) = . En CONTIM (a; |c,) * DICON (c, [5.)

The two formulas differ in the effective order in which the operations of
diurnal change and temporal conditionality are performed. The first procedure,
recommernded for most applications, performs the conditionality operation first.

As noted earlier, the straight line estimate of temporal conditional distri-~
bution at time intervals less than 24 hours-tends to overestimatc the persistence, i.e.,
produces a distribution too strongly diagonalized. A:large part of this uverestimate

may be due to the ignored diarnal change. The DITCON operation reduces the diag-

-~ onalization in a fashion directly related to the degree of diurnal change, lending some

confidence to its validity.
6.7 Scaling for Both Time and Distance

Certain simulation situations may raquire that a point or ar~a on the earth be
observed on a given.orbit and a second nearby point be observed on a somewhat later
orbit. For this situation, where ihe time difference between the first and the second
observation is less than 36 hours and where 1he distance between the two observed
points is less than 800 miles, the conditional pi'obabilitiea must be scaled for both
time and distance concurrently, The following procedure has been established to
accomplish tkis concurrent scaling for time and distance. '
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6.7.1 Procedure for Scaling for Time and Distance

a) Separately calculate CONDIS and CONTIM for the appropriate distance and
time, resvectively, from SCOND and TCOND. Perform DITCON diurnal operation on
CONTIM if required.

b)

5
S l = X '- N 'C . N
TSCON (ai bj) - l'LCO'\DIS (ail k) CONTIM (cklbj)]

for a; from 1 to 5 and bj from 1 to 5.
¢) If the condi‘-ionals have been modified for viewed area size (see Section 7,

substitute TSSCON, SCSCON, and SCTCON for TSCON, CONDIS, and CONTIM respec-
tively.

6. 7.2 Example for Scaling for Time and Distance

An example of scaling for time and distance is presented in Table 6-6. At the
toé of the Table (lateled A) are data scaled according to the proc:dure demonstraied
in paragraph 6.7.1. Here the scaling is for 24 hours and 200 nm for a sampling area
size of 60 nm; In part B of Table 6-6 the data are scaled for 20 hours, 160 nm and
for a sampling area size of 60 nm. In part C of Table 6-6 an example is shown where
the time has been scaled to 20 hours, the distance to 160 nm and the sampling area
cize has also neen ch'an‘ged and enlarged to 150 nm. * These matrices can be com-

pared with the unscaled data shown in Tables 6-2 for distance and 6-4 for time.

* Procedures for enlarging the sampling area size are discussed in Section 7.
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Table 6-6

Example of Scaling for Time and Distance

A - Scaled for Time = 24 Hours, Distance = 200 nm
Sampling Area Size = 60 nm

. 46 . 07 .09 .16 .22
.35 .09 .19 .17 .29
.27 . 09 .11 .23 .30
.28 .08 11 .24 .29
.28 .07 .11 .20 .34

B - Scaled for Time = 20 Hours, Distance = 160 nm
Sampling Area Size = 50 nm

.53 . 07 . 07 .14 .19
.31 .14 . 09 .16 .30
.23 I S S ¥ .25 .27
. 25 . 08 .10 .31 . 26
.24 . 06 .10 .19 .41

C - Scaled for Time = 20 Hours, Distance = 160 nm
Sampling Area Size = 150 nm

.15 . 09 .20 .24 .32
11 .10 .18 .28 .33
. 09 .10 17 . 217 .37
. 07 . 08 17 .29 .39
. 06 . 08 17 .24 . 45
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6.8 Markhov Chains
6. 8.1 Introducticn

The cloud modet we have adopted calls for generation of cloud fields or cloud
statistics as Markhov chains. It is of interest to outline some of the prcperties of the
Markhov chain and to exam:ine the behavior of the chain used with our cloud distribu-
tions.

A simple first order Markhov process is defined as a stochastic process for
which the current value of the random variable depends upon any set of previons

values, but only through the most recent value. The probability of the joint event is:

PXyrX g Xge-ene ' xn) =pix)) vgzp(xvixv-l)

so that a Markhov process is defined by the initial unconditional aistribution p (xl)
and the succeeding set of conditional distributions.

The use of a simple Markinov process as a cloud model needs some defense.
Internal evidence within our statistics, such as the appearance of what we have termed
antipersistence in the conditional distributions at some distances, suggest that the
simple Markhov chain model cannot be a complete description of the processes at
work. We believe, however, that it is an adequate model for most purposes, sub-
ject to the provisos that the chains should not be permitted to get too long, and that
not too much faith be put in the ability of the model to estimate the probability of
relatively improbable joint events. Perhaps its greatest virtue is its flexibility of

application and the relatively small computational problem involved in its use.
6. 8. 2 Behavior of Markhov Chains Using Cloud Data

Use of our data in the recommended manner in Markhov chains helps compen-
sate for some of the known deficiencies of the data. The Markhov process using our
data is not stationary in the sense that the expectation and variance of any sample
is not independent of its position within the chain. The first element of the chain,
drawn from the ground-observed unconditional distributions, is known to be biased
toward greater cloud amounts. The subsequent conditional links are based on
satellite-observed parent populations known to be biased toward lesser cloud amounts,
Thus, the first member of the chain has a ""pessimistic" expectation. Succeeding
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events along the chain have progressively more optimistic expectations, finally con-
verging on the expectation of the parent satellite distribution. Thus, a chain of an
appropriate iength will have an overall expectation of mean cloud cover near the
"true" value. Since we do not know the ''true'" expectation, there is no immediately
satisfactory way of defining a chain length which will have the desired expectation.
The variance of the entire chain would appear to be greater than the ''true'

vaciance because of the trend of the expectation. However, the artifice of the straight
line approximation to the conditional distribution at less than 200 miles or 24 hours,
which in gene-ai overestimates the diagonal elements of the scaled conditional distri-
bution, operates to reduce the variance of individual events along the chain. Since
these variances are greater in most regions than the contribution to variance from
the trend of the expectation, reasonable compensation may occur for chains of moder-

ate length.
6.8.3 Use of the Markhov Chain in Simulation

The following procedures are recommended for the use of the Markhov chain.
1. Generating a Distribution of Joint Events ¢

Order the events in one region in a logital chain in space and tir.e. Section 6.9
gives some suggestions for the more difficult situations. Normally the chain should
be limited to 3 or 4 dependent events, if for no other reason than to keep the subse-
quent computation and memory requirements within bounds. Then the joint distribu-

tion is given by
P(ai, bj' Cprrvenes ) = P(ai) . P(bj ai) . P(Ck bj). .

where the l-"(bj ai) etc, are conditional distributions scaled for space and/or time
between each pair of observational events. Note that 5" storage areas and 5! multi-
plications are involved in creating the joint distribution, where n is the number of
events in the chzin, and the cloud cover ir distributed in 5 categories.

Normally the joint distribution is used by forming certain marginal or joint
totals; i. e, ,the cloud sequences 1-1-5, 1-1-4, 5-1-1, and 4-1-1 may all have the
same observational success conseguence, and would be grouped together. Such
groupings can be done during computation, significantly reducing storage required
for interim products.
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2. Monte Carlo Simulation

The computational load involved in analytically handling even fairly short
Markhov chains suggests that ~olution by random sampling (Monte Carlo) techniques
may frequently be preferred even where analytical expansion is possible. This is
particularly true where the ocurrence of improbable events does not significantly
affect the results. In many other simulation situations, the decision processes under-
lying the observatiors may be so complex as to defy tractable analytic expression.
Monte Carlo sampling then offers a straightforward procedure for arriving at a

reasonably confident estimate of the probability of joint events.
The Procedure:

Qrder the events as before. Here, there is no fundamental objection to
branching chains as a means of keeping the chain length short. Compute the scaled
conditional distributions between each pair of observational tri.als, Sum all distribu-
tions, including the unconditional distribution of the first observatioral trial, to form
cumulative distributions. Generate a random number uniformly distributed in the
range 0-1. Find the cumulative class interval of the unconditional distribution into
which the random number falls. This class is the cloud category of the first event,
which is appropriately recorded. Estimating the impact of the cloud category on
observational success may require a further random process.

The cloud category just found bescomes the ''given'' for the next observational
trial. Another random number is genérated, and compared with the cumulative dis-
tribution conditional on the previous cloud cover. This results in another cloud cover,
and the process is repeated to the end of the chain. The entire sampling process must
then be repeated a large number of times. The number of samplings depends upon
namber of categories into which the final distribution of observational success is to
be divided and an a priori estimate of the probability of the least probable joint event
of interest. The number of samplings should be sufficient to give at least 5 such
events. '

Section 9. 1 gives an example of a practical Monte Carlo simulation of a { .rly

complex situation.

78

[P



6.9 Ordering of Events -~ The Characteristic Velocity

Because of the basic Markhov chain model we have adopted, the ordering of
observation events is important. As a general rule, the events should be ordered in
a chain of greatest proximity within the region. The chain is broken when the trial
of observations passes out of the region, but is resumed if the region is revisited
within 36 hours,

Organization into a chain becomes more complex when subsequent orbits
cross each other inside the region. The chain logically branches at the point of cros-
sing, which of itself causes no mathematical problems. Care must Le taken, of course,
to maintain the proper order of conditionality.

Figure 6-6 shows a path of conditionality for a characteristic situation. Threc
orbits overlap within a region. Observations are attempted over a series of areas
centered on the subpoint. The path of conditionality leads from the original uncondi-
tional entry of the first orbit to its intersection with the second orbit, where 2 three-
way branch occurs. The path of conditiornality runs backward along part of the second
orbit, causing no logical difficulty, since we have postulated that spatial dependence
is independent of direction. Although time is also nominally running backward, orbital
speed is sufficient to make all observations on one orbit practically synchronous.

At the branch point, it may be necessary to go from orbit | to orbit 2 via a
temnporal conditional transformation if the orbital period is 2 hours or more. The
Same process occurs at the branch point between orbits 2 and 3.

At the intersection of orbits 1 and 3, a potential ambiguity occurs, The same
area will be observed 3 to 5 hours after it was first observed, but along a conditional
path of some length from the first observation. A decision must be made whether to
terminate the orbit 3 chain before the intersection and to continue orbit 3 dependent
on the prior observation on orbit 1, or to continue the chain across orbit 1. In the
Present case, the requirement to keep the chain short may compel the first alterna-
tive. ‘

In other cases, however, many such decisions may be required, and little a
priori information may be available on the path of conditionality. The example in
Section 9.1 is such a case. In these situations, a mechanical protess of ordering the
events is required. ’

In the general case, the observational events may be randomly ordered in
space and time. We wish to establish a means of comparing space and time so that
we can trace a path among the events that orders them in logical proximity. To do
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this we have defined a quantity to be called the characteristic velocity. This is a

quantity, having the dimensions of a velocity, which multiplies the time base of the
linear decay of conditionality of the temporal conditional distribution to make it con-
gruent with the spatial conditional distribution.

There is, of course, no single such velocity. An estimate of a characteristic
velocity is found by the following process.

1) Find the highest conditional probability on the diagonal of SCOND. Call it
SMAX.

2) Read the corresponding element of TCOND. Call it TMAX.

200 (1- TMAX) Knots

T =
3) ThenV 7T (1. 5MAX)

Typical characteristic velocities are of the order of 20 knots, giving a feeling
of physical reality to the definition.

Application of the tharacteristic velocity in ordering a chain is as follows:

1) Sort the observztion events by region. Within each region, the initial
order shouid be the order of probable encounter.

2) Assign a local time of encounter to each event.

3) Compute an equivalent distance between the first event and all others; a
convenient formula is

s? = 3600 [(A LAT)® + (& LONG)(COS(LAT))2]+ (v At

where the terms are self evident,

4) The event having the smallest value of S2 becomes number 2 in the chain.

5) The process is repeated using event 2 as the starting point.

6) If branchinj is to be considered, is the smallest value of S2 found in (5)
larger than the second smallest found in {3)})? If so, a branch is originated and it wili
be necessary to make subsequent comparisons along both branches.

7) Continue the process starting at (5) until all points are ordered, Unless it
is obvious that branchtng’is required, it is probably best avoided to reduce program

logic and computation volume.

The example of Section 9,-1 gives a complete demonstration of the use of thesz2

procedures.
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7. ENLARGING THE SAMPLE AREA SIZE
7.1 Introduction

Earlier sections have referred to the change in cloud cover distribution re-
sulting from change in the area size over which the cloud cover is defined, It has
been pointed out that dramatic changes take place over the very range of sample
areas that are to be used in earth-oriented experiments, and thus in simulation,

It is required, therefore, that a reasonablyv effective method be found for generating
suitable clond cover distributions for enlarged sampling areas from already available
information - the available cloud statistics, Collection of adequate samples of raw
satellite data seems prohibitive, at least until suitable compilations of digitized data
become available,

The general features of the change of cloud cover distribution with size of
sarmple area can be readily visualized. The cloud cover over a point can have but
two values - clear and overcast. The cloud cover over the entire earth seems to
stay reasonably constani at perhaps 40%. Intermediate sized areas have cloud dis-~
tributions which pass from the U shape of small areas to more bell-shaped distribu-
tions at rates which depend upon the prevalence of large-scale cloud systems. The
temperate zones, in which large cloud systems are the rule, show characteristically
U or J-shaped distributions at the 30 mile scale size of the ground observer. Tropi-
cal regions may already exhibit bell-shaped distributions at this scale,

The effect of scale size on the distribution can be seen from the examples of
Figure 7-1, which are taken from limited samples of satellite data. A distribution
originally bell-shaped at 1° area becomes more so at 3° and 5%, at the expense of the
already rare clear areas; overcasts also become less probable. A J-shapead distribu-
tion tends toward a skewed bell-shape. A U-shaped distribution first becomes binodal,
then beil-shaped with increase ir sample area scale. In all cases, thr probability of
clear sky becomes quite small at a 5° (300 nm) scale.

The effect of increasing the sample area size can be demonstrated by a simple
computational exercise of doubling the sampling area.

The cloud distribution in the two areas can be expressed as the joint distribu-
ticn of the two sets of events. The initial computation will assume independence be-
tween events in the two areas. Table 7-1 cutlines the computation of the joint distri~
bution from synthetic data.
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The joint distribution is defined by:
PJOINT (a, b) = UNCON {(a) - UNCON (b)

Each element of the PTJOINT matrix corresponds to an average cioud cover
over the doubled area. These cloud covers can be reclassified according to the
original cloud cover grouping scheme (Table 5-1). Table 7-2 gives the cloud group
assignment of each location in the PJOINT matrix. This location matrix i¢ univer-
sally useful in area size computations, and is called KWHERE.

To obtain the cloud cover grnup values at each loration in the KWHERE
matrix the cloud amounts of the joint eveats were averaged. For example, cloud
cover 1 for the enlarged area can only result if both areas, used in the average, had
cloud cover 1. For all of the upper left to lower right diagonal values in the KWHERE
matrix (Fig. 7-2), the averaged cloud covers remain the same; i. e. cloud cover 2,
ave'raged with 2, results in cloud cover 2, 3 given 3 in 2, etc. The non-diagonal
values are derived by averaging the rnean cloud amounts from each gr_up i. e., group
3 with a mean of 3.5 tenths and group’l witn 0 tenths averages to 1. 75 tenths. Trans-
iated back to cloud groups, this is group 2. Thus, cloud group 2 is shown in the
KWHERE matrix at 3 given 1 and 1 given 3. Similarly, for all other non-diagonal
values.

Conversion of PJOINT to the unconditional distribution scaied for the doubled
area size, SUNCON, is achieved by the operation of adding together all elements of
PJOINT having the same untry in the matching location of KWHFRT. The result,
shown in Table 7-3, .. rather startling. The previously U-shaped UNCON has be-
come the strongly peaked SUNCON.

This extreme change in cloud cover distribution with a relatively small change
in area size results from the untenable assumption oi independence between cloud
events in contiguous areas. Lets us repeat the computation, now usinz a synthetic
set of conditional probabilities to describe the dependence of e+ ents in the second
area on those in the first. Table 7-4 outlines the computation.

PJOINT (a,b) = UI.CON (b) « CONNEW (a|b)

is the general case; CONNEW i: the spatial conditional distribation appropriately
scaled to the distance between centers of the areas,
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Table 7-1

Computation of Joint Distribution, Independent Data

a

Cloud PJOINT
Group UNCON 1 2 3 4 5
1 .3 .09 .03 .03 . 06 .09
2 .1 .03 .01 .01 .02 .03
3 .1 .03 .01 .01 . G2 .03
4 .2 . 06 .02 .02 .04 . 06
5 .3 l .09 .03 .03 . 06 . 09
Table 7-2 Table 7-3
Cloud Group Location Matrix Cloud Cover Distribution for
Doubled Area, Independent Events
Cloud KWHERE 1 [Cloud
Group 1 2 3 4 5 Group- UNCON SUNCON
1 1 2 2 3 3 1 .3 .09
2 2. 2 2 3 3 2 .1 .15
3 2 2 3 4 4 3 .1 .41
4 3 3 4 4 4 4 .2 . 26
5 3 3 4 4 5 5 .3 .09
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Even though CONDIS is only moderately diagunalized, the resulting SUNCGN
distribution more closzly reszmbles its parent UNCON distribution. Figure 7-2
compares the SUNCON distributions (PZA) with UNCON (FIA).

Let us now consider ths more general case of viewed area size several times

the area on vhich the statisticai distributions are based.
7.2 An Approach to Scaling for Enlarged Sampling Area Size.

The information at our disposal for the task of enlarging the sampling area
size is the unconditional distribution, valid for a sampling area of 30-50 nm diameter,
and the spatial conditional distribution, defined for areas about 60 nm diametex with
centers separated by about 200 nm. A straight line interpolation or extrapolation

has been adopted to find conditional distributions at other distances. No information
is available to define the conditional dependence of cloud events within an area on

moere than one of its neighbors.

Let ¢s initially investigate some properties of a straight chain of 50-60 mile
square areas, corresponding to a diameter of a larger circle. Let eack member of
the chain be dependent unly on the first member. The straight line approximation to
the scaling of the spatial conditional distribution then gives rise to iadividual PJOINT
distrib\‘ltions, the elements of which are linear interpolations beiween the unit diag-
onal PJOINT of the first member of the chain, and PJOINT of the last. It car he
seen that the distribution of the total cloud cover in this chain can be descrikzd by
PJOINT of the last element, internally summed as before by reference to the
KWHERE locator matrix.

Lacking data for two-way conditionality, we have taken the distribution of
cloud cover in the diametric strip as the distribution for the entire circle. Pragmatic
success of this procedure has led us to scek the properties of cloud cover that contrib-
ute to its success. Cloud syster.‘-; are usually of larger scale than even the enlarged
Asamp-ling areas. The cloud cover, rather than being randomly distributed in the sam-
pling area, simply appears as a gradient across the area. This then reduces the cal-
culation of the cloud distribution over the entire area to a one-dimensional linear pro-
blem, similar to the procedure we have adopted. We have reasonable verification of

the success of the procedure, as outlined in later paragraphs.
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7.3 Procedure for Computation of Unconditional Distribution Scaled for Sample
Area Size. :

We recapitulate the procedure for finding SUNCON.

1) Tabulate the unconditional and conditional distributions for the required
regions, month and time of day.

2) Scale the conditional statistics, using the procedures detailed in Section 6,
to a distance which corresponds to the diameter of the required enlarged viewea area.

3) The unconditional distribution UNCON is multiplied into the conditional
distribution matrix CONNEW.

4) The resultant joint distribution matrix is PJOINT summed using the
KWHERE matrix for reference.

5) A new unconditional distribution, SUNCON, applicable to the enlarged

viewed area size results.
7.4 Validation of Scaling UNCON for Sampled Area Size

A few special data gxtractions from satellite data have been made to validate
the sampled area scaling pi-ocess. These validations have been made for summer
samples from Regions 4, 19, 11, and 9. Figure 5-8, shows the comparison between
the UNCON data and the satellite observed distribution from which SCOND was com-
posed. Agreement is indifferent at best, so these data should provide a critical test .
of the capability of our procedures to produce reasonable values of SUNCON from the
available data.

Computations and satellite data extractions have been made for 3% (180 nm)
areas. Figure 7-3 compares the satellite-observed and computed resulits. Agree-
ment is fair, the major disagr'eements arising from the larger discrepancies in
source distributions. Comparison with Figure 5-8 shows that the computed distribu-
tion is a better approximation to the observed than either parent distribution, xz tests
show no evidence tnat, in a sample of 90 trials, the calculated and observed distribu.

tione did not come from the same population.
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7.5 Computational Procedure for Enlarging the Area Size for Conditional

Distributions

The procedure for enlarging sampling area size for conditionai distributions

is similar to, but more involved than the procedure for the unconditional distributions.

Referring to Figure 7-4, we are given unconditional distributions for the area

represented by "a'* and conditional statistics for an area '"c'' some distance A from

area "a'". What we wish to compute is the conditional probability distribution for

new enlarged area B given the unconditional probabilities for new enlarged area A

(both areas have been enlarged to the new diameter a).

Thus what is required is to

first expand area "a' to area A using the techniques described in paragraph 7. 3 above.

Then to obtain the new 5x 5 conditional probability matrix for area B, given A we

define:

P (A, B) = joint probability of cloud cover in A and B

The computational algorithm for accomplishing this multiplication of probabilities is

to perform the muliiplications indicated in Figure 7-4 where a schematic form for the

matrices has been used. In this Figure the designators have the same meaning as

defined in Section 6, CONNEW is the expanded sampling area space conditionals

(SCOND), etc. The joint probability of events in all four areas is:

P(abcd) =P(a)+ P(bla)- P(dlb)- P(cld)

where the order of conditionality is somewhat arbitrary.

We define the cloud cover in area A to be the average of the cloud cover in a

and b while the cloud cover in B iz the average cloud cover in c and d. Thus, we can

write tormally:

P (A, B) =P (ab, ¢d)
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To find P (ab. cd), the KWHERE locator matrix is used 4-dimensionally. This involves
assigning values to ab from the a and b locations in the 4-dimensional PINT matrix,
and to cd from the ¢ and d locations. The result is the two dimensional joint proba-
bility table P (A, B). This is transformed to the conditional probabi'ity by division

by the marginal total.

P (A, B)

P(B|A) = ZP (A, B)

The process of finding temporal conditional distributions of enlarged sample
areas is identical, with the exception that CONTIM is substituted for CONDIS.
CONNEW (cld) should be computed for the local time of event B, and the DITCON
operation (Section 6. 6) should ke performed in finding CONTIM.

7.6 Examples of Conditicnal Distributions for 180 Nautical Mile Sampling Areas

No suitable data are immediately available for validation of the procedure for
computing conditional distributions of enlarged areas, so reliance must be placed nn

examination of sample calculations for reasonableness.
Examples of conditional and unconditional distributions scaled for time and
distance were presented in Section 6 above, Here we present examples of conditional

distributions scaled for larger sampling area size.

Table 7-5 presents unconditional and conditional statistics for a sampling
area size of 60 nm extracted directly from the tabulated data ror Region 19. This
data is for 1300 local time for the month of January. Table 7-6 presents the distri-
butions resulting from application of the techniques described in Paragrapls 7,3,7,5
above for an enlarged sampling area of 180 nm. Note the differences in the two con-
ditional matrices, particularly those values which lie on the diagonal. As might be

expected, the middle cioud group, 3, becomes a more probable joint event.
The SUNCON distribution, found as a by-product, (one of the marginal totals .

EP(A, B)), has some int~resting properties. The probability of clear skies is

little changed. The probability of partial cloud almost vanishes ian SUNCON, while
che slight probability of cloud group 3 in UNCON is replaced with a fairly high pro-
bability in SUNCON. Most nateworthy is the drop in the probability of overcast,
raatched by a distinctly lowered conditional SI 5 1n SCSCON. None of these features
violate our sense of what may be expected, and thus the new distributione may be
accepted as providing more information than no knowledge at all, even if they have

not been demonstrated to be ""correct. "
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Some comment is required on the use of these derived distributions in simu-
lation. Each conditional distribution derived for our enlarged sample area represents
a 3-step Markhov chain. Two of the steps are formally removed by the averaging
process involved, but the variance of elements within the distribution is still at
least 3/2 the variance of the elements of the conditional distributions from which it
was derived. In the extreme case, if the variance of the distribution entering the
computations beccmes laige, all states of the joint probability matrix become .
equally probable and the distributions are defined only by the aver ging process.
Table 7-7 presents tae '"noise' distribution. The conditional distribution will show
no conditionality;thus all rows will be identical to the uncond ‘ional. None of the
computations we have performed have shown any tendency to revert to this distri-

bution, except for those tropical regions where the parent distribution is already

of this form.




Table 7-5

Unconditional and Conditional Distributions for
a 60 nm Sampling Area Size at 200 nm Separation

Cloud SCOND

Group UNCON (60) 1 2 3 4 5
1 .15 .76 .05 .05 .05 09
2 .12 .17 .17 .08 .08 50
3 . 04 13 U120 15 .30 .30
4 .17 .14 .09 .14 .45 .18
5 .52 L1306 .12 .16 53

Table 7-6

Unconditional and Conditional Distributions for
a 180 nm Sampling Area Size at 180 nm Separation

Pty At i ow m a

?

Cloud SCSCON

Group| SUNCON (180) | 1 2 3 4 5
1 .12 .34 .10 .30 .13 .13
2 . 08 140 .12 .24 .29 Lzl
3 .21 .09 .09 .21 .31 .30
4 . 29 .03 .05 .16 .44 .32
5 .30 .03 .07 .20 .20 .50

Table 7-7

Distribution Resulting from Averaging of

Equiprobable Joint Events.
Cloud Category Probability
1 . 04
2 . 28
- 3 . 36
4 28
5 .04
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8. ENGINEERING AND SIMULATION APPLICATIONS

The set of data, techniques, and procedures that have been assembled are in-
tended for a variety of applications in the siudy and simulztion of earth-oriented ex-
periments from low oroit. We will list, in no particular order, a number of such appli-
cations by category. In most cases the mode of application depends -1pon the details

of the specific problem.

ke

8.1 Design of Zxperiments

Viewed Area Size. Trade off of en‘rance aperture of field of view against speed -
of response and problem of sorting good from cloud-contaminated data. Pzrticularly
important for radiometric instruments.

Control Systems. Selection of experiment control systemr and mode of deploy-

-

ment based on benefit/cost studies over cloudy skies,

Data Volumes. Where fi!mn is the medium, it is important to estimate the num- -

ber of exposures over partly cloudy skies required for mission success. Section 9.2
explores this further. The same class of problem may occur with on-board telemetry

storage of less capacity than the maximum data taking rate can use.

Probability of Success. An experiment may be cloud sensitive and require a

reasonably coherent chain of observations to achieve a reasonable level of success.
An example is infrared observation of apparent diurnal surface temperature changes
to estimate the condition of ground cover. Simulation or computation ot probability
distributions may be desired to ascertain whether the experiment is worth consider-

ation,

Alternat. Techniques. The cloud data may be used to evaluate alternate instru-

mentation for the same general observational purpose. The control systemn design

is one feature of this.

Cost/Benefit. Earth resource satellite system costs and benefits cannot be
properly evaluated in the absence of cloud information. While the sophistication of
the techniques presented in this report exceeds that of usual techniques for estimating

benefits, cloud information at some level is essential.
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Orbit Aralysis Each experiraent kas an crbit inclination, height, precession

rate, and time and season of injection into orbit that wiil give optimum results. It
does not follow that an orbit optimized for the experiment without reference to cloud
interference will also be the optimum orbit in the presence of cloud. By defining a
suitable measure of experiment success, it should be possible, by trial and error if
necessary,- tc find a good, if not optimum, orbi for the experiment over the real

cloudy world.
8.2 Mission Integration and Design

Mission integration involves assembly of a number of experiments, the space-
crait, its power, control, communication, and, for manned missions. thé life support
system aad the astronauts into a total mission-oriented system. A large number of
tradeoffs are required. For example, the various candidate experiments may well
have divergent requiréments for orbit, spacecraft attitude control, etc. From this
large set of compromises, a workable physical design must emerge. In addition to
the design of the physicai system, such features as astronaut skills, the orbit, time
in orbit, and time, azimuth, and season of injection must be determined. The object
of the integration design activity is to maximize probable mission return as defined
by some composite measure of mission success. Constraints of physical realization,
economic lim‘its, astronaut safety, range safety, available boosters, etc., limit the
degree of freedom. )

A major tool for manned inission optimization is a form of mission simulation
computer program which can adjust the free parameters of the mission to establish
either the most feasible mission, or to select the optimmum mission desigr. in the
realm of feasibility. To date, these programs have not considered the earth's cloud
cover except in the most elementary way. Most unclassified, earth-oriented satellite
systems to date have been meteorologically oriented and have not required optimization
with respect to the behavior of the earth's cloud cover. Future earth resources sys-
tzms=, mzanned or unmanned, will doubtlessly require such treatment before the mis-
sion carn be fully defined.

The mission integration programs generally use various deterministic tech-
nigces to arrive at the optimum solutions. The introduction of the earth's cover,
which creates a contingency at each possible observation event, requires techniques
which have yet to be fully explored. However, data :ow available from the activity
reported here can be used in unsophisticated form to impr_ove the realism of simula-

tion for integration,
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8. 3 Mission Simulation

Given the space system defined by the integration activity, a computer mis-
sion simulation can be performed. While this function may be included in the package
of integration programs, it can be separately considered. A number of applications
can be found for mission simulation programs that embody cloud data in a realistic

fashion.

Time Lines. Mission integra®ion will have made up a set of time lines, or
rules for finding time lines, of all the various functions on the spacecraft. Th)e time
lines are important in establishing control sequences, data acquisition and dump pro-
{iles, power profiles, etc. For manned systems they also raust involve astronaut
sleep-work cycles, skill mixes, etc.

In earth-oriented missions where the attempt at observation by some sensors
is cortingent on suitable cloud cover or a forecast of cloud cover, time lines become
stochastic processes operating within certain constraints. This in turn partially
rardomizes mission parameters dependent upon the time lines of individual experi-
ments. We are not aware of any attempt to deal with this situation, which can now
be cffectively simulated through use of cloud data.

Since the concept of only partially constrained random time lines is likely to
be abhorrent to the system design engineers as well as to mission controllers, an
alternate approach is to seek fixed time lines that maximize the probability of mis-
sion success (measured in some suitable way) in the cloudy world. Again, we are
not aware of any procedures that go materially beyond a simple assumption of 50%

success in the performance of an observation.

Probability of Mission Success. The observation mission has a set of a priori

objectives; the degree of success in meeting these objectives can either be measured
quantitatively or be described by a simple success-failure characterization. Having
defined the mission, it is of interest to estimate the probability distribution of some
measure or measures of success, ,U
Section 9. 1 describes simulation of a mission in which the number of obser-
vations made is critical to the success of the mission, It is nécessary to be sure
that there is a2 high probability that clouds will permit at least the minimum numter
of observations to be made. There is, of course, a finite probability of no observa-

tions at all.
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Szaction 9. 2 presents an abridged *'simulation of a photographic mission, in
which an estimate is made of tha probability that at least p percent of a target are .
can be photographed in n passes. This also will give the frequency distribution of
the number of blind exposures required to give probability P of covering at least p
percent of the target area. A slight extension of the example would give the frequency
distribution of the number of exposures and the mission length required to give pro-
bability P of covering at least p percent of the area if exposure is inhibited when the
cioud cover exceeds a value C. This could be traded off against blind photography
to ascertain whether the additional compliexity of contreiled photography is werth

while.

-

Mission Performance Analysis. Mission sintulation gives the simulator the

opportunity to trace the events cof the missicn, and based on this information to per-
form certain adjustments tc the mission that are outside the province of the mission
integration program. Various statistics can be amassed which will help to better
define the characteristics of the mission before flight. Here again, realistic inclu-
sion of cloud cover information will result in 2 more realistic analysis of the per-

forrnance of earth-oriented missions.
8.4 Experiment Scheduling

The scheduling of experiments both before launch and in real time can be ex-
pedited by reference to cloud statistics which can give an assessment of the perfor-
mance expectation and variance resulting from that schedule. This is similar to

time lining, but here refers strictly to the experiments.
%.5 Dynamic Programming

During flight, a mission assessment program should keep track of the present
status and fractional achicvmenant of the mission to date. It is then pussible to simulate
future e¢vents, based on certain priorities and scheduling rules, out to the end of the
mizsicn, The priorities and scheduling rules may be optimized to maximize mission
periormance, and the new rules would then be adopted. The accumulated effect of
coutingencies, both of weather and of the mission, may require further revision of
these priorities and rules at a later time. This process, which we feel is essential
t. cxpensive missions such as the eventua! Apollo Applications system, we call

dyramic pregramming.
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9. EXAMPLES OF ENGINEERING APPLICATIONS
9.1 An Application Using Monte Carlo Techniques
9. 1.1 Introduction

During early '747 a study was performed by Allied T._search Associates, Inc.
of cloud effects on op*i-al sighting of land features from Apollo manned missions.

A specitic objective was o determine the probability distribution of the number of
sightings of certain specified landmarks during Apollc's first two and one-half revo-
lutions of *he earth. Three different launch times and aziinuths were studied (Barnes
et al 1967). These will be referred to as "missions. "

The cloud data originally used was read from meteorological satellite picture
compilations over the actual landmarks to be sighted. The initial data sample for the
study v.as provided by the Nimbus II satellite, which operated from 15 May through
31 August 1966. Because the early failure of Nimbus II resulted in only three-and-
one-half months of data, an additional four and one-half months of data were extrac-
ted from the ESSA-3 satellite. ESSA-3 observations from 9 October 1966 through
28 February 1967 were utilized. Nearly complete daily giobal coverage was avail-
atle during the operation of both satellites.

Since the Nimbus II period is essentially representative of the Northern Hem-
isphe-¢ ~ummer and the ESSA-3 period of the winter, the two samples were treated
separately. ‘

A Monte Carlo flight simulation was performed by '"flying'" each mission over
each day's data sample. The Monte Carlo approach was made imperative because of
thc interrelationship between the attempts at sighting successive landmarks; if a land-
mark is sighted, it is necessary to continue to track it until it approaches the rear
horizon. Realignment of the periscope sights and computer functions takes an
additionzl length of time, so that a number of po‘ential landmarks may pass un-
observed following a successful sighting. Handling this situation analytically is im-
practicable, at least without the insights provided by the results of the Monte Cario
simulation.

We have reproduced the same set of Monte Carlo simulations using the
global data generated in thie contract, and using the techniques of data application
recommended in this report. Results are similar in nature, but somewhat different
in numerical magnitude. The differences are readily accounted for, and suggest that

simulation using our present data gives results reasonably close to the "truth."
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Because of the value of this example in demonstrating the application of our
data to a real simulation problem, it will be described in detail. The reader is re-
ferred to Barnes, Beran and Glaser (1967) for a complete description of the satellite-
data based simuiation (which differs only in data sources and handling), and for an
extended discussion of the quality of those data which leads us to the belief that the

present simulation is more realistic.
9.1.2 Landmarks
9.1. 2.1 Description

One hundred landmarks have been selected by the Apollo Project, The land-
marks are located between 35°N and 3505, with the majority of them found at land-
sea interfaces. The landmarks are plotted on a base map in Figure 9-1. Approxi-

mately three-fourths of the iandmarks were used for the mission simulations.
9.1.2.2 Landmark Order Numbers

Each of the one hundred landmarks was designated by an index number, which
served only as its identification and was not necessarily related to when the landmark
would be sighted by an Apollo spacecraft. Three szparate missions, each consisting
of-two-and-one-half revolutions and each containing about 30 possible landmarks,
were defined. Scme of the landmarks were repeated within 2 mission and some were
repeated on more thaa one mission. For programming purposes, an order numbe.
was assigned to each landmark as it appeared within an Apollo mission; the land-
mark order within a mission conformed to the order in which it would be sighted.

If the landmark was repeated later in the mission, it was given a new number con-
gistent with its new position. When a landmark was used on more than one mission,
it was given different mission numbers and order numbers, again consistent with its
position in a mission. Table 9-1 shows the order of possible sightings in two of the
three missions,

After the qrder number within each mission had been established, the time
that Apcllo would be over each landmark became a function of the vehicle launch
time and the orbital elements. A launch time for each mission was provided, along

with the hour {local time) that the spacecraft would be over each landmark,
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Table 9-1

Order of Landmarks in Each Mission

Order
Number Mission Number 1 Mission Number 3
1 126 524
2 138 801
3 304 802
4 250 183
5 506 221
6 313 237
7 317 240
8 507 524
9 326 803
10 334 538
11 342 804
12 85 805
13 251 151
14 88 163
15 811 178
16 98 194
17 101 214
18 13 216
19 108 96
20 114 522
21 233 524
22 508 806
23 510 537
24 509 807
25 511 808
26 512 152
27 507 157
28 326 186
29 334 229
30 514 -
31 102 -
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9.1.2.3 Landmark Grouping

To simulate landmark sighting on an Apcllo mission, the requirements placed
upon the astronaut must be considered. For a successful sighting, the astronaut
must point an optical device at a specific landmark and take a certain number of
"fixes' during the time he is over the landmark. When he attempts to sight a land-
mark, one of two possible events can occur: (1) he is successful in his attemp* to
find the landmark and he proceeds with the prescribed sighting procedure; (2) he is
unsuccessful, because cloud obscures the landmark, and he re-orients the sighting
meoechanism for a try on a new landmark. These events require a different, but pre-
dictable amount of time during which the spacecraft will have passed over a certain
number of landmarks that cannot be used. In other words, it would be unrealistic
to say that each of the landmarks could be sighted on each mission. Rather some
grouping of landmarks, based on successful and unseccessful tries, is required.

A listing of landmarks was assembled, containing the next independent land-
mark (independence being a function of the time required for sighting, or to try a
sighting) for both successful and unsuccessful sighting attenipts. Direct application
of this listing would have resulted in some landmarks never being used, because they
were bypassed in both the ''successful" and "unsucessful" colurans. Further grouping,
and a random process of selecting the station to be tried within a group, were required
to insure that each landmark had an equal chance of being sighted ¢ :ring a mission.

The general approach was to arrange the landmarks in a manner which would
make all landmarks c.ccessible from somc previous group. The assumption was
made that the next landmark after a successfully acquired and marked land feature
would have to pass under the spacecraft at least eight minutes later. If the first land-
mark was sought, but not acquired, the next sought landmark must be at least four
minutes away. These time estimates were based upon simulated operaticn of the
orbital navigation program and associated sighting procedures. Time to process data
and re-position the optics were the importaut contributions.

To determine a set of groups which would contain the '"used' and '"unused"
landmarks, a "logic tree," shown in Figure 9-2, was prepared. The order numbers,
for mission number 1, are listed down the center of the diagram. The lines drawn
from the order number lead to the next indzpendent landmark; successful tries are
on the left, unsuccessful tries are on the right. Starting with order number 1, the
line o1 the left, representing success, extends over ard down to order number 3; the

line on the right, representing failure, goes over and down to order number 2,
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LANDMARK

GROL® No SUCCESS ORDER NUMBER FAILURE GROUP No
] 1 1
. —_—— 2 13
— | — 4 1 —3
4 14
) 5
6 1 —_—
—— = 7 1
8
—+— || o 15
L ( 10
Y " AR T4
4 I 1 e
13
s b ] 16
l —— 5 IR 2
¥ 1 v
16
6 17 6
! 18
B — 9 —
74 l 23 - 2
ry : 21 i 8
—ee. ‘ —_—y
. 22
23
24 I 18
v — 25

99 7 7 - 9

Figure 9-2 Logic Tree for Landmark Grouping in Mission Number 1
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From order number 2, the right and left line both go to order number 3. The dashecd
line of the success side indicates tha. it was impossible to get to number 2 through

a previous success; a previous failure, however, would have led to order number

2, so the solid line on the faiiure side extends all the way to tke number. Order
number 3 leads to number 9 for success and to number 7 for failure. Since either
success or failure on a previous number would have led to number 3, the lines ex-
tend all the way to the number. As with number 3, order number 4 leads to number
9 for success and to 7 for failure; however, since there is no possible way to reach
number 4 from a previous number, the lines leading away from 4 do not extend all
the way to the number.

The procedure of drawing lines from the order number to the next independ-
ent order number for both success and failure was continued until the diagram was
complete. Wher examii ng the logic tree, the reader should keep in mind that a
dashed line at the beginning of a leader represents a landmark that can only be
reached by an opposite result from a previous number (i. e. , a dashed line on the
success side means the wumber was reached by a previous failure and a dashed
line on the failure side means the number was reached by a previous success)., If
the leader lines do not extend all the way to the numbers, it mcans that the land-
mark cannot be reached by any route.

The logic tree provided the basis for grouping the landmarks. Starting on
the success side and working down, each order number that could not be reached
by a previous success, occurrirg under an order number that could be reached
froin above, was grouped along with the one that could be reached. Referring to
Figare 4-Z, order number 3 can be reached by a previous success, but order nur -
bers 4, 5, 6, 7, ana { cannot be reached by a previous success. A group was,
therefore, made upof 3, 4, 5, 6, 7 and &8 Number 9 could be reacked from a
previcus success, so it is the beginning of a rew group. Number 10 is the only
landmark under 9 which cannot be reached by a previous success, therefore the next
group is rnade up of order numbers 9 and 10,

This process was continued until all order numbers had been grouped on the
success side. The same procedure was then repeated for the failure side of the
logic tree. The groupings determined by this procedure are shown along the sides
of the logic tree (Fig. 9-2). The groups are numbered in ascending order starting
with the {irst successful group and continuing down the left side of the diagram,
then to the first failure group and number down the right side, The first group

on the failure side, containing order numbk~> 1, does not require a group number,
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as it will automatically be included in the first trial during the simulated flight.
Certain groups on the failure side are given the same group number as one of the
success groups, since they contain the same landmarks. The 99, which appears at
the bottom cf the diagram, indicates thdt the mission has been completed.

This procedure was repeated for the remaining missions. Listings for each
mission, prepared in this way, are shown in Table 9-2, and include: (1) the groups
for each mission, (2) the number of landmazrks in eacih group, and (3) the order num-
ber of the landinarks within a group. An array showing the '"go to' group for each

order number within each mission was also prepared, as is shown in Table 9-3
9. 1.3 Sighting Probability

The probability of sighting a landmark in a region of cloudiness of amount
described by one of our cloud groups was assumed to be 95% for cloud group 1 {clear),
and descending linearly to 40% for group 2 and then to 4% for group 4. As discussed
eatlier in this report, the probability ~f sighting a landmark is probably smaller
than this would indicate, but this error is compensated in great measure by the
ground ouserve~'s overestimation of cloud amount in partial cloud cover situations.

A somewhat different sighting probabilify curve was used in the original
simulation using satellite cloud cover data. There, it was known that cloud under-
estimates were the rule, particularly in regions of scattered small clouds. Ac-
cordingly, a probability of sighting of 80f was assigned to clear skies, descending
linearly to zero " 'r 75% cloud cover. For resasons to be discussed in Section 9. 1. 5,

this continues to omewhat overestimate the probability of sighting a landmark.
9.1.4 The Simmnlation Program

Figure 9-3 presents a gross block diagram of the simulation program using
our cloud statistics in recommended fashion. The change in source data required a
near-total rewritiné of the program; care has been taken, however, to preserve the
identicai logic of landmark and landmark group seyuencing. Listing- of the original
program and of the program described herz can be made available by Allied Research
Associates, Inc. to those interested in tracing the pfocedures in de«.1l. A descrip-

tion of the program follows:




Table 9-2a

Groups in Missicn | and Order Number::: of

Landmarks Within Each Group
Number of T 1
Group Landmarks -
Number in Group Order Mumber of Landmarks in Group
1 2 1
2 6 3 4 5 6 7 8
3 2 9 10
4 1 11
5 4 12 13 14 15
6 4 16 17 18 19 .
7 1 20
8 i 21
a 6 22 23 24 25 26 27
10 1 28
11 2 29 30
12 1 31
12 i 2
14 4 3 5
15 4 7 10
16 3 12 13 14
17 1 15
18 4 22 23 24 25
19 1 26
20 1 27 -
* See Table 9-1
®
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Table 9-2b

Groups in Migsion 3 and Order Number;': of

Landmarks Within Each Group

Number of _1
Group Landmark =
Number in Group Order Number of Landmarks in Group
1 1 1 -
2 1 2 !
3 2 3 4
! 4 3 5 7
bos 2 8
| 6 1 10
i 7 i 11
! 8 2 12 13
i o 1 14
10 2 15 16
11 2 17 18
12 1 19
13 2 20 21
4 1 22
15 2 23 24 i
1< 1 25 l
| 17 2 26 27
i 18 1 28
i 19 1 29
20 1 3
21 1 4
22 1 5
23 2 6 7
24 1 8
25 ] 9
| 26 2 11 12
i 27 1 13
i 28 1 15
29 1 16
30 1 20
31 1 21
32 2 22 23
|33 2 24 25
* See Table 9-1
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Table 9-3a

Next Independent Group for Each Landmark

in Mission Number 1

If Sighted If Not Sighted
Landmark Go to Group Go to Group
Order Number Number Number
1 2 13
2 2 14
3 3 15
4 3 15
5 3 15
6 4 1%
7 5 4
8 S 4
9 5 16
10 5 16
11 5 16
12 6 17
13 6 17
14 6 17
15 7 6
16 8 7
17 8 7
18 8 7
19 8 7
20 8 8
21 9 18
22 10 19
23 10 19
24 10 19
25 11 20
26 11 10
27 12 1l
28 12 12
29 12 12
30 12 12
| 3 99" 99"
% 99 indicates the mis=ion is completed
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" Table 9-3b

Next Independent Group for Each Landmark

in Mission Number 3

If Sighted If Not Sighted
Landmark Go tc Group Go to Group
Order Number Number Number
1 2 2
2 3 20
3 4 21
4 4 22
5 5 23
6 5 24
7 5 24
8 6 25
9 7 6
10 8 «b
. 11 9 27
12 10 9
H 11 28
14 11 29
15 12 11
16 12 11
17 12 12
18 12 , 12
19 13 30
20 14 31
21 15 32
22 16 33
23 17 33
24 17 17
25 18 17
26 19 18
27 19 . 13
28 19 19,
29 99" 99

* 99 indicates the missiun is completed.
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Required data is entered from cards. These data consist of: the set of de-~
scriptors that permit the map region subprogram to identify the region in which each
landmark falls; sighting probabilities connected with each cloud group; a calendar
that identifies the number of days in each month; a control card containing which
launch hour, number of flights/day, mission number, and the monrths to be processed;
the location of each landmark; the landmark group assignments; znd description(s) of
the landmark sequence(s) based on time(s) and azimuth(s) of launch. The global
cloud cover statistics are on magnetic tape, having been transferred irom a card
deck in a prior operation,

The landmark subprogram is called rercatedly to assign a cloud climate
region to each landmark. At this point the landmarks ar« lered in order of poten-
tial encounter. The random number generator subroutine -5 initialized in an appro-
priate fashion to ascure an independent set of random numrbers for each run.

Assembly of statistics for a sample from one month can now be done. The
appropriate month's section of the cloud data tape is read into memory.

1) Preparatory to organizing data in form suitable for establishing a chain of
conditional statistics within each region, the landmarks are sorted by region. With-
in each region, they still occur in order of encounter in each mission.

2) The "'"characteristic velocity'" for each region is computed By finding the
largest spatial conditional value on the diagonal of the region's spatial conditional
table, locating the corresponding entry in the temposral conditional table, and entering
the appropriate formula (see Section 6. 9).

) 3) The local time at each landmark is found from the time after the known
hour of launch at which each landmark is encountered. This local time is converted
to a row subscript to find the unconditional distribution appropriate to the time of day.

4) They ara then reordered by space-time proximity in a straight chain start-
ing with the {irst encounter in each region. Thie is done by coméuting an equivalent
distance for each landmarl from the first, using

2 _viant+ (as)

d
where V is the charzacteristic velocity, At is the time difference between landmark
encounters, and As is the great circle distance between landmarks, calculated from
their latitudes and longitudes. The landmark having the lowest d2 is ordered as num-~
ber two, and then serves as the origin of another setof d calculations to find its
successor, The entails (n = 1)! computations, where n is the number of landmarks '

in a region,
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In the prescnt case, the number of landmarks in each region waas sufficiently
small to keep this cl2 operation from becoming time-consuming. In other situations _—
where large numbers of points may fall within a region, it will be desirable to intro-
duce logic to break the list ‘nto statistically independent segments. Nearby points
may also be grouped together as always having the same cloud cover. These axpe-
dients will keep the length of the Markhov chains reasonably short; as pointed out
earlier, the quality of our present statistics cannot justify chains appreciably longer
than 5 or 6 elements. In the present program, one chain of 9 landmarks occurred
within Region 19. Grouping, which occurred naturally because some of the land-
marks were in fact repeats of tha same landmark encountered on a previous orbit,
reduced the effective chain length to 5.

Each landmark is to have a conditicnal cloud probability table associated with
it, conditional on the cloud cover at the landmark which preceded it in the space-
time order in the region. The cloud cover of the first landmark in each region is,
of course, not conditional on any predecessor. We have arbitrarily set the limit of
statistical dependence in space-*ime at 800 nm, so that the cloud cover at any land-
mark separated from its predecessor by more than this amount would also be drawn
from the unconditional table appropriate to the hour of encounter. Also, in a number
of cases the range of validity of the spatial conditional tables did not extend tc the
physical distance involved, requiring the substitution of unconditional statistics. For
convenience in processing, the 5 entry unconditional t: bles are written in a dummy
5x 5 conditional form, with all rows identical.

Compilation of the conditional cloud probabilit; tables follows the procedures
of Sectior. 6. In the present case, the time intervals are quite short, and there:ore
major contribution to the content of the derived cor dJitional tables comes from the
spatial separation of landmarks,.

For convenience in subsequent processing, the conditional tables, real or
dummy, are summed from left to right to form cumulative probability tables.

Simulated f}ight now occurs, For consistency with the prior simufation, a
day of the month and number of iterated flights per day (1C) are maintainad, although
300 iteraticns of one day would of course be statistically identical.

First, a cloud cover is assigned to> each landmark, This is done by formally
considering the entire string of landmarks, now ordered by region and by proximity
within regions, as a long Markhov chain with transition probabilities defined by the
conditional plrobabi).ity table, real or dummy, associated with each landmark. A
random number is drawn, uniformly distributed in the runye 0-_1. it is compared
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with the entries in the associated conditional probability table in the row defined by
the cloud cover found previously. The random number will fall on a cumrulative
probability corresponding to one cloud group, which then is the designation of the
cloud cover at the landmark., To start the chain a dummy cloud group '""1'" is provided.

As described earlier, the landm<rks are grouped logically to describe their
exclusive accessibility; only one landmark of a group can be used. A random number
is generated to decide which landmark of the group is to be attempted. A check is
made to see whether the landmark is in darkness; if so, a failure is registered and
the flight proceeds to the next group. If in light, the sighting probability is drawn
from the appropriate table. As noted earlier, the sighting probability is one minus
the median cloud cover for the cloud group. A random number, uniformly distributed
in the range 0-1, is drawn and compared with the sighting probability. If the random
number equals or exceeds the sighting probability, a sighting failure has occurred
and is so tabulated; otherwise, the landmark has been sighted and is appropriately
tabulated,.

The next group of landmarks to be attempted is determined, based on the
success or failure of sighting of the specific landmark, and the process is repeated
until the end of ti.e mission. A summary is mace of which landmarks were sighted,
and the mission is repeated ten times, each time cver a fresh cloud field. The
whole operation is repeated for the entire month.

The simulation then proceeds to the next requested month until all requested
months have been processed for the mission. Tabulation and outputting of the results
obtained in each month is then initiated for the entire mission. The frequency distri.
butions of landmarks sighted are converted, for convenience, to the (reverse) cumu-
lative probability of seeing at leastn Iandrparks. The simulation then proceeds to
the next mission.

The organization of the program expedites computer computation. A charac-
teristic run, covering nine months of data, two missions, each flown 300 times a
month, requived 0. 89 minutes on .BM 360/75-50, including compiling the Fortran IV
source deck and outputting to tape.

9. 1.5 Results of Simulation
The product of the simulation program is a tabulation of the frequency distri-

bution of the number of landmarks sighted per mission, aad a tabulation of the cumu-
lative pro' bility of seeing at least n landmarks. Table 9-4 displays a few frequency
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Tabie 9-4

Frequency Distributions of Landmark Sightings

Cloud Statistics Simulation

Mission 1

Satellite Data Simulation

Month Month
n Nov Feb June  Aug Nov* Feb*  Junet Aug’
0 2 0 0 0 0 0 0 o
1 9 7 4 0 g 2 0 0
2 47 36 14 13 27 18 2 1
3 87 67 51 3C 47 65 20 8
4 80 33 89 74 €6 92 4% 39
5 56 56 78 97 78 63 39 67
6 16 26 52 75 45 29 85 103
1 3 5 11 15 11 10 53 73
8 0 0 1 6 1 1 6 19
Mission 3
n Nov ¥ June  Aug Nov* Feb*  Junet Augt
0 2 o 0 0 0 0 0 0
1 2 2 0 0 0 0 0 0
2 11 8 0 0 1 2 0 0
3 37 12 & 0 3 5 0 0
i 4 55 44 20 7 3 10 i 0
5 35 58 53 19 12 36 4
6 39 66 95 71 44 67 12 7
7 22 49 67 96 62 73 30 48
8 12 33 44 77 Tl 50 61 70
9 8 6 9 32 62 23 81 77
10 0 1 6 35 14 66 5
''n 0 1 ’ 6 0 34 21
12 0 0 0 Q 1 0 9 8
13 0 0 0 0 0 ¢ 2 0
i_l4 0 n 0 0 ¢] 0 ! 0
* Daia irom ESSA-3 t Data from Nimbus II
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tabulations selected to show seasornal variability, Matching tabulations are also
presented of the results of performing the same simulation nsing daily satellite data.
Figures 9-4 to 9-7 show the cumulative plots for Mission 1, coraparing the res.its
of simulatic.s hased on satellite data and on the cloud statistics. The plots have
been made on probability paper to suitably expand the scales. '
It is seen that Mission 1 results are quite similar for the two data sources,
particularly in the months of November and February, when data were taken{ ..n
ESSA-3. There seems to be a constant difference of about 1/2 landmark sighting .
betw eern the wwo sgurces. The slopes are similar, indicatling that the variance in
namber of sightings is about the same in each case. The June and August simula-

tio;.s, which use satellite data from Nimbus Il, show a difference of about vone land-

™ ™

.ark sighting

While these differences may not seem great, they are operationally fairly
important. Validati - studies of the satellite data, performed in support of the orig-
inal simulation effort, indicate that gross underestimates of cloud cover have ovccur-
red in regions normally haviang h vy convective cover, particularly of small size.

At the ext~eme, Georgetown, Guys—a, was apparently underestimated in the Nimbus II

-~

sample by 61%. Stations like San Diego, Talara, Peru, and Benguerir. Moracco,
had their mean cloud cover rather accurately estimeated; they are, of course, in re-
gions of coastal stratus. On the a erage, the underestimate was judged to be about
25%. [t is not 2asy to translate the effect of cloud cover underestimates into their
effect on the simulation, since an increased number of failures pernits an increasc
in the number of trials. On Mission 1, flown over satellite data, an average of 9. ¢
trials per mission occurred. Flown over the cloud statistics, 10. 0 trials were at-
temnpted. The percentage of successful sightings were 63 and 42 respectively. The
suggestion is strong, therefore, that the simulation based on our cloud statistics is
closer to "truth. '

The ES5A-3 results are considerably closer to those obtained from cloud sta- ———
tistics. This can be accounted for as a combination of two effects. The ESSA-3 data,
while nominally of the same resolution, had better contrast than the Nimbus data.
This conirast difference makes it easier for the data abstractor to note detail indi-
cating the presence of cloud of size smaller than the minimal resolution element.

The bulk of Mission 1 landmarks are in the Northern Hemisphere; ESSA-3 data were
used in the Northern Hemisphere winter, Nimbus II in the summer. Seasonal effects

on cumulus convection may have also contributed to the 1/2 landmark difference be-

twzen satellites (assuming the statistical data to be a stable ncrmal).
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Figure 9-8 is included as an example of the error that can result {zom casca-
ding biases. Mission 3 wao designed in an atterpt to demonstrate that a suitable
choice of launch hour and azimuth could cause the spacecraft to pass over a combi-
nation of landmarks of low cloud amount during daylight hours, with the landmarks
separated in such fashion that a maximum number of opportunities for observation
would occur. The cloud cover estimates came from the satellite data, Using the
same data for simulation resulted in an apparent eminent succens. H.wever, the
simulation using cloud statistics was materially less optimistic - by nearly 3 land-
mark sightings in the case plotted. However, comparison with the Mission 1 data
shows that the increase in the number of opportunities resulted in an increase of
about 2 landmarks sighted, at any probability ievel, with some increase in the vari-
ance of the number sighted.

It will have been noted that when plotted on probability paper, the cente. sec-
tions of the cumulative probability curves become essentially straight lines. This
suggests that the probability distribution of successful landmark sightings approxi-
mates the Bernoulli or binomial distribution. This is rot surprising, since they
arise from the sampling of a finite number of success-failure alternatives. However,
there is nothing in the statistics that gives an 3' priori estimate of the parameters of
the distribution. For example, the distribution obtained from our cloud statistics
has a mean of 3. 61 sightings and a standard deviation of 1. 26 sightings. The Bernoulli

formulas,

X = sp
o’ = spq
q =l-p

where X 18 the mean number of successes in s trials, p is the probability of success
on any one triai, and g is the probability of failure, yieldp=.562 and 8 = 6.4, A
program trace indicates that in fact the average number of sighting trials was 10, 1,
with a probability of success p = . 368,

Thie computation of Bernoulli distribution parameters is primarily intended
to demonstrate that the Monte Carlo procedure yields distributions which cannot be
readily generated from elementary considerations. However, it may be of interost
to speculate on the significance of the derived par~maeters. The diminished number
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of apparent samples may result in part from cloud coherence. Of the 31 landmarks
to be sighted in daylight on Mission 1, 17 bad cloud covers described by conditional
distributions. Thus the number of independent samples was smaller than the num-
ber of trials,

As pointed out earlier, the number cf trials is related to the number of fail-
ures, This tends to reduce the variance of the distributions, which upon consider-
ation of the formulas for the mean and variance of the Bernoulli distribution, can
be seer to cause a decrease in the apparent number of samples ard thus an increase in
the apparent probability of success.

The distributions have some further properties of interest. First, it is
possible, even if not very probable, to have no landmark sightings at all. Mission 1
has an apparent absolute maximumr of 8 sightings, resulting from the distribution
of landmarks and daylight along the orbital track. Mission 3 would appear to have
a maximum of 14 sightings, a number never reached using cloud statistics as a

simulation base.
9.2 A Typical Timulati 1 Problem

Let us suppose we are designing a photographic mission for mapping or for
agricultural surveillance. A prime .arget area of size 300x 300 miles is contained
within one cloud region. The proposed orbit provides coverage of the area with
favorable illumination every 3 days. (We make this stipulation to avoid the use of
temporal conditional statistics. ) If the area is fairly cloudy, we are willing to piece
together our map from cloud-free segments of the photographic coverage, although
we would, of course, prefer to i‘1d the entire area cloudless and complete our mis-
sion on a single pass. The questions that may be asked are:

1) How many passes are 1equired to give a probability of 95% {(or some other
level) of al least one clear pass over the area?

2) If the number of passes required to reasonably assure one clear pass is
excessive, what is the amount of pieced~together coverage expected in N passes?

3) How many passes are required to give a 90% (or some other level) proba-
bility that at least 90% (or some other fraction) of the area can be phctographed?

All of these questions can be answered from a probability distribution of piece-
wise coverage (which includes total coverage) as a function of the number of passes.
To arrive at this distribution, we make the dubious assumption that the cloud in the

area are always completely randomly scattered over the whole area, so that the
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incremental photographic coverage of cach pass is:

P(i) = (1 -B)(1-C)
where B is the already photographed fraction of the area, and C is the cloud cover
encountered on the pass. By induction, the fraction of the area photographed is:

N
B(N)=1-TcC_

where Cn is the cloud cover encounterasd on pass number n, N is the total number of
passes.

The unconditional cloud distribution for the 300 mile area should be generated
from the basic unconditional and spatial conditional data. For ease of computation,
we have assumed a distribution which might be typical of a 300 mile square area in

scutheastern U.S. in summer or spring, at noon, as shown in Table 9-5.

Table 9-5

An Assumed Distribution

Group Mean Cloud Cover Probability
1 0 .1
2 . 25 .2
3 . 55 .3
4 .75 .2
5 1. 00 .2

A direct approach to the problem is through elementary combinatory analysis.
First, it should be noted that if cloud group 1 occurs at least once in a sequence of
N passes, the photographic coverage is 1004. Accordingly, the probability of 100%

coverage .8:

P)oog = 1-[1-p N
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wherz © (1) in the probability of occurrence of clear sky over the whole area. From
this the answer to question (1) for the assumed distribution is that 28 passes must be

programmed to provide 954 probability of encountering clear skies. Under the pos-
tulated conditions, this will take nearly 3 months.

The remaining four cloud groups can occur in any combination, and under our
assumption will always give less than 106% coverage. The number of ccmbinations,

N at a time, of the four cloud groups (see, for sxample, page 59 of Niver (1965)) is:

ctu+n-1, N =LA

Tabie 9-6 shows the number of such combinations.

Table 9-6

Combinations of 4 Things With Replacement

N 1 2 3 4 5 6 7 8 . 9 10
C 4 10 20 35 56 84 120 165 220 286

By a systematic listing it is possible to generate all possible combinations.
Table 9-7 lists the combinations for N = 3,

The various combinatione are not equiprobable. The number of ways each
combination can occur is:
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Table 9-7

Computation of Probability Distribution of
Photo Coverage, 300x 300 Mile Area, Region 1],

Probability of at Least One Cloud Group 1 = . 271

Number of Passes = 3

Cloud Group Cumuiative
Combination w WP (Cn) Probability B(3)
. 271
222 1 . 008 . 279 . 984
223 3 . 036 . 315 . 967
i 224 3 . 024 . 339 .95
225 3 . 024 . 363 . 938
2323 3 . 054 417 . 924
234 6 . 072 . 489 . 89
235 o . 072 . 561 . 863
| 244 3 . 024 . 585 . 84
!! 245 6 . 048 . 660 . 80
255 3 . 024 . 738 .75
333 1 . 027 .612 . 834
334 3 . 054 .714 . 758
335 3 . 054 . 792 . 687
344 3 . 036 . 828 . 648
345 6 . 072 . 200 . 56
355 3 . 036 . 944 . 45
414 1 . 008 . 908 . 488
445 3 . 024 . 968 . 36
455 3 . 024 . 992 .2
555 1 . 008 1. 00 0.0
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where a, b, ¢, d are the number of times cloud groups 2, 3, 4 and 5 occur in the
combination. Table 9-7 gives the corresponding W for each combination. The pro-
bability of the event represented by any combination is then W times the joint proba-
bility of the individual events of sach pass, cr

N
WIIp (Cn)

where P (Cn) is the probability of the cloud group represented by the nth element of
the combination. Table 9-7 also lists the probabiiity of each comuination.

h The next step is to generate cumulative probabilities. Since we are inter-
ested in the probability of obtaining at least a certain degree of photographic cover-
age, we start from a base of the probability in N passes of 100% photo coverage, ad-

ding the probabilities of combinations with successively smaller area coverage. As

will be noted from close examination of the example of Table 9-7, the area coverages

do not necessarily fall in descending order witk the logic we have used for ordering
the combiaations. .

Figure 9-9 shows the results of such computations. The curves for N = 2,
3, and 4 were generated by the process described. The curves for N =5, 6 and 10
are ratner gross exirapolations from those curves, using a process similar to that
used (properly) for finding the probability of N cloud-frece passes. ror convenience
of display, the curves are plotted on "probability paper." The fact that they are
nearly straight shows ti:at the i»rcbabilib,r distribution of areas photographed in N
passes is nearly Gaussian in the range of interest. '

To the exteat that the distributions are Gaussian, the most probable photo
coverage can be estimated from the 50% ic-el (ignoring the probability spike at 100%
coverage). Table 9-8 shows the estimate of most probable ~overage.

Table 9-8

Most Probable Photographic Coverage

No. of Passes: 1 2 3 4 5 6 7 or more

Coverage, $ 55 75 88 94 97 99 100
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Exact computation by the combinatory procedures outlined here is feasible on
a large computer up to N = 10 or 12. However, before th.e;,t point, it is probably more
expedient to resort to Monte Carlo procedures.

Use of Monte Carlo permits easy injection of a rather important effect which
we have neglected in the combinatorial approach. The assumption was made that
partial cloud cover is always sufficiently dissected to make valid an analytic descrip-
tion of the incremental photo coverage of each pass. In truth, the incremental photo
coverage nas a probability distribution which can be estimated from a consideration
of the ways in which the cloud cover might be cistributed over the area. One obvious
result of a distribution of incremental photo coverage is the appearance of a finite
probability of achieving 100§ photo coverage even though no single pass was clear.

it may be seen, then, that neglect of the distribution of partial cloud cover
has resulted in a pessimistic estimate of the probability of total coverage.

A Monte Carlo procedure would facilitate the introduction of temporal condi-
tional probabilities, as would be required if the interval between cases of suitable
orbit position and illumination is 24 hours or less. The combinatorial apprcach also
permits use of conditional probabilities, but since the order in which a combination
of cloud covers occurs now affects the probability of occurrence, the computation
becomes considerably more voluminous.

While we have not programmed a Monte Carlo approach te this problem, it
may be of interest to explore how one would be organized. The ground rules remain
the same, but now we remove the restriction on time interval and will insert a pro- .
vision for a random distribution of incremental photo coverage.

The first order of business is to compute area-scaled tables of unconditional
and of temporal conditional cloud cover by th. procedures outlined in Section 6. For
sun-synchronous orbits, the temporal conditional tabie would be computed for 24 hours.
Orbits of lesser irclination might require several tables at differing intervals. If at
ail possible, it is desirable to operate from pre~-computed tables to avoid additional
cumputer load. We will assume a sun-synchronous orbit and a single temporal con- .
aitional table, All tables are organized as cumulative probabilities in ascending
nrders of cloud cover.

Figure 9-10 is a gross block diagram of the program. Iteration number Q

and pa-s number n are initialized. The first draw is made from the unconditional .

table by {inding which cloud group probability interval contains the random number

RAN. if the cloud group is number 1 (clear), 100% photo coverage has occurred;

there i no need for further photography, and 100% is noted in the tabulation for each

nuinber of passes.
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If the cloud group is other than number 1, a photo coverage is assigned. The
pass over the area is initiated. The new cloud cover is now generated from the line
in the conditional probability table corresponding to the previous cloud cover. If
cloud group ! occurs, 1004 cumulative coverage is tabulated for the pass and all
subsequent passes,

The incremental photo coverage is computed as a stochastic function of ex-
isting coverage and the cloud group. The form of the function depends vpon the dis-
section of the cloud cover, which can be estimated irom the original cloud cover
distribution observed from the ground. Formulation of the statistics of incremental
coverage can be the subject of a separate investigation.

The incremental coverage may result in total coverage. If it does, the pro-
cess is aborted as before. If not, the coverage achieved is tabulzted under pass
number n. The process is repeated for the N passes of interest. Then the whole
process is repeated NOQ times. In similar simulations, we have found MOQ of 100

to 300 give excellent convergence with very short compater times required.
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10. RECOMMENDATION FOR FUTURE WORK

Throughout the lat:r sections of this report we have irdicated areas in which
imporved functional descriptions, techniques, or data could have improved the utility
of the global cloud cover data bank. These recommendations are summarized here
into two categories; first, those recommendations for improving the statistical base,
second those recommendations with regard to further applications of the world-wide

cloud cover data.
10. 1 Recommendations for Improving the Statistics

a) Further explore the differences between ground-based statistics and cor-
responding observations from space, so that improved utility of the ground based data
can be obtained in the simulation of earth-griented space experiments.

b) Derive an improved functional description of the conditional probability
as a function of distance and time. This improved functional relationship will elimi-
nate the straight line extrapolation procedure now required for distances different
from 200 nm and times different from 24 hours.

c¢) Examine in more detail the directional conditionality of the cloud cover
distributions,

d) Increase the sample size irom which the conditional statistics are drawn
It may be possible to synthetically correct the conditional probabilities to make the
joint probability matrix symetrical (i. e., conditional statistics should be drawn from
the same population as the unconditional statistics)., It might also be possible to use
digital ATS or ESSA-5 satellite data to obtain this goal with a greater precision.
Such data tabulation is not difficult, but a large computer would be required.

e) Add more seasons to the conditional probability data i. «. , obtain spring
and fall distributions as well as summer and winter.

f) Refine the regional distribution and in particular some of the regional
boundaries where required.

g) Include a means for incorporating cloud system motion (where simulatior
requirements demand).

h) Obtain raw data for one or more of the conventional stations and prepare
conditional distributions from long-term records, These can then be used as guid:
posts for the data derived from the satellite observations. The computer program
for these summations and correlations is already available at {mlad Ressarch,
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i) Obtain further meteorological satellite data for use in checking the enlarged
sampling area size computational procedure.

10. 2 Recommendations for Future Applications of the Data

a) Organize the potential applications of the cloud data in a systematic
fashion, so that a relatively small number ¢f stock procedures can be prepared (dis-
tinguish between situations which do and do not require Monte Carlo procedures).

b) Determine what cloud amcunt is significant for various specific objectives
or experiments.

¢) Organize a group to provide expert information on applications.

d) Prepare procedures for forecast and forecast varification in overall sys-
tem simulations.

e) Prepare an actual simulation of a chosen example drawn from the real
world,

f) Study the role of simulation in dynamic experiment programming.

g) Prepare techniques for the use of the statistics in cloud prognosis.
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APPENDIX A

SOURCE ZATA

This appendix describes in some detail the r.sthcds and grocedures follcwed
i~ obtaining the cloud cover data tabulated for use with computer sgiirulation rcutines,
In the Final Report (the report to which this is an app-ndix} the proposed uses for -
these data are described, as well as suggested engineering applications and demon-
strations of their use. The Final Report presents the (bjeetives of the study and the
assumptions involved in the tabuiation of the data. Thus, we include here only a
brief statement of the objectives and ground rules which governed the data search,

and a review o” the data sourres which we ¢ used.

1. OBJECTIVES

The basic objective of the world-wide cloud cover study was the creation of
a master file of tabulated cloud statistics and cloud distributions for regions repre-
senting all of the earth's surface.” The requirement was that these stw..istics be
tabulated and made available either on {BM punched cards or magnetic tape, so that
statistical analyses of cloud amounts couid easily be performed for monthly, seasonal,
and annual reference periodc for selected areas on the earth.

In addition, conditional statistics were required to tak. account of the time
and space dependence of the cloud regime at one poirt on that of another poiut nearby
in either space or time. The tabulated ctatistics include provisions for taking account
of the lurnal variation in cloud cover throughout the day and night.

Several secondary objectives also existed. For example, a comparative
analysis was necessary to evaluate the relationship between «loud cover as it might
be viewed from a satellite versus that observed from the grourd, so that the prob-
ability that the earth's surface can be observed from a sats.lite can be inferred from
ground-ohserved data. An engineering interpretation of the tabulated cloud ssatistics
and cloud distributions in terins of requirements for an earth satellite sensor opera-
tion was performed to demonstrate the use cf and to validate the tabulated statistics.

Several guidelines were provided in the contractual statement. These included

the following:
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1. A miuzimum number of stations should be selected for the purpose of
charaterizing the monthly, seasonal, and annual distributions of cloud types for
selected r:gions which typify the diverse cloud types and frequencies.

2. The atatinticil data will be draw. from existing recorde, where possible,
ani extrapolated, interpolated and evaluated for appropriate areas over the earth.

3. Day-night and monthly reference periods may be feasible.

In addition to these stated guidelines, it became obvious early in the performance
of *he work that much could be gained from trips to NASA centers and to various NASA
contractors to deterrine requirements for cloud cover data in current mission planning
and simulation endeavor~z. The details of the dxts presentation system have resulted

from information gaired from such visits.
2. UNCONDITIONAL CLOUD COVER DISTRIBUTIONS

";nconditional cloud statistics (in the form of frequency distributions of the
frac.ion of the sky covered, expressed in percent frequency) were prepared for use
in computer simulations. Ideally, it would have been desirable to prccess the
individual cloud cover observations from a large number of observing stations in a
consistent fashion to obtain a reasonably homogenecus form of summarization.
Since-available resources were limited, however, existing summaries had to be used
wherever possible. A limited amount of raw cloud data was summarized.

2.1 CTata Search

Twenty-nine cloud climatic regions were selected to represent the entire
earth's surface. It was hoped that for many of these regions a single station could
be used to represent the cloud climatology; however, it was also desirable to obtain
data for more than one station for most regions, so thas an indication of the homoge-
neity of the region and "representativeness' of the station could be established. Cloud
summaried were obtained for approximately 100 observing stations distributed through-
out the world. The initial selection was made from station locations indicated on
Northernand Southern Hemisphere upper air Raob and Rawinsonde network charts,
based on the idea that better quality cloud cbservations would be available from such -
stations. A visit to the National Weather Records Center (NWRC) revealed that useable




summaries were not available for se -eral of the originally selected stations. When-
ever possible, sunmaries from nearby stations were substituted. The final data

sample consisted of 108 land stations, plus six ocean weather ships.
2.2 Form of the Existing Data Summaries

Cloud observations from different parts of the world are summarized in various
forms. Observational times, and even observing techniques, vary from place to
place. The data summaries from which the unconditional statistics were derived
were in three basic forms: (1) Revised Uniform Summary of Surface Weather Obser-
vations (A-F); (2) Original Uniform Summary of Surface Weather Observations (A
and B); and (3) N1S* or N-Summary. Of the 108 stations, the Revised Uniform Sum-
maries werz= available for 33, the Original Uniform Summaries for 23, and the NIS
Summaries for 52 stations. Most of the NIS Summaries were designated as Old
Type N-Summaries. Also, ten years of raw data (on magnetic tape) were obtained
for six ship stations, and unconditional statistics were derived directly from these

data.

The Revised Uniform Suimmnmaries provided the most useable data (see Fig. A-1).

For *nese stations, cloud amounts are summarized in tenths by percentage frequency;
frequencies are given for three-hourly groups for all months. The sta*ions for which
the Revised Uniform Summaries are available are concentrated in only a few clima-
tological regions, particularly those within the United States. These summaries
also exist, however, for several United States Air Force bases througlout the werid,

Original Uniform Summaries for most stations are in a somewhat similar form,
except the number of observations is given instead of the percentage. A second dif-
ference is that the cloud cover is summarized by groups, as shown in Figure A-2. Fer
some stations, however, the cloud amounts are not summarized by tenths, but by A
categories such as clear, scattered and low broken., For these surmmaries, it was
necessary to assign a cloud amount to each category (see Fig. A-3j,

The N-Type Summaries were in the least useable form, since the summarizing
Jrocedures vary from station to station. The most comrion form (sometimes called
NIS Summary #17) gives the mean number of days per month with the following sky
covers: 0-1/8, 0-2/8, 3-5/8 and 6-8/8 (see Fig. A-4)., Moreover, the data are
generally available for only a few hours of the day. These summaries, therefore,
required considerable reworking to be of any use,

¥ NIS Summaries are piepared by the National Intelligence Survey

A-3
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A second form of the N-Summary hae the following categories: <3/10, 4-6/10,
>7/10 and >9/10. Here again the number of observations in each category are tabu-
lated for certain hours of the day (these reporting hours also vary from station to
station) (see Fig. A-5).

A third form of the N-Summary has categories of <2/10, 3-6/10, > 7/10 and
>9/10 (see Fig. A-6).

As can be noted from the foregoing, some of the summarization formats are
mutuaily exclusive, Thus,criteria had to be esta%lished,so that representative
station selection could be made. For simulation purposes there is a strong require-
ment that clear skies, overcast skies and skies having less than 3/10 cloud cover
be separately delineated. Any summarization scheme must, therefore, include the
possibility of tabulating these three cloud groups. One of the principal factors
involved in choosing the old A and B and revised A and B summaries as the preferred

data sources,was the ease of obtaining these cloud cover groupings.
2.3 Final Selection of Stations

The stations representative of each region from which the unconditional
statistics were derived are given in Table A-1. The type of data summary available
and the number of years of observation are also given. The climatological regions

for which the statistics were modified from other regions are so indicated.

2.4 Regional Homogeneity

A second criterion for picking a representative station for each region
comes from the implied requirement that the staticn must indeed be representa-
tive of a homogeneous area. Thus, wherever possible, all of the stations within
a region from which we had summaries have been compared, one with the other.
These comparisons were usually made fcr a winter and summer month and for
two times of the day, usually early morning and late afternoon. Such compari-
sonswere made in 15 of the 20 kasic regions (tabulated in Table A-2). These
comparisons are shown in Figures A-7 to A-21. Here, we willonly mention briefly
the comparison for two regions and leave the comparison of the remaining regions

to the reader. The overall homogeneity as demonstrated in these Figures is
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Table A-1

Representative Stations for Unconditional Distributions

REGION TYPE OF YEARS OF
NUMBER STATION COORDINATES DATA RECO]D
1 Dhahran, Saudi Arabia 26-17TN  50-909E 2 11
(Airfield)
2 Tripol, Libya 32-54N 13-17E 1 19
{Wheelus AFB)
I 3 ‘ Angeles, Luzon, P.I 15-11N 120-33E 1 21
. (Clark AFB)
|
- | 4 Tampa, Florida 27-51N 82-30W 1 23
| {MacDill AFB)
| I !
| 5 1 L>s Angeles, California 33-56N 118-23W 1 19
. X (WBAS) Hours 10-19 (May-O<tober)
; Modified I
[ i Talara, Peru 04-325 81-14W 2 5 |
, 01 and 22 Hours-Synthetic .
7 Synthetic Data | - ‘
| I
i 8 | Mountain Home, ldako 43-03N 115-51W 1 20 I
(AFB) 3
"9 | Fort Yukon, Alaska 66-35N 145-18W ) 18 !
. | (WB)
10 i  Harbin, China 45-45N 126-38W 3 7 1
| |
. 1 | Belleville, Hlinois 38-35N  89-51W 1 21
r (Scott AFB) ‘
| :
12 ¢ Ban Me Thuot, Vietnam 12-41N 108-07E 1 ‘ 1C '
(City Airport) | I
13 Ship D | 44-001§  41-00W 4 | 1o -
g (Atlantic) |
‘ |
14 Adak, Alaska I 51-53N 176-38W i 1 | 25
. & ; (NS) '
St | Resolute NWT, Canada | T4-4IN  94-55W 2 7|
; 16 Fort Kobbe, Canal Zone 08-55N 79-36W | 19 |
(Howard AFB) !
I
17 Bangalore, India 12-57N '7-38E 3 7
(Hindustan Airport)
{18 San Francisco, Califorma 37-37IN 122-23W 1 18
(WBAS)
19 Shreveport, Louisiana 32-30N  93-40W 1 27
{Barksdale, AFB)
20 Ship V 31-00N 164-GOE 4 10
(Pacific) |
21 Seasonal Reversal of Region 12 Legend for Type of Data:
(1) Reviscd Uniform Summary (A-F)
22 Seasonal Revernsal of Region 13 (2) Origina! Uniform Summary (A and B)
23 Seasonal Reversal of Region 14 {3) NIS Sumnary
(4) Raw Data {Ship Stations)
24 Seasonal Reversal of Region 15
25 Seasonal Reversal of Reglon 16; Hours 10, 13,16 for May - Sep:ember Modified
26 Seasonal Reversal of Region 17
27 Seasonal Reversai of Region 18
28 Seasonal Reversal of Region 19
- 29 Seasonal Reversal of Reglon 20
EN
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@
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Table A-2

Tabulation of Regions to Which Regional

Homogeneity was Established from Conventional Data

Region Number of
Stations
1 3
2 2
3 5
4 6
9 3
10 2
11 6
12 5
13 3
14/23 4
16/25 5
17/26 4
18 4
19 2
20 6
]
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considerably better than one might intuitively expect considering the large extent of
the regions, their diversity and separation around the globe,and their separation
into Northern and Southern Hemisphere (reversed) regions.

Figure A-10 shows the cloud distribution for Region 11, which covers the
northeastern United States and Nortk Central Europe. Distributions for six stations
are shown, ranging in apparent climate from that of Minot, North Dakota, through
Kennedy Airport at New York City, to Furth, Germany. “he 'prototype' we have
chosen for the region is Scott AFB, at Belleville, lilinois. it can be seen that
winter cloud cover is remarkably similar at all stations; summer cloud cover is
more variable, particularly in the incidence of clear and overcast skies. However,
the characters of the summer distributions are quite similar.

Figure A-7 shows distributions for Region 1, comprising desert areas.
Dhahran is the "prctotype.' The data have been graphed in the only commor form
available. Distributions are sc similar the year around that we did rot reverse
the seasons for Alice Springs, Australia, aithough a slight ‘mprovement in

representativeness would have resulted from such a reversal.

2.5 Seasonal Reversal

In nine cases prototype data from the Northern Hemisphere available in
suitable form were used to define the cloud climatologies of Southern Hemisphere
regions where suitable data were not available. The remaining eleven regions
either occur in only one hemisphere or occur in both hemispheres without need of
s>asonal transposition. We have verified the validity of the seasonal procedure in
three of the cases. These are shown in Figures A-16 to A-18. Note, for example,
(Fig. A-16) the comparison of the cloud cover distribution of Adak, in the Aleutians,
with those of Campbell Island, south of New Zealand, and Laurie Island, in the South
Orkneys east ot the tip of South America. Daytime observations were also available
from Stanley in the Falkland Islands. It can be seen, with the possible exception of
Laurie Island and Stanley in the winter (which are exposed to Antarctic Polar out-

preaks). the agreement is excellent.
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2.6 Special Tabulations

For two of the regions (13 and 20) no oceanic data could be obtained from
standard summaries. In addition it was desirable to check the validity of using
certain other land stations (or island ctations) to represent certain mostly maritime
regions. Since no data tabulations in form suitable for obtaining cloud cover
distributions were available, the raw data we~e obtained and tabulated for the ocean
ships. Ten years of data for six ocean vessels (as shown in Table A-3) were
obtained,and special tabulations prepared, to obtain frequency distributions of our
five cloud cover ,roups. These frequency distributions were obtainéd for the
eight times of day in a similar manner to the other tabulated data (see data for
regions 13 and 20 in Appendix C), so that the diurnal variation could be represented.
In addition, temporal conditional statistics were obtained for six hourly periods
running from six hours to 48 hours. The results of these temporal conditional
distributions wil) be discussed in Section 3 below.

Data from two of these weather ships has been selected to represent regions

_i3 and 20. In addition, a comparison was made for: (1) Ship C, Ship M, and Adak

(the protctype data) ior Region 14 (see Fig. A-22 for a summer and winter sample

at 0460 and 1400 local tiine); {2) Ship D and other stations in Region 13 (see Fig. A-15});
and (3) Ships N and V with four other stations in Region 2) (see Fig. A-21). In Region
14 (Fin. A-22), note the extremely good agreement of all samples (stations) in cloud

groups 1 and 2, and the near zero probability of clear skies.
2.7 Synthetic Data

There is no station from which to get data for Region 7. Thus a synthetic se:
of statistics for this region had to be generated. These synthetic data were prepared
using data from adjacent regions modified by using the known special climatology
of kegion 7 (see also Table 3-1 of the final report). This modification highlights
the large diurnal variations in cloud amount and the persistent occurrence of
stratiform type cloid in the summer period.

Region b,which includes Peru and other parts of South America,had no
reliable observatinns in the middle of the night (2200 and 0100 hours local time).
Thus synthetic data was generated for these two hourly periods based on good

meteorological judginent and the diurnal variations inherent in this climatic region.
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Table A-3

Location of Ocean Ships for Which

Special Data Tabulations Wcre Made

J

Climatological
Ocean Ship Latitude- Longitude Regions
C 52.8N - 35.5W 14
D 44N - 41W 13
K 45N - 16W 13
M 66N - 2E 14
N 30N - l140W 20
\Y 31N - 164E 20

A-30
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Region 25 required that hours 1000, 1300 and 1600 local time for the months
of May through September be modified to account for known cloud climatological
variations which were not direct seasonal reversals of Regicn 16. Thus in this
region, synthetic data were generated for these hours and for these mo=ins.

Region 5 also required a modification in the mid-day hours for the period
May to September. During other times of the day and seasons, the data closely
resembled those for Region 18.

In Regions 10, 17 and 26,NIS Summaries had to be used, for which the
irequency of clear arnd overcast were not uniquely specified. The frequzncics of
occurrence of the category 1 (clear) and category 5 (o~ ~:cast) were generated from
plots of the existing surnmarized data for each time ° day. Data for the appropriate

categories were then extrapolated from the plots.
3. CONDITIONAL DISTRIBUTIONS

It is important for simulation purposes to know the probability of occurrence
of an event at soine later time or at some short distance from an irnitial point. Such
spatial and temporal conditional distributions cannot be derived from existing sum-
maries. Therefore, raw data for each cf the stations representing the 29 regions
must be obtained. The use of raw conventional data from various parts of the world
to generate these distributions would involve an effort which was prohibitive. There-
fore, satellite observations for short periods of time were obtained for most of the
climatological regions; statistics for the remaining regions were modified from
the statistics computed directly for the regions with data. A second reason for using
satellite data to estimate the conditional distributions was that data sufficient to describe
tropical regions were already available,

Conditiona! probability distributions with regard to time and space were
derived for each climatological region. From the statistics with regard to time,
the probable cloud amount frequency distribution for tomorrow can be determined
for a given cloud amount today. Similarly,from the statistics with regard to distance,
the probable cloud amount frequency distribution for a location at a specified distance

from a base lociution can be determined for a given cloud amount at the base location.
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3.1 Data

For tropical areas, between about 30°N and 30°S, little data extraction was
necessary, as use could be made of data on hand from previous studies. From a
study of the cloud obscuration of terrestrial landmarks to be used in the Apollo
Navigation System, Barnes et al (1967),daily satellite observed cloud amounts were
available for 100 landmarks (stations) in the tropics, Although these stations were
not evenly distributed, observations were available for most climatological regions.
The cloud amounts in this data sample were extracted from within circular areas
of one degrec latitude diameter.

The statistics derived from a satellite data sample collected by Sadler (1966)
were strongly biased toward middle cloud amounts (3, 4, 5 octas), and therefore,
were not used. These results emphasized the magnitude of the sampling area size
problem, discussed in detail in Section 7 of the Final Report.

In extratropical areas, cloud amounts were extracted for several locations
(stations) within eachk major climatological region. The statistics for some regions,
particularly those of s, .ller size, were modified from the results for other regions,
The stations for which data were extracted, generally five to ten for each region,
were oriented in an east-west direction, providing uniform distributions for the
computations with regard to distance. As in tropical regions, the cloud amounts
were for one degree circular areas.

Summer and winter {(Nortnern Hemisphere) data samples were ob ained.

The summer sample, obtained from Nimbus II AVCS photography, consisted of

all available observations during Juae, July, and August 1966, the period of opera-
tion of this satellite., The winter sample consisted of observations taken during
December, January , and February, 1766-67, by the ESSA-3 satellite. A limited
data sample was also obtaired rom the E5SA-5 satellite, for Tune, July, and
August 1967.

Although the nominal camera resolution of the Nimbus AVCS photography is
0.5 miles, compared with two miles for the ESSA satellites, the improvad picturz
quality of the ESSA photography provides comparable data. The summer 1967
sample from ESSA-5 provided an opportunity for a limited comparison with the

Nimbus data for a similar period in 1966.




3.2 Ternporal Conditionals

Computations for temporal conditional distributions were carried out for time
periods of 24 and 48 hours. Only three months of record for each of two seasons
were available; thus observations from several stations within the same climatological
region were combined to provide a more meaningful data sample. In most regions,
from five to seven stations were used. In addition, probabilities were computed on
a seasonal rather than monthly basis, to further increase the samnle size. Even
so, samples were materially smaller than desirable.

The results indicated little conditionality past 24 hours, so only the 24 hour
probabilities were included in the final statistics (see Section 3.2.1 below). Methods
were developed for computing temporal conditional statisti.s in other increments
of time (see Section 6 of the Final Report).

For vegions 13 and 20, tempo-al conditional distributions were compiled
from raw ocean ship observation data during processing of these data for unconditional
distributions. It is reassuring to find that these compilations are similar in kind to

those obtained fromm much shorter samples of satellite data.
3.2.1 Decay of Tem, ral Conditionals with Time

For all but 2 of the 20 basic regions, temporal conditional data were computed
from sun-synchronous satellite obgservations, and thus represented observations
taken at 24 hour intervals., For these data, it was found that there was little
conditionality beyond 24 hours. Examples for Regions 11 and 9 are shown for
winter and summer in Figure A-23.

For two regions (13and 20) we were able to compute temporal conditional
distributions for each 6 hour interval from 0 to 48 hours. ‘

Figure A-24 presents winter and summer distributions of the diagonal values
of the cornditional matrix for Ship D (Region 13) and Ship V (Region 20). Both of these
ships, like most weather stations, lie in a region of rapidly moving weather systemse
where clear skies are rare. Broken clouds and overcast are about equally probable.
It can be seen that the straight line approximation to P(5]5) results in a fairly sub-
stantial overestimate of persistence in the winter season. In the summer season,
however, the straight line assumption to P(5|5) is a reasonable approximation.

Even poorer approximations are provided for P(ZIZ) and P(3|3),which becomes

essentially antipersistent after six hours,
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3.3 Spatial Conditionals

In each region studied, a 'base station' (a fi.:ed location) was selected to
become the ''given'' for each of the other stations in the group. In the tropical aata
sample the stations were uot evenly distributed. The stations sclected for ihe
extratropical regions were evenly distributed in an east-west direction. In both
samples, distances between stations varied from approximately 100 to 1, 000 nm.
As with the temporal distributions, seasonal compilations were made to increase

the size of the data sample.
3.3.1 Decay of Spatial Conditionals with Distance

Figure A-25 gives a schematic of the variation of conditional probability of
clear skies (cloud group 1) as a function of distance from the given station. At zero
distance the probabil’ y is zero for other given cloud groups, 100% for ecioua group 1.
As the distance between locations increases, the probability tends toward the uncon-
ditional probability ~f clear sky (P(l}).. Some difficulty occurs in defining the con-
ditional probability .- situationc where the areas over which the cloud cover is
Jescribed overlap; however, most applications dn not require information ot this
-ange.

The decay of the spatial conditionals with distance is shown in Figures A-26
to A-30 for Region |l and in Figures A-31 to A-35 for Region 19. The figures
presented in this form show the real data in a similar fashion to the hypothetical
case shown in Figure A-25. In this form, the data should show convergence to the
unconditional probability as indicated by the horizontal straight line on each of the
figures.

These figures have been drawn to illustrate effects that are noted in the real
data. When the distance between points somewhat exceeds the probable radius of
clear areas in the region, the conditional probability P(1|1) may fall below the
unconditional level to return at some 1ater point. In a few cases, oscillations occur
out to some distance, which may result from either insufficient data or from synoptic
scale waves. Similarly, the conditional probabilities of clear skies in the vicinity
of an area of scattered rlouds may exceed the unconditional p:obability of clear.
Some of the conditional relationships found are somewhat mystifying and ca.: most

easily he ascribed to chance variations resulting from data insufficiency (see

A=37
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Section 5.7.5.1 of the Final Repnrt). Some of these strange behaviors are particulariy
noticeable 1n the summer season of Figures A-32 =nd A-34., Good e¢nnvergence is
demonstrated for the winter =eason in Figures A-32 and A-33. In general, the con-
versence to the unconditional probability is better during the winter season than during
the summer.

An alternate way of presenting the same data such that the sum of all the
probabilities at any given distance must equal one are shown in I'igures A-36through
£-4C for Region 11.

Because of the smallness of the data sample and the requirement that the
data bank be kept relatively small from a computational point of view, we have not
defined, at this time, a generalized machematical functior describing the decay of
conditional prob :bility with distance, In its place we have adopted a simplified
procedure to permit general use of the data without invoking data volumes and
computation”. ~omplexities that cannot be justified by the quality of the avajlable
conditicnal daia. For each region and month, distributions are presented at a nom-
inal distance of 200 nm. "> general the data have keen take . without modification,
from pairs of satellite obse: ‘*ions approximatelv 200 nm apart. Whenever possibic
the data from the same region are grouped to increase sample sizes; unfortunately,
this was seldom possible. The data are iniesuded to be used by ~ssuming a straight
line probability decay between unity and the 200 nm vzlue for on- liagenal conditinnals
(P(3]3), etc), and between zero and the appropriate value for oif-diagonal conditiorals
(P(3{2),etc). The straight line is to terminate at the apr copricte unconditionz! value.
For further discussion of the use of spatial conditional distributions, see Section 5.2.3

of the F'nal Report,
3.3.2 Correlation Analysis

During the course of the computation of the preobable vloud frequency distri-
butions for pairs of stations to obtain conditional probabilities with distance, correla-
tion coefficients were computed for both the one degree satellite data and the two
and one-half degree satellite data cbtained from Sadler (1966;. As might be expected
from the data shown in the foregoing several figures, the correlations were ‘ound ‘o
decrease rapidly with distance reaching a vz'ue of approximately 0.6 at an average
distance of ab>ut 200 nm. For rnest regions in the tropics and extratropics the

correlaiion coefficient is a well behaved function of distance, out to about 200 nm.
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In some regions, the correiation coefficient is well behaved out to distances of
400 to 500 miles (where the values are often below 0.4). In all regions beyond
500 miles, the correc.ation noefficicnt becomes not well behaved and in all cases the

coeflicients are very small.
3.3.3 North-South Data Sample

As discussed above, the data points for most of the c'imatological regions
were criented in 3 east-west d'rection. A sample was also obtained, however,
for a group of stations oriented north-south. Available resources limited this samiple
to a single region and single season, with the data being extracted from ESSA-5
photography for the sumimer of 1967, for a group of five statiors, four being in
Region 11 and one in Region 9.

The resulting cloud frequency distribution for the five stations combined
is very similar to that obtained for a group of east-west stations in the same region.
Conditional probabilities both with regard to space and to time are also similar to
those computed for the east-west sample. In the computations with regard to
distance, however. the correlatioa between stations appears to decrease more
rapidly in the north-south group of stations. While the correlations are similar
in the two groups for stations about 120 nautical miles apart, a much lower cor-
relation was obtained in the north-south sample for stations about 300 nautical miles
apart (a correlation coefficient of 0. 14, compared to 0.64 for the east-west group!.

The decrease in corrclation in the north-south direction probably reflects
the more rapid changes in cloud climatology with latitude than with longitude.
Although a larger data sample is required before conclusive results can be obtained,
these results tend to con’irm the choice of a narrow latitudinal dimension for many

of the climatological r-gions.

3.4 Quality of Conditional Distributions

3.4.1 Data Quantity
The probleme of data quantity can be appreciated from considaration of
the way in which the conditional probabilities are generated. The starting point is

a 25-element joint frequency table., Our characteristic data samples had 85 to 90
pairs of observations. In a number of joint distributions, a few elements along the
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diagonal contained most of the entries, leaving a scattering elsewhere, At first
it seemed that the best golution to this problem in the absence of greater data
amounts, would be to group data from several regionas. However, because the
regions were defined by their cloud climatolcgical dissimilarity, it was found that
this procedure would result in serious distortion of joint probabilities along the
diagonal, thus destroying the major part of che significance of the di-tribution,
To put this observation on a firmer statistical basis, XZ tests of homogeneity were
performed to see if candidates for grouping couid be considered as being drawn
from the same parent distribution. The results indicated that ir spite of the small
sample sizes, the null hypothesis of homogeneity could not be accepted. As an
example, the first test was performed on distributions for Regions 11 and 18 in
winter, yielding )(2 = 46,0 with 24 degrees of freedom, significant past the 1% level.
A further consideration mitigating the effect of small sample size is that
the frequency of reference to an element in the conditional probability table should be
in direct proportion to the number of hservaticns that were used to define that
element., 7.us, the variance that can be tolerated in estimating the probability of
the frequently occurring joint evente is greater than in the case of the more probable
events. By the same token, care should be taken 1n applications of these statistics
that the results do not depend critically upon the occurrence of improbable joint
events, the probability of which may be poorly estimated. As an example, if in
our satellite data sample only one case of clear sky occurred, the conditional prob-
ability table would dictate that any clear day must be followed by whatever cloud
cover succeeded the clear day in the data sampie, all other transitions being excluded.
The probabiiity of twa succesdive clear days would be zero.

3.4.2 Quality of Source Data

The satellite data were ''observed'' by a skilled meteorological technician
with extensive experience in the handling and interpretation of satellite TV data.
Data sources were mosaics of Nimbus 1I AVCS data prepared by Allied Research
for the Goddard Space Fligh* Center and similar machine-prepared mosaics of
data from ESSA-3 and ESSA-5. Variations in exposure and processing of Nimbus II
data made consistent quantitative judgment of cloud cover quite difficult, adding
an element of variability beyond that to be expected from norn:al subjective judgment,
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The area from which cloud was to be read was delineated by a transparent
template placed over the cloud field in a position dictated by the machine-superposed
geographical grid marks. These are frequently in error by a degrece or more, with
occasional major errors resulting from failure of victure time coordination. Lxcept
for cases of obvious gross error, the technician was instructed to use the grid for
reference even where it disagreed with landmark evidence.

A few tests were run to assess the probable error of this class of manual
data extraction, which is really not different in kind from cloud cover eatimation
by ground observers. It was found that data extracied under the same ground rules
were reasonably consistent, but that the unconditional (marginal) distributions
could be materially changed by altering instructions to the data extractor.

Not unexpectedly, the marginal distributions of the satellite data were found
to give much smaller cloud covers than the corresponding conventionally observed
cloud data. The greatest departures came from the Nimbus II data sample, where
it was apparently difficult to vifferentiate thin cloud and small clouds. Table A-4
compares the unconditional frequencies in the worst case found. While it is prob-
able that Tampa and the part of the Gulf of Mexico immediately to its west may be
cloudier than the more maritime parts of the region used in the satellite sample,
the differences are still extreme. The explanation must lie in the prevzalenc of
sub-resolution size cumulus, resulting in a shift from the sca:tered and partly
covered groups into clear; and the one degree satellite sample size which may almost
universally exceed the size of the large cumulus and cumulonimbus providing over-
casts at Tampa, thus shifting them into cloud cover classes vacated by the unresolved
small cumulus.

Tabie A-4

Comparison Between Data Samples
For Region 04 - Summer Season

'—Cloud Arount August Percentage Frequency
in Octas Tampa Nimbus II (1966) ESSA-5 (1967)
0 3% 52% 35%

1-2 28 31 32
3.5 15 11 16
6-7 21 4 12

33 2 14
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Section 6.8 of the Final Report discusses how the overestimated cloud cover
of the ground observed, in the unconditional distributions, the underestimated satel-
lite cloud cover used in the temporal and spatial conditional distributions, and the
overestimates of cloud coherence and persistence resulting from the us e of the
straight line approximation all tend to compensate each other in characteristic
applications.

An overall asgessment of the quality of the conditional probabilities cannot
be made without reference to their intended use. The techniques (described in
Section 6 of the Final Report) have been selected to make effective use of the appro-
priate properties of the conditional distributions with only occasional apparent
minor errors arising from their relative inaccuracy and bias toward clear skies
(see Section 5.4 of the Final Report). Used in the recommended fashion in appro-
priate simulation situations, we believe that these data will give results materia ly

more realistic than those derived from simple assumptions on cloud climatology.
3.5 Data Confidence

A table of data confidence levels, prepared for all 29 regions, is presented
as Table A-5. In this table we have assigned a confidence code for both the uncon-
ditional and conditional cloud statistics and in the case of the conditional statistics
for both space and time. This confidence code is a simple one through three system,
where one dencotes good data obtained directly from long-period record in the case of
the uncnudiiional statistics and from computed conditional statistics for the specific
map region in question in the case of the conditional statistica. A code of two denotes
a confidence level of fair, indicating principally that the statistics for these regions
have been modified from long term record data or from computed conditional statistics
for other regions, based on climatology and good meteorological judgment. A con-
fidence code of three indicates relatively poor data, that in some cases has been
syntheeized, based on firm meteorologicai ronsiderations, because no satisfactory
cloud data for that region exists.
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AFPEXDIX B
FINAL DATA FORMAT AND COMPUTER SUBROUTINES

This apperdix presents a brief disucssion of (1; the map region and data card
decks, (2) printouts of these data decks, and (3) discussions of a few computer sub
routines to be used ir data manipulation. For example, subroutines for obtaining
map region from the latitude and longitude of a desircd point on the earth, and for
scaling distributions for distances other than 200 nm or times different from 24 hours

are discussed Formulas for enlarging sampled area size are also presented.

1. WORLD-WIDE CLOUD COVER
CARD DECK DESCRIPTICN

Two decks of cards contain all input data necessary to use the world-wide
cloud statistics. The first deck contains map region numbers and boundaries
(Fig B-l). Tne second contains twelve months of cloud statistics for each of the

29 regions.
i 1 Map Deck

Data for the first deck were extracted from the map in Figure B-1 in the fol-
lowing manner.

Boundaries of each region fall on even numbered latitudes and longitudes.
The area between 70 degxees south and 70 degrees north is divided into 70 swaths
at odd numbered latitudes which extend from 0 degrees to 360 degrees eastward
from Greenwich. The areas above 70 degrees north and below 70 degrees south
require other logic since one region number defines the entire area. By scanning
eastward from Greenwich along each swath, the number of the region previously
encountered and the value of its terminating longitude (numbers between 0 and 360)
were recorded and punched on cards. The maximum number of terminating longitudes
in one swath was nineteen. Two cards were used to catalogue one swath even though
data for some swaths did not extend into the second card. The card setup is illustra.

ted in Figure B-2.
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Figure B-2 Data Card Systems for Defining Climatic Regions.
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The flow chart in Figure B-5 is of a subroutine that may be used to extract
the region numbers fromr a given latitude-longitude location on earth In this sub-
routine it is assumed that the cards have been read into an array made up of 70 rows

and 38 columns and that values cf latitude are negative south, positive north, and
longitude negative west, positive east.

1.2 The Data Deck

The second deck, containing the cloud statistics, is illustrated in Figure Be3.
Figure B-4 further demonstrates the individual card setup for the statistical data.
As can be seen, 5 cards make up 3 matrices, the first being the unconditional proba-
bilities for five cloud groups and eight local times. The second matrix is the 24 hour
temporal statistics and the third is the 200 nm spatial statistics with the five given
cloud groups listed on the left and the corresponding five cloud groups listed on the
top.

A complete listing of all the map region data cards and cloud statistic data
cards may be found in Section 2. 1 and 2. 2 of this appendix.
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2. COMPUTER LISTING OF CARD DECKS

2.1 Lasting of the Map Region Cards

1uvlctb3ou

<ul

1u2c41t 0.2529024300

cul

1udel160232902436V

vy

1udc 330U

Jul

1ude3dbl

cub

1v23360

c VO

1u723300

2u?

1L823360

Ud

1u923360

JuY

1403300

<ly

111022900p229022360

211

11222290022962236u

212

113£22900229022360

cld

114¢22900229622360

cld

115¢22900229622360

2id

110291402815029820528027290022942830429360

2lo

117¢9140206150292820528027290022942830429360

217

1162911427140281542928205288272900229428306829300

cly

119¢90302004604U602911427140281542928205268022942830829360

219
12029014020262903u2004604060291142712002142281542928205288022942831029360
2¢cu
1c10300005014020302004604060291142712002142261540419029250042640328205288
2¢10229204310033240435003360
1220300005014020302604604114021220113602142201540419029250042640328205288
2220229204310033240435003360
1c30300605014020202004604114021220113602142261540426403282052880229204310
223033240435003300
12403006050140202020046041082601140212201136521422615404264032820528802292
2¢404830221312033240435003300

1¢0300609012020162604604108261140214226154042640328206292043022131203324

250435003360
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1260300605012020162604804108261140213026150041600317604264032820629225310
226213240435003360
1270300605012020162604804108261500416003176042640328206270253102132404350
22703360
1<280300605014260202503404040260500410826130251440416003176042640328006286
22825318213240435003360
12903006050142602025034045402605021090251440426003176C4194022400427003280
2290628625318213240435003360
13021014250340640402605021090251440416003176041940224004270032760628403302
2302531821324043320234204360
1312101425034040400205021090251300415003176041940224004270032780628403302
2312531821324043320234204360
13221014250340404002050210902512004140031760419402254042700327606268203302
25225324043320234204360
1532101825034040400205004090251160413203176041940225404270032760628003302
23525324943320234204360
1542101825034v40400205004090251100413203176041940225404.°780332404233202342
23404360

13503018040400205004090120980413203176042780332404360

235

1360301804044020620409012098041160317604278033240435003360

236

137030180404402062040901209804116032440427803360

237

1381603617044020620409012102041160326404252162780335616360

238

139160361704402062040901210204116032440425216288033301234016360

239

1401603617044020620409612108041160324404252:6288033301234016360

240

141170400206217096812110041160317004218122360425216278173001234017360

2e4l
1421704002062170961211004116031700421812236042521726816278173001233617360
242

1430 J6217070160981211004116031400421812236042521726816278173001233617342
24302360
1440204401056020621707016098121041911204218122360425217264043101233617342
24402360
1450204401056020621707016098121041911204218122461726004310123361734202360
245
1460106002064170701609812104191122013004218122461726004330123361734202358
24601360
14701060020641706701609819118201300421812246022541726004330123361734202358
24701360
14801060020681707416098191168201800421812246022480125202260043301233617342
2480235801360
1490106002066170761609819122201800421812238072460125202260043102034402358
24901360
15001052020721708016098191222023212238072“6012520226019280203500235801360
250 :
1510208216098191222023212238072440124802260192802035002360

251

15202082160981912220232052440124802260192802035018360

252 .
1531803802098101301316020232052“0162““022601928“2035918360
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fgi1807002098101301323205238182““022601928%2035018360
fggl807002098101301325205236182“00825“112861535018360
f2;180700209810136132380825“112901335018360
fzgl1028160700209810136132580825%1129013350113b0
fggl1028160700209d101401325808254113001355011360

298

1591103818070020981014014230132380825411300143301335611360

izgl1098101“%1“230132380825“113001“3301355611360
fzfl109809110101““1“23“132380825“113001“3301335611360
TZél109809110101““1“23“11260093001“3“01335011360
§Z§110b009110101501“23“11260093001“35011360
;ZilNOUZI106009110101601“230093001“360
22214002110506912410160142300930014360
§221“0081105009124101701“220093001“360
$0714014110420912410170092463026009300143101532014360
f22140141A04209124101700924610280093001%3101533014360
fzgl40“20912“10170092“61028009300153501%360
izgl“0“20912“10170092“6102800930015360

é
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2.2 Listing of Cards Containing Cloud Distributions

1VU1U11626349U44425966£5985080502008107030900
1010121412171618191815781205050107010002000
1v101306071009071u100875101005005729001400
1ulU14111014202220171080050505055000072914
1UlU15070810111112090860080505020000000199
1U1021373822181717233173060411066311022102
1U102219102021211922207¢101005055000000050
101022100011101213121260130014132000202040
1010282223333532335202443040625222200222234%
101025121514161818171329070335262500121350
1ulu311718455040101040917101742083020202010
101032242521191113182205132%42110025255000
101u33121313161617131302152739173000464608
101034272333324139343403092150170000057322
1U103520212829313031220504185221 7207004159
1U10414624226211614243B4517165NC4BE25071550
10104214131921232523183€242917044027270600
101043050508101212090922312519032822222206
101044151419202827241523122433081022303206
1ul04524202826212220211..5201323191002135025
101051414133343431394175150505007515050500
101052121212131416€1513.5701005003570100500
1U10530505040406000::151010681002053J0681502
1ulu54121016171719101% 5050872150002087218
101055303235322928c7: . JU0220780000022078

1U1Lh120202333271919%240150500007515050500 °

10106220212011202623330720500001570100500
1U10630508061515130610-61050000005:0681502
1U1UH4150719252632392025%1505500501.02087214
101065403832161210122045050510350000022078
1U10712026233327191920801=0%530075150505C0
1U10722021201120202330207505080:31%7N160540
1U1573050606151513061040105000000510681502
151U7415071925263239203505055005000208718
101075403832161210132045050510350000022078
1U10812018130707061216831090613414111211611
1U1082091011111313111016111520381325251225
1U10U83040505050505070514141419391020203020
101084151420212321181605090822520008254225
1U1U85925351565253525110030825540002052370
1010U91585639323031564545010814324001133313
101092100608101012101640051010352510102035
101093020504040506020219062029260000282943
101U940%0711131709020926001227350000005644
101095252838413842292815000316660000000694%
1U11C01575845464648505560101010104001133213
101102221716181725232550201505162510102035
1U1103020304040504020325053020200000282943
101104091122171710110925951025350006005644
101105103113151513140820000530450000000694
1011211333218141615233031090613414111211611
1011120708143121112110916111520381325251225
1U1113040406040506040514141419391020203020
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1U1114100913191919131009090822520008254225
1Ul115664749514948494610030825540002052370
1u1121030402020101020360160808080199000CG.:
1U11220526231512211209124528:00510552C17¢.
1011230126232626302507053431280208283328( -
10U1124262742495340u25240533263402002828331.
1011256517106300L08305716175017003333003400
10113100010000000U000000990100006104131309
101132121001120204030700131136405040050500
1u1133091U11110603060600100832500515552005
1U1134302839315046473700060740470400166020
10113549514946424 7445000060940450503053057
101141040402000000010228020828346104131309
1u1142100907030304063910104030105040050500
1uilu3080006070505070715030949240515552005
1ul1442482527404139232518050838310400166020
1U1145545A5850515257572301063535..,03053057
1U1151616066563946555945010814324001133313
1U115210050514191115094005101035251010203%
101153020402040503940319062029260000282943
101154070803040712000726005227350000005644%
101155202324223028202215000316660000006694%
1U116169643412000330647913040400920800000¢
1U11621722.333928343016115425090130063070000
1V116305051015281909070534312802255025¢000
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112¢03060611171113131001161043301312153030
112204654445233032294601101139391409144518
112205383937433837413801121038391306121653
112211020000000000000118320935065025250000
112212111209030000030911311538052936002807
112213152421140821171403122253100036184600
112¢14284555718175532308152046110712205407
112215441915121114275307072249150000105040
112221010402010101020100270540271010253520
1122223141715081011121000201123461420401610
112223070908086703050601150632461710174016
112224332323333233343801140735430202123450
112225454 752505047474502090730520105060781
112¢31000101000001000004061218601010204020
1122320201010101202020120051525351420401610
1i2233020101020302010209031821491710174016
11223413,417212525241605061231460000123454
112235838380767070738102040518710000020791
11224109050604040706103507051835601804(711
112242080€07091212110731040723355610340000
112245020102030404040532080832202709102727
112244131320242319171721080725390510005035
112245687565605758626111060526520004073554
1122510402000000000002183209350630202G2010
11225216120401000:021011311538050025255000
1122531315080403020413031222531006000464608
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112254313041373834292908152046110000057322
112255343547585%902554607072249150000004159
112¢610500000u0000040660100808087525251005
112202080002020001040812452810050545351005
112¢631513505070505101405343128020535451000
112264454238465053555405332634020510403510
112¢65273955454542271816175017000505353520
112271453532445353505264050406018705020501
112272111311151615151345290422007020100000
1122730405060607080004042801G30075000173300
112¢78111216141415151148111922006010101010
1122792935352110091420202C0040205015101510
11228149321913000722u554390501014837040704
11032162019171524201941421205003148140502
112:65070910172522110920471815000033343300
112c84141925353829221220202725080015255010
112285142027181018191505152025350010152550
112¢91600101000201060001140014714837040704
112292080704061012050501150940353148140502
11229304040504000204040221093731003334330U
112¢94343532302427333501070334550015255010
112-95545554605858565600070428610010152550
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3. COMPUTER SUBROUTINEE

The f (dowing sections briefly describe sevcral proposed subroutines for data

handling or cata manipulation.
3 1 Subroutine for Extracting Pegion Numbers

Figure B-5 is 2 flow chart of a subroutine that may be used to es'tract region
numbers from a given latitude-longitude location on earth. The routine assumes
that the cards (see Fig. B-2) have been read into an array made up of 70 rows and
3% columns and that values of latitude are negative south, positive north, and longi-

tude negative west, positive east. Table - 's a FORTRAN Program prin‘out of

this subroutine.

Table B-1
FORTRAN Printout of Map Region Subroutine

SUBKOUT INE REGIUN
CUMAMUN PLAT PLUNGsMAP(TOQ438) o IKEGLUN
ENTER wlTH A LATITUDE & NOKRTH = SUJTHy LdnNulTuuz ub 9 Tu
180 UEGREES & EAST - wkST.
RETJUKN wWITH THE CLIMATULUGICAL RELOGION NUMoErn wHEnRE IHE
CUURDINATES RESIUE.
IF(A3SIPLAT) cotke70.0) GU TC 11
1 ILAT = (PLATLT71.C)/240 & &5
[LING = PLUNG
. JFCILUNGSLT.0) ILUNG = ILUNGLE3SD
DU T 1=2y38,42
IF(MAP( LILAT 1) el ToilLLAL) L TU 7
IKEGUN = MAP(ILAT,I-1)
* v Tu 1¢
7 CUNTINUE
KETURN
11 IREWUN = 15
IF(PLAT 1 T.0.0) IREGLN = 24
le KRETURN
END

ocCcoc
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|PLATI 2 70.0\ YES

Dimension Map (70, 28)

Enter With:
PLAT - Some Latitude, + N, -S
PLONG - Some Longitude

Retuin With:
Region number where the point
resides

3 {ROW SUBSCRIPT)

ILAT= [(PLAT+71.0)/2.0] +0.5

ILONG = PLONG

[TLONG+ 360 }o— ILONG >—22

YE NO
> MAP < ILONG ‘
1LAT,)

f___JV

{IREGON = MAP"'AV,‘ ]

[ IREGON=15 =

{  IREGON=24

+. 'vre B-5 Flow Chart for Map Region Subroutine.

B-48




\“d'“

7. 2 Propesed Computer Subroutine for Scaling Temporal or Spatial
Conditional Distributions

Figure B-6 is a flow char. and FORTRAN versicn of a subroutine for scaling

the conditionals for distance or time. Table B-2 iists the necesgary definitions,

Bemd o

inputs, restrictions, etc. Table B-3 provides a list of terms and definitions which
are usad throughout the following paragraphs.

The scaling procedure is described in dctail in Section 6. 2 of the Final Report
The following paragraphs have been extracted from this discussion, to outline the

basis for this subroutine.
3.2.1 Scaling for Distance

Data for 200 miles distance from the initial pcint are tabulated in the data
bank. We present here the mathematical technique for scaling these conditional
statistics for distances other than 200 nm. The assumption is made that the condi-
tional probabilities decay linearly with distance.

The procedure for scaling for distance based on the linear assumption is thus

a relatively <impie one. Two conditions are imposed. The first concerns the area

« ithin 200 miles, i.e., scaling for distances less than 200 miles; the second is Jor
o, scaling beyond 200 miles. For scaling within 200 miles, one uses the following two
formulas. For probabilities on the diagonal of the 5x 5 conditional matrix, i. e.,

1 given 1, 2 given 2, etc., one uses

Scale (d)

P(C)=1 -
. () 300

(1-SCOND) (1)
If the value in question is not on the diagonal,i.e., probability of 1 given 2, 1 given 3,

etc , the following formula is used for scaling

P P (C) :i‘mzlo;o(dL (SCOND) (2)
i

When the required distance is greater than 200 nm the following condition is
also imposed. For values on the diagonal, the scaled values (scaled using the formulas
immediately above) rnust remain greater than the unconditional probability of the diag-
onal value, i. e., the scaled probability of 2 given 2 must be greater than the uncon-

ditional probability of ? If this test fails, the entire horizontal line of the 5x 5 matrix

| Cencon AR MW mor e
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1

ENTER

DO FOR 5 ROWS (1)
[
F(INCREMENT J)—] DO FOR 5 COLUMNS (J) [ (INCREMENT J})

~—i°--<0N THE DIAGONAL? »—YES

TORS, , = SCALE (TORS, , ) /DIV TORS, , = 1.0-SCALE (1.0-TORS, , } / DIV

NO YES 3 \
b—@sl,j>wc‘l>—_l [ YES TORSI,J < UNCJ / NO
1

LNO /scale > D @755
(Substitute this row with unconditionals)

DO FOR 5 COLUMNS (K)

i

TORS, . = UNC,

I ( INCREMENTI)
FORTRAN IV Version of SCALNG (KA=I, KB=J, KD=K for reference to above chart,)

SULROUT Liie SCallvo .
COLMOIE /anbag/TURS(Dr9) 1iC(B) P SCALEP LIV
a0 9 MAZ)eYH
U & K= eh
IF(rRAsLuweAL) 0O TU }
TUROD{KAarAs) = SLALESTORS(KAeKB)/ZDIV
IFLTORS (An ki) s 0T eUNC IV HB) +ANUs SCALE.GT.DIV) GO TO 3
w 1y 2

1 TUnLRAPRS) = 1.=SCALE* (] .,=TOK~(KA?K3))/D1V
IFCTORS (AR RE) LTLUNC(KB)) GO TO 3

« WOl ITHUE
60 10 »

S LU 8 KL=1reH
TURS(KA'nU) = UNC(KU)

« CUNTINUE
nk TURN
t NG

Figure B-6 Flow Chart and Fortran Printout for Scaling Subroutine .
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Table B-2

Subroutine for Scaling

TDENTIFICATION:

PURPOSE:

USAGE:

Title: Subroutine SCALNG

Tlhis is a subroutine that may be used for linear scaling of temporal
or spatial conditional statistics derived from the world-wide cloud

over study.

¢l

Calling Sequence:

Where (1)

(2)

(3)

(4)

RESTRICTIONS:

COMMENT:

CALL SCALNG (TORS (5, 5), UNC(5), SCALE, DIV)

TORS is a 5x 5 matrix of temporal or spatial conditional statistics

to be linearly scaled. Rows of this matrix are defined as the 5 given
cloud groups increasing from top to bottom.

UNC is a ! x5 matrix of selected unconditional probabilities that can
be used for substitution into appropriate rows of the conditional
matrix should certain tests justify.

SCALE is some number expressed in nautical miles vhen scaling
spatial conditionals, or hours when scaling temporal conditionals
DIV is equal to 200 when scaling for spatial conditionals, or 24 when

scaling for temporal conditionals.

SCALE should never be less than or equal to the sampling area size
from which the spatial statistics were derived when scaling spatial

conditionals (i. e., ~ 60 nm),

Return with the scaled conditionals in TORS.
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Table B-Z
Definition of Terms

UNCON Unconditional Distribution for Sampling Area Size 30-60 nm.

SCOND Spatial Conditional Distribution for Sampling Area Size 30-60 nm and
Distance 200 nm from UNCON.

ITCOND Temporal Conditional Distribution for Sampling Area Size 30-60 nm
and 24-hours after UNCON-

SUNCON Scalcd Unconditional Distribution for Enlarged Sampling Area Size.

CONNEW Conditional Distribution Scaled for Enlarged Sampling Area Size.

CONDIS Spatial Conditional Distribution Scaled for Distance Other than 200 nm.

CONTIM Temporal Conditional Distribution Scaled for Time Other than
24-hours.

SCSCON Spatial Conditional Distribution Scaled for Both Enlarged Area Size
and Dictance Other than 200 nm.

SCTCON Temporal Conditional Distrivution Scaled frr Both Enlarged Area Size
and Time Other than 24-hours

TSCON Conditional Distribution Scaled for Both Time and Distance for
30-60 nm Sampling.

TSSCON Conditional Distribution Scaled for Time, Distance and Enlarged
Sampling Area Size.

DICON Pseudo-Conditional Distribution Ma*‘rix Generated while Scaling
TCOND for Diurnal Effects.

DITCON Diurnally Scaled Temporal Conditionals,

B-52




%

is replaced with the unconditional statistics. In a similar manner for valies not on

the diagonal, the scaled values must remain below the unconditional probability

of the given cloud group, i.e., P(ZI 1) and P (2| 3) etc. mnust be smaller than the uncon-
ditior.al probability of 2. If this test fails, the entire horizontal line of the 5x 5 matrix
is also replaced by the unconditional stat.stice. Thus if either the diagonal value is

less than the unconditional value or if the norn-diagonal value on any given line is greater
than the unconditional value, the whole line is rzplaced by the unconditional statistics.
This amounts to saying that if either of these tests fail, the cloud cover statistics for
this cloud category beyond this distance are no longer conditional upon the first point

Lut rather assume the unconditionai distributions.

3.2 2 Scaling for Time

Scaling the conditional distributions for time is handled in a somewhat similar
way to that for distance. In this case, we assume that the statistics are no longer
conditional for times beyond 36 hours. To scale the time conditionals the following

formulas are used:

ON the diagonal

P(C) =1 -35-‘%%-‘1)—(1 - TCOND)
OFF the diagonal
P(C) = §£a“—;;gl- (TCOND)

The first formula is used for values which lie on the diagonal of the 5x 5 matrix’
while the second formula is used for those which lie off the diagonal (similar to the

discussion in paragrapn 3. 2. 1 above).
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3.3 Scaling for Diurnal Change

The 24-hour conditional distributions and aay scaling of them for other time
intervals, contain no direct provision for introducing the effect of diurnal variation,
which in some regions is the principal factor affecting <loud cover. A recommended
procedure is as follows:

1. Generate a pseudo-conditional distribution (DICON) betwcen the uncondi-
tional distributions at the local times of the first and second cloud events. This can
be done by first forming a joint prnbability diatribution between UNCON (A), the .
unconditional distribution of event A, and UNCON (B) the unconditional distribution
of event B (later in time than A). The assumption is8 made that the event B corre-
sponding to a specific event A is the one occurring at the same cumulative probability
level in the unconditional distribution at the second time as does the event A in the
unconditional distribution at the first time. This satisfies the intuition that diurnal
change is superposed on more gross synoptic scale variability,- 80 that if event A
represents a lesser cloud cover than normal, the succeeding event B should also
represent a smaller cloud cover than normal at that time. As an aid to the reader,
we define PA“)' PA(Z), etc to be the probability of cloud group 1, 2, etc. for
event A, and PB(I), PB(Z), etc. to be the corresponding probabilities for event B,

The cloud categorization intervals fali at different cumulative probabilities in
the distributions of event A and B, Thus it 1s neceesary to divide up the intervals of
the distribution of event A and assign them to intervals of the distribution of event B,
assuming uniform distribution within an interval. To form the joint probability ma-
trix shown in Table B-4(C), we find the fracticnal part of PA(I) that is contained in
(jointly distributed with) PB(I). In the exampiz shown in Table B-4(B), all of PA(I),
0. 2, is contained in PB(l). Thus, 0.2 is entered in the joint probability matrix at .
position A = 1, B = 1 (cell number of joint table). Since PB(l) is 10% greater than
PA(I), this additional C. 1 in PB(I) could not ha' e occurred jointly with PA(I).

Therefore, it is placed in the matrix (Table B-4(C) at osition A = 2, B = 1.

In a similar way, we rate (jointly distribute) PA(Z) with PB(Z) and find that
only 0.3 are contained in both. Therefore, 0.3 is located in the joint matrix at
A =2, B =2, Again there is an additional part to k: allocated: this time 0.1 of o
PA(Z) must have occurred with PB(3); it is thus entered in the matrix at A = 2, B = 3, .
(For Monte Carlo computational procedures, it may be more convenient to work with
the UNCON cumulative probabilities. )
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Table B-4

Computation of a Pseudo-Conditional
Distribution for Diurnal Variation

UNCON
EVENT
Cloud (A) (B)
Category Prob. Cum. Prob. Cum.
1 .2 .3 .3
(A) 2 .5 .3 .6
3 .2 .2 .8
4 .05 .95 .1 .9
5 .05 1.0 .1 1.0
UNCON
Event (A) Event (B)
Joint
Cloud Rated Cell Rated Cloud
| Category | Probability  Probability Number Probability  Probability cCategory
. 2 ) { . 2 I'l - . Z } 1
.1
R
y — 2-1
2 5 I .3 2-2 .3 } 2
L .
\ 2-3
1 T~
3 .2 { 3.3 } 3
.1 T .1
\ 3-4\
4 . .
05 { 05— o1 } 4
T o5
5 .05 { .05 5-6 - . 05 } 5
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Table B-4 (cont'd)
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This process is contiaued for all categories as shown. These individual
entries, divided by the marginal total UNCON (A), become the entries in DICON
(CB CA)'

If any elemen. of UNCONM (A) is zero, a suitable flag should be entered in the
cell number of the joint distribution (See example in Table B-5) into which an entry
would fall if that element were very small. In forming the DICON matrix, by divi-
sion through each row by the corresponding element of UNCON (A}, the rule is "flag
divided by zero is 1. 0. This results in an appropriate entry in DICONM to take care
of the eventuality of a '"forbidden'' event A materializing as 1 result of other manip-
ulations. If an element of UNCON (B) is zero, no special provisions are required,

as the resulting distribution will "lock out'" that category.
2. Form the diurnal - temporal conditional distribution (DITCON) by
5
DITCON (ai bj) =k}:: | DICON (ailck) CONTIM (ck bj)

where CONTIM is the scaled derived temporal conditional appropriate to the time
interval,

3) Use DITCON in place of the temporal conditional in question, The DITCON
operation is not required for time intervals of less than 2 hours or approximately
24 hours,

If it is desired that the resulting distribution avoid total lockout of cloud cat-
egories of zero probability in UNCON (B), the formula for DICON may be reversed:

5
. _ . ,
DITCON (ai bj) -k2:: . CONTIM (ailck) DICON (ck'bj)

The two formulas differ in the effective order in which the cperations of
dwrnal change and temporal conditionality are performed. The first procedure,
recommiended for most applications, performs the conditionality operation first.

As noted earlier, the straight line estimate of temporal conditional distri-
bution at time intervals less than 24 hours tends to overestimate the persistence, i.e.,
produces a distribution too strongly diagonalized. A largce part of this overestimate
may be due to the ignored diurnal change. The DITCON cperation reduces the diag-
onalization in a fashion directly reluted to the degree of diurnal change, lending some
confidence to its validity.
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Table B-5
Computation of a Pseudo-Conditional Distribution
for Diurnal Variation With a Zero UNCON Entry
UNCON
Event (A) Toint Event (E)
Cloud Rated Cell Rated Cloud
Category Probability  Probability Number Probability  Probability Category
1 .4 .3 1-7 .3 .3 1
a4 \\ ] . 2
\\\
2 .3 2 —_— =l 3 2
— .2
\\ 2
-3
\
3 .2 I — 3.5 1 2 3
1 .1
\ 3
-4 \
.1
4 0 0 4-4 0 1 4
5 1 1 5-5 1 1 5
JOINT PROBABILITY
(B)
1 2 3 4 5 Total
1 [ .3 .1 0 0 0 4
2 0 ) 1 0 0 3
3 (A) 0 0 i .1 0 .2
4 0 0 0 * 0 0%
5 0 0 0 0 .1 1
|
DICON
C
(B)
1 2 3 4 5
1 .75 . 25 0 0 0
2 0 67 .33 0 0
3 c 0 0 .5 . 5 0
4 (A) 0 v} 1.0 0
5 0 0 0 J 1. 0
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3 4 Scaling for Both Time and Distance

Certain simulation situations may require that a point or area on the earth be
observed on a given orbit and .. second nearby point be observed on a somewhat later
orbit. For this situation, where the time difference between the first and the second
observation is less than 26 hours and where the distance between the two observed
points 15 less than 800 miles, the condi*ional probabilities must be scaled for both
time and distance concurrently. The following procedure has been established to

1ccomplish this concurrent scaling for time and distance

3 4 1 Procedure for Scaling tor Time and Distance

1) Separatcly calculate CONDIS and CONTIM for the appropriate distance and
time, respectively, from SCOND and TCOND. Perform DITCON diurnal operation on
CONTIM if required

b)
. 5
TSCON (a.;b.) = I CONDIS (a, ,c ) » CONTIM (c Ib.)
il K= 1 ilk k|7
tor from 1 to 5 and bj from 1 to 5
* ¢) If the conditional have been modified for viewed area s 'ze {see Section 3. 5),
-, substitute TSSCON, SCSCON. and SCTCON for TSCON, CONDIS, and CONTIM respec-
tvely.

5.5 Suggested Procedures for Enlarging the Samp): Area Size

. The change in cloud cover distribution resulting from change in the area size
over which the cloud cover is defined is discussed in detail in Section 7 of the Final
Report. It was pointed out that dramatic changes take place over the very range of
sample areas that are to be used in earth-oriented experiments, and {.us in simu-
lation. It is required, thcrefore, that a reasonably effective method be found for
generating suitable cloud cover distributions tor enlarged sampling areas from ale

Y ready available information - the available cloud statistics. Cnllection of adequate

. samples of raw satellite data seems prohibitive, at least until suitable compilations

of digitized data become available,
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The general features of the change of cloud cover distribution with size of
sample area can be readily visvalized. The cloud cover over a point can have but
two values = clear and overcast. The cloud cover over the entire earth seems to
stay reasonably constant at perhaps 40%. Intermediate sized areas have cloud dis-
iributions which pass from the U-shape of small areas to more bell-shaped distribu-
tinns at rates which depend upon the prevalence cf large-scale cloud systems. The
ternperate zones, in which large cloud systems are the rule, show characteristically
U cr J-shaped distributions at the 30 mile scale size of the ground observer. Tropi-
cal regions may already exhibit bell-shaped distributions at this scale. A distribu-
tion originally beli-shaped at a 1° area becomes more so at 3° and 5° at the expence
of the already rare clear areas; overcasts alsc become less probable. A J-shaped
distribution tencs toward a skewed bell-shape. A U-shaped distribution first be-
comes binodal, then bell-shaped with increase in sample area scale. Ip all cases,
the probabil:t of clear sky becomes quite small at 5° (300 nm) scale.

The ef.ect of increasing the sample area size can b: demonstrated by a simple
computational exercise ¢ lovtling the sampling area. In this exercise, the cloud
distributiun in the two areas ¢ n be expressed as the joint distribuidion of the two
sets of events. The initial computation will assume independen.e Letween :vents
in the two areas. Table B=6 outlines the cormputation of the jeint distribution from

synthetic di.ta. The joint cistribution is defined by:
PJOINT (a, b) = UNCON (a) « UNCON (b)

Each element of the PTOINT matrix corresponds to an average cloud cover
over the doubled area These cloud covers can be reclassified according to the
original cloud cover grouping scheme (1 through 5). Table B-7 gives the cloud g.oup
assignment of each location in the PJOINT matrix This location matrix is univer-
sally useful in area size computations, and is called KWHERE.

Conversion of PJOINT to the unconditional distribution scaled for the doubled
area size, SUNCON, is achieved by the operation of adding together all elements of
PJOINT having the same entry in the matching location of KWHERE. The result,
shown in Table B-8, is rather startling. The p.-eviously U-shaped UNCON has be-
come the strongly peaked SUNCON.
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Let us imtially investigate some properties of a straight chain of 50-60 mile
~quare areas, corresponding o a diameter of a larger circle. Let each member of
the chain be dependent only on the first member. The straight line approximation of
the scaling of the spatial cond.uonal distribution then gives rise to individual PJOINT
distributions, the clement3 of which are linear interpolations between the unit diag-
onal PJOINT of the first member of the chain, and PJOINT of the last. It can be
seen that the distribution of the total cloud cover in this chain can be described by
PJOINT of the last etement, internally summed by reference to the KWHERE locator

matrix (see Section 7 of the Final Report)




This extreme change in cloud cover distribution with a relatively small change
in area size results from the untenable assumption of independence between cloud
events in contiguous areas. Let us repeat the computation, now using a synthetic
set of conditional probabilities to describe the dependence of events in the second
area on those in the first. Table B-9 outlines the computation.

In the general case,
. PJOINT (a,b) = UNON (b) » CONNEW (a b)

where CONNEW is the spatial conditional distribution appropriately scaled to the dis-
tance between centers of the areas.

Even though CONNEW is only moderately diagonalized, the resulting SUNCON
distribution more closely resembles its parent UNCON distributior..

Let us now consider the more general case of viewed area size several times

i Rt et AW S - %

. the area on which the statistical distributions are based.

3.5.1 An Approach to Scaling for Enlarged Sampling Area Size.

The information at our disposal for the task of enlarging the sampling area
size is the unconditional distribution, valid for a sampling area of 30-60 nm diameter,
. and the spatial conditional distribution, defined for areas about 60 nm diameter with
centers separated by about 200 nm. A straight line interpolation or extrapolation
has been adopted to find conditional distributions at other distances. No information

is available to define the conditional dependence of cloud events within an area on

. more than one of its neighbors.

Let us initially investigate some properties of a straight chain of 50-60 mile
square areas, corresponding to a diameter of a larger circle. Let each member of
the chain be dependent only on the first member. The straight line approximation of
the scaling of the spatial conditional distribution then gives rise to individual PJOINT
distributions, the elements of which are linear interpolations between the unit diag-
ona! PJOINT of the first member of the chain, and PJOINT of the last. It can be
seen that the distribution of the total cloud cover in this chain can be described by
. PJOINT of the last etement, internally summed by reference to the KWHERE locator
matrix (see Section 7 of the Final Report),
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Table B-6
Computation of Joint Distribution, Independent Data A
Cloud PJOINT
Group UNCON 1 2 3 4 5 S %
b
1 .3 .09 .03 .03 . 06 .09 v
2 .1 .03 .01 .01 .02 .03 g
3 .1 .03 . 01 .01 .02 .03 ;
4 .2 . 06 .02 .02 .04 . 06
§
5 .3 .09 .03 .03 . 06 .09 i
|
Table B-7 Table B-8 .
Cloud Group Location Matrix Cloud Cover Distribution for
Doubled Area, Independent Events .
Cloud KWHERE Cloud ]
Group 1 2 3 4 5 Group UNCON SUNCON
P— .
| 1 2 2 3 3 1 .3 .09
2 2 2 2 3 3 2 .1 .15
3 2 2 3 4 4 3 .1 .41
4 3 3 4 4 4 4 .2 . 26
5 3 3 4 4 5 5 .3 .09
"
“‘.
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3.5.2 Procedure for Computation of Unconditional Distribution Scaled for
Sample Area Size

We recapitulate the procedure for finding SUNCON.
1) Tabulate the unconditional and conditional distributions for the required

regions, month and time of day. (These scaled conditionals are called CONNEW. ) .
2) Scale the conditional statistics, using the procedures detailed in Section

6 of the Final Report, to a distance which corresponds to the diameter of the required

enlarged viewed area. (These scaled conditionals are called CONNEW. ) '
3) The unconditional distribution UNCON is multiplied into the conditional

distribution matrix CONNEW

} 4) The resultant joint distribution matrix is PJOINT summed using the
1 KWHERE matrix for reference.

5) A new unconditional distribution, SUNCON, applicable to the enlarged
viewed area size, results.
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3.5.3 Computational Procedure for Enlarging the Area Size for i
Conditional Distributions
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The procedure for enlarging sampling area size for conditional distributions

is similar to, but more involved than the procedure for the unconditional distributions.

n
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Referring to Figure B-7, we are given unconditional distributions for the area .
represented by ''a" and conditional statistics for area ''c" some distance A from
area "a''. What we wish to compute is the conditional probability distribution for
new enlarged area B given the unconditional probabilities for new enlarged area A
(both areas have been enlarged to the new diameter a). Thus, what is required is to
first expand area ''a' to area A using the techniques described in paragraph 3.5.2 )
above. Then,to obtain the new 5 x 5 conditional probability matrix for area B, given
A, we define:

+
PO ——

P (A, B) = joint probability of cloud cover in A and B
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Figure B-7 Scheme for Computation of Spatial Conditional Distribution of
Enlarged Sample Areas.
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The coinputational algorithm for accomplishing this multiplication of probabilities is
to perform the multiplications indicated in Figure B- 7, where a schematic form for
the matrices has been used. In this figure, where CONNEW is the expanded sampling
area space conditionals, etc., the joint probability of events in all four areas is:

P(abcd) = P(a): P'b[a) « P(d|b) + P(c|d)

where the order of conditionality is somewhat arbitrary.
We define the cloud cover in area A to b2 the average of the cloud cover in
a and b,while the cioud cover in B is the average cloud cover in ¢ and d . Thus,

we can write formally:
P(A, B) = P(ab,cd)

To find P(ab, cd}, the KWHERE locator matrix is used 4-dimensionally. This involves
assigning values to ab from the a and b locations in the 4-dimensional PTNT
matrix, and to ¢d from the c¢ and d locations. The result is the two dimensional
joint probability table P(A, B). This is transformed to the conditional probability by

division by the marginal total.

P(B|A) -.P(A,B)
gP (A, B)

The process of finding temporal conditional distributions of enlarged sample
areas is identical, with the exception that CONTIM is substituted for CONDIS.
CONNEW (¢ ld) should be computed for the local time of event B, and the DITCON
operation (Section 3. 3) should be performed in finding CONTIM.

3. 5.4 Example of Computation Procedure for Enlarging Area
Size for Conditiopal Distributions

We choose as an example the expansion of the conditional statistics for
Region 19 (southeastern U. S. ) for mid-day in January. The tabulated data for
30-50 nm area and 200 nm distance are shown on page C-7. The conditional dis-
tribution is scaled for a and A as shown in Figure B-7 and described in Section
3.2.1 For this example 180 nm was chosen for both a and A. The input values
for the computation discussed in Section 3. 5. 3 and illustrated in the lower half of
Figure B-7 are shown in Table B-10. '
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To find the joint probability
P{A,B) = P(ab, cd)

we use the summation matrix (KWHERE) twice i. e., use the KWHERE matrix for
the set a,b and again for the set ¢,d (Table B-11) Entries in the joint probability
matrix P (A, B) =PINT (A, B) are derived by reference to Table B-11. For example
if KWHERE (a,b) = 1, B =1; if KWHERE (c,d)=1, A =1. Reference to Table B-11
indicates that the only way KWHERE (a,b) canequal l is fora=1andb =1. Simi-
larly for KWHERE (¢,d) =1, ¢ =1 andd =1. Thus, the only entry in PINT (A, B)
atA=1, B=1 results whena=b=c=d-=1,

Refer again to Table B-11. Entries in PINT (1, 2) result if A = 1 which again
implies that c = i and d = 1. However, B = 2 can be obtained in seven ways, i.e.

b=2 b=3 b=1 b=z2 b=3 b=zl b=2
a=1 a=zl a=z2 a=2 a=2 a=3 a=3

Similarly for A=1, B=3, we findc =1 andd = 1 while a and b are paired in
in nine possible ways (all"three'' entries in KWHERE (a,b). This procedure is fol-
lowed to find all of the subentries in PINT (A, B). To find each entry in PINT (A, B)
we must sum the subentries obtained by multiplying the appropriate values as extracted
from Table B-10 (according to the following formula for all possible combinations of
a, b, c, d (as obtained just above).

P(abcd) = P(a)* P(bla): P(d|b)+ P(cld)

For PJNT (1,1)

P(a) =P(l)

P(bla) = P(1]1)
P(dib) = P(1]1) =.78
P(c|d) = P(1]1)=.78

n n
-
@ wn

Thus, PINT(i,1)=.15x .78 x.78 x.78 =.072
Enter this value in Table B-12A at PINT (1,1)
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Fnur Dimensional Locator Matrix (KWHERE)

Table B-11

KWHERE (a, b)

Cloud
Group 1 2 3 4 5
1 1 2 2 3 3
2 2 2 2 3 3
3 2 2 3 4 4
4 3 3 4 4 4
5 3 3 4 4 5

KWHERE (¢, d)

Cloud
Group | 1 2 3 4 5
1 1 2 2 3 3
z 2 2 2 3 3
3 2 2 3 4 4
4 3 3 4 4 4
5 3 3 4 4 5

B = KWHERE (a, b)
A = KWHERE (c,d)
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For PJNT (1, 2), the values from Table B-+10 are

a=1
’C’:f - .15 x .045 x . 153 x . 784 = . 00081
d=1
a=1
::i . 15x.045 x.117 x . 784 = .00062
a=1
a=2
‘c’zi 12x.153 x. 784 x.784 = .0112
d=1
a=21
°=2 b.12x.253x.153x.784 = .0036
d:lJ
azzw
b=3 b12x.072x. 117x.784 = .00079
d=1 |
az3
::} .04x. 117 x.784 x . 784 = . 00288
d=1
a=3
::f .04x.108x.153 x.784 = . 00051
d=1

The sum of thece seven values (.0204) is entered in Table B-12A at
PINT (1,2). The remaining entries are found in a similar way. The result
is shown as Table B-12B. If PINT contains a row of zeros insert "1" in
the diagonal position,

The marginal totals in both directions are important. The marginal totals
resulting from summing over A gives SUNCON (The scaled unconditional distribution)
while the marginal totals resulting from summing on B are used as divisors to obtain
P(A|B) or SCSCON. Each entry in a row of PINT (A, B) is divided by the marginal
sum to obtain a row of entries in SCSCON. See Table B-12C where . 072/. 212 = . 341
etc. The values in SCSCON matrix are the distance conditionals scaled to a 180 nm
viewed area and 180 nm distant from the unconditional event.
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