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ABSTRACT 

The shapes of liquid drops resting on f la t  surfaces were determined by a Runge-
Kutta solution of the Laplace capillary equation. A characteristic length equal to the 
square root of surface tension divided by the product of density and gravity was used to 
nondimensionalize the numerical results. In addition, asymptotic solutions for small 
and large drops were combined to give explicit expressions for the maximum drop height 
and radius. These correlations apply for the complete range of liquid volumes and con­
tact angles. 
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LIQUID DROPS: NUMERICAL AND ASYMPTOTIC SOLUTIONS OF THEIR SHAPES 


by Kenneth J. Baumeister and Thomas D. Hamill 


Lewis Research Center 


SUMMARY 

The equilibrium shapes of liquid drops supported by a flat horizontal surface were  
determined as a function of the contact angle by solving the Laplace capillary equation. 
In addition, asymptotic solutions of the Laplace capillary equation for  the case of large 
and small drops were  combined to give explicit expressions for the maximum height and 
radius of the drop as a function of the contact angle for any liquid volume. 

INTRODUCTION 

The boiling and condensing heat-transfer characteristics of wetting and nonwetting 
liquids depends quite often on the geometrical characteristics of liquid drops in contact 
with solid surfaces. The contact areas are of particular importance in determining heat-
transfer and vaporization rates. 

For example, in the two-phase-mist-flow regime in the liquid-metal Rankine boiler, 
spiral inserts centrifuge entrained liquid droplets to the heated-tube wall. At the wall, 
the shape of the drop must be known if the vaporization characteristics are to be pre­
dicted. Poppendiek (ref. 1) has developed an analytical model for this flow based on a 
Leidenfrost boiling model. However, a complete analysis of Leidenfrost boiling re­
quires a knowledge of the heat-transfer areas  associated with a given size drop (ref. 2). 

These facts provide the incentive for  the present report, in which the equilibrium 
shapes of liquid drops supported by a flat horizontal surface are determined. 

A liquid drop supported by a horizontal surface assumes a shape that depends on 
both molecular forces and body forces (gravity, etc.). For example, the photographs in 
figure 1 (taken from ref. 3) show the effect of gravity on a mercury drop resting on a 
surface. Clearly, the gravitational body force g wil l  affect the energy transfer to the 
drop in a heating situation. 



Molecular forces lead to the macroscopic phenomenon of surface tension. Since 
molecules are subjected to an unsymmetrical force field, the surface molecules are, in 
effect, pulled towards the interior of the liquid more strongly than towards the vapor. 
Complications arise because of the interaction between liquid molecules and the molecules 
of the solid supporting surfaces. These forces lead to the macroscopic phenomenon of 

' contact angle, which is designated by 8 in figure 2. The effect of surface attraction is 
pictured in this figure. However, from a macroscopic viewpoint, the shape of the drop 
is determined by gravity, surface tension, liquid density, and contact angle. 

The mathematical formulation of the criterion of equilibrium of the drop surface is 
the Laplace capillary equation (ref. 4) 

where 0 is the surface tension between the liquid and its vapor, R1 and Rz are the 
principle radii of curvature at any point on the drop surface as shown in figures 3 and 4, 
and A P  is the pressure difference across the liquid interface at the point in question. 
Equation (1) can be derived from static equilibrium considerations (ref. 5) or by a varia­
tional technique of minimizing the total free energy of the drop (ref. 6). Equation (1) is 
rewritten in differential form by expressing the two radii of curvature in te rms  of differ­
ential notation. 

Laplace, Gauss, Poisson, Gay-Lussac, and others (as cited in ref. 4) have at­
tempted to solve equation (1). As yet, no general solution appears possible. The most 
complete work on this subject to date was  by Bashforth and Adams (ref. 4). By suitable 
geometric transformations, Bashforth and Adams transformed equation (1) into a non­
linear second-order ordinary differential equation. This differential equation was then 
solved numerically by hand and the results tabulated in reference 4. 

In their numerical solution of equation (l) ,  Bashforth and Adams nondimensionalized 
the governing equation by introducing the radius of curvature of the drop at its apex as a 
characteristic length. However, for a given drop volume, the radius of curvature at the 
apex is not a known quantity. Consequently, as pointed out by Wark  (ref. 7), parametric 
plots must be constructed from Bashforth and Adams tabulated results if the drop height 
and radius are to be explicitly related to the volume of a drop. This procedure proves 
to be inconvenient. 

The characteristic length 
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which is introduced in this report is more convenient to use since it depends only on the 
properties of the fluid and the gravitational field; whereas, Bashforth and Adams charac­
teristic length depends on the shape of the drop. Because the characteristic length used 
in this report is different from that of reference 4, the numerical results were more 
easily obtained by a Runge-Kutta solution of equation (1)on a digital computer rather than 
attempting to use the tabulated results of reference 4. Also, the digital result has much 
greater accuracy. 

Numerical solutions are presented for  the maximum drop radius, drop height, and 
contact radius in terms of the drop volume for contact angles from 1' to 180'. In addi­
tion, asymptotic solutions of the Laplace capillary equation for the case of large and 
small drops are combined to give explicit expressions for the maximum height and radius 
of the drop as a function of the contact angle 8 for any liquid volume V. 

SYMBOLS 


constant 


acceleration of gravity, cm/sec 
2 


dimensional conversion factor, (g)(cm)/(dynes)(sec2) 
(pertains only to work done in English system of units) 

height of drop, cm 

average height of drop 

dimensionless height of drop, h/X 
-
h /A 

maximum asymptotic (large drop) height of drop, cm 

dimensionless h,, hw/X 

sin q 

pressure drop across interface, dynes/cm 2 (N/cm 2) 

radius of curvature of drop surface at apex of drop, cm 

dimensionless Ro, Ro/X 

radii of curvature of drop surface, cm 

dimensionless radii of curvature, R1/X and R2/X 
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r 

r* 

r*

C 

re0 

rzJ 
S 

S* 

V 

V* 

X 


X* 


Ax 

Ax* 

Z 

Z* 

z0 


z,* 

0 

h 

PL 

PV 
U 

maximum radius of drop, cm 


dimensionless r, r/h 


surface contact radius, cm 


dimensionless rc, r c / X  


radius of drop associated with h,, cm 


dimensionless r,, r, /h 


unit of arc length, cm 


dimensionless S, S / h  


volume of drop, cm3 


dimensionless V, v/x3 

radial coordinate 


dimensionless x, x/h 


numerical integration increment, cm 


dimensionless Ax, AX/^ 

height coordinate, cm 


dimensionless z, z / h  


z at apex of drop, cm 


dimensionless zo, zo /h  

contact angle, deg 


characteristic length (see eq. (2)) 


liquid density, g/cm 3 


vapor density, g/cm 3 


surface tension, dynes/cm (N/cm) 


angle, deg (see fig. 4) 


Subscripts: 


i numerical integration index 


max maximum 
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GOVERNING EQUATIONS 

The solution of the Laplace capillary equation (eq. (1))wil l  determine the shape of 
the drop. This equation represents a force balance which relates the surface-tension 
forces and the pressure difference across  the surface of a drop. At equilibrium the 
surface-tension forces must be balanced by the pressure difference across the free sur­
face of the drop. 

By expressing the pressure difference across the drop surface in te rms  of a liquid 
head and by introducing the characteristic length X into equation (l),the governing equa­
tion becomes dimensionless and is of the form 

(The starred quantities denote dimensionless terms. ) The derivation of equation (3) is 
given in appendix A. 

Equation (3) must, of course, be rewritten with the radii of curvature expressed in 
differential form before it can be solved directly. If RT and RZ are expressed in 
terms of x* and z*, equation (3) can be transformed into a second-order nonlinear dif­
ferential equation (see appendix A) of the form 

where x* and z* are the dimensionless coordinates of a point P on the drop surface 
(see fig. 4). 

In principle, this differential equation must be solved to determine the shape of 
the drop. Since this equation cannot be solved explicitly, numerical procedures must be 
used. However, rather than a direct numerical attack on equation (4), reference 8 sug­
gests the introduction of a new variable 

j = s i n c p  (5) 

as a means of simplifying the numerical work. When the new variable j is used, the 
Laplace capillary equation is transformed into a coupled pair of first-order differential 
equations (see appendix A). These equations are given by 
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Equations (6) and (7) represent the governing differential equations for the drop. 
These equations are solved by the Runge-Kutta method. (See appendix B for  details of 
the numerical solution. ) 

DISCUSSION OF RESULTS 

The numerical Runge solutions of the Laplace capillary equation are presented 
graphically in figures 5 to 9. Basically, for a given dimensionless drop volume and con­
tact angle, these graphs enable the calculation of the following parameters: 

(1) Maximum dimensionless height, h* 
(2) Maximum dimensionless drop radius, r* 
(3) Dimensionless contact radius, rE 

These three parameters, illustrated in figure 3, enable a sketch of the drop to be drawn 
and the contact areas to be determined. The numerical results from which these curves 
were plotted are given in table I. 

Drop Height 

In figures 5 and 6 the drop height h* and h*/V*ll3, respectively, are plotted as a 
function of drop volume for various contact angles from 1' to 180'. 

Any particular curve is characterized by two asymptotic regions. For very large 
volumes the drop height approaches a constant, the particular value of which depends on 
the contact angle. The second asymptote occurs for very small  volumes. A very small 
drop assumes a spherical shape subject to the constraint imposed by a fixed contact angle. 
A completely nonwetting liquid (0 = 180') forms a spherical drop in the limit as the 
volume approaches zero, while wetting liquids form truncated spheres in the zero 
volume limit. The two asymptotic regions a re  discussed quantitatively in the following 
paragraphs. 

In the large-volume regime, a unique relation exists between the members of the 
family of curves. That is, the asymptotic height is given in te rms  of the contact angle 
by (ref. 9) 
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This equation was derived by neglecting one of the radii of curvature in the Laplace 
equation. Equation (8) also predicts that the slope in the large-volume regime should be 
-3, since 

h* - 4 2 ( 1  - cos 0 )  
(9). 

v*1/3 v*1/3 

or 

log v* = 3 log[d-] - 3 log (s) 
The equation allows the asymptotic thickness of a drop to be computed for arbitrary con­
tact angle in the large-volume regime. As seen in figure 5, the large-volume regime is 
determined by V* > 100. 

The vertical asymptotes of figure 6 characterize the small-volume regime. Each 
contact angle gives a different asymptotic value for the dimensionless drop height, which 
can be computed from elementary geometric considerations. The equation for the dimen­
sionless height in terms of the contact angle, derived in appendix C, is given by 

l im-=[h* 3(i  - COS e)]1/3 
v*-o v*i/3 ~ ( 2+ COS e) 

The small-volume asymptotes derived numerically for various contact angles in fig­
ure 6 are identical to those predicted by equation (ll),providing a further check on the 
accuracy of the numerical method. The plotted results of figure 6 indicate that a drop is 
"small'' if V* < 0.01, which serves as the criterion for the applicability of equation (11). 

Drops whose volumes fall into the range 0.01  < V* < 100 are neither spherical nor 
pancaked in shape. No theoretical expression for the height of drops exists in this inter­
mediate range. Based on the two asymptotic solutions, however, an empirical expres­
sion was deduced to f i t  the curves over the entire dimensionless volume range. The gen­
eral correlation is given by 
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3v* 1-1/3m 

where m is an empirical constant chosen to f i t  the data in the intermediate range. The 
best choice of m is m = 1.0; this gave agreement to within 10 percent. Thus, 

r 

The general correlation is compared graphically with exact numerical results in figure 7. 
The particular form of equation (12) was  chosen, because irrespective of the choice of m 
this equation approaches equations (8) and (11)in the limit of very large and very small 
volumes, respectively. 

Maximum Drop Radius 

In figure 8 the dimensionless drop volume V* is plotted against the dimensionless 
maximum radius r&= with contact angle 8 as a parameter. These curves are also 
characterized by two asymptotic regions. 

For large volumes, 

leading to a slope of 2 on a log-log paper, since h z  remains constant in this range. 
Solving for rz in terms of volume and contact angle by employing the expression for  
h: (eq. (8)) gives 

rz = 

For very small volumes, geometrical considerations (see appendix C) lead to 
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- cos - 1(1 - cos e )
3 

This equation gives a slope of 3 on log-log paper, as indicated by figure 8. 
Solving for the radius of the sphere gives 

7r1i3[(1 - cos e)2 - 1 (1 - cos e )
3 

For contact angles greater than 90°, the radius of the sphere represents the maximum 

3ii/3 

radius of the drop. However, for  contact angles less than 90°, the maximum drop radius 
r is given by 

Now, th  large- and small-drop results can be combined in the interm-diate region be­
tween the two. 

In the intermediate range there is a gradual change of slope in which the two asymp­
totic solutions blend into each other. There is no analytical expression for computing the 
maximum radius in the intermediate range. However, combining the two asymptotic so­
lutions over the entire dimensionless volume range in the following manner gives, for 
e < 900, 

7r1l3h: sin20 

- cos e)2 - 1- (1 - cos e) 
= ($vd/3p1 3 

and for 0 > 90°, 



A choice of n = 1.8 correlates the exact numerical results to within 2 percent. The 
agreement between the correlation and the exact numerical results is so close that no 
graphical comparison was made. 

As before, the particular choice of the correlating equation is such that independent 
of the value of n the equation will converge to the proper asymptotic solution for the 
case of large and small drops. 

Contact Radius 

The contact radius rz, which determines the area of physical contact between liquid 
and solid, is plotted against the maximum radius r* in figure 9 for contact angles of 
135' and 180'. For contact angles equal to o r  less than 90' the maximum radius equals 
the contact radius. 

Average Drop Thickness 

A parameter that has had some use in heat-transfer analysis is the average drop 
thickness defined as 

and 

v*'/' rr *2 

Both these quantities are listed in table I for various size drops. 

Experimental Data 

Some experimental data were available for various liquids, as indicated in figures 6 
and 8, on the relation between volume and the maximum drop radius and height. The 
data given in reference 10 are for liquids in Leidenfrost film boiling, in which the liquid 
does not wet the surface. Consequently, the contact angle is 180'. 
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CONCLUDING REMARKS 

Numerical solutions of the Laplace capillary equation were presented graphically for 
various contact angles. In addition, the generalized correlating equations for the maxi­
mum thickness and radius of a drop for arbitrary drop volume and contact angle were 
synthesized by combining the asymptotic solutions for very large and very small drops. 
These correlation equations are accurate to within 10 percent on drop height and 2 per­
cent on maximum drop radius. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, May 22, 1968, 
129-01-11-02-22. 
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APPENDIX A 

TRANSFORMATION OF LAPLACE'S CAPILLARY EQUATION 

The governing equation fo r  the shape of the drop, Laplace's equation, is given by 
equation (1) (repeated here for convenience). 

1 - A P-1 +- - -
R1 R2 (T 

The pressure difference across the drop is proportional to the sum of the reciprocal 
of the radii of curvature in two mutually perpendicular directions, as depicted in figure 4. 
Note in equation (Al) that the expression 

is an invariant with respect to the coordinate system chosen. 
The pressure difference A P  in equation (Al) is a function of z which can be con­

veniently expressed as 

A P  = PL(z - zo) + c 
gC 

where the vapor density pv is assumed much less than pL and the constant C repre­
sents the jump in pressure across the liquid-liquid interface at z = zo and x = 0 (the top 
of the drop). 

At the top of the drop, the radii of curvature are equal; thus, Laplace's capillary 
equation (eq. (Al)) becomes 

A P  

where Ro is the radius of curvature at the top of the drop. Substituting equation (A3) 
into the expression for A P  (e. g., eq. (AZ))gives 
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Up to this time, the quantity zo represented an arbitrary distance from the refer­
ence coordinate to the top of the drop. However, zo is now taken as 

Substituting this expression into equation (A4) gives 

(A61 

Thus, the governing equation (eq. (Al)) becomes, by substituting equation (A6) into equa­
tion (Al), 

R1 R2 

The radius of curvature at the top of the drop Ro can now be written from equa­
tion (A5) as 

Ro = 20 

PLZ0 -g 

gC 

The parameter zo is considered an independent variable which can be chosen arbitrarily 
to give various radii of curvature at the top of the drop. 

Choosing zo as the independent variable, the volume of the drop becomes a depen­
dent variable, that is 

v = f(zo) (A91 

The functional form in equation (A9) cannot be determined explicitly, rather it can be 
represented in a geometrical fashion from the numerical solution of equation (Al). 

The governing equations have been discussed briefly and now will  be transformed to 
a more convenient form for solution. 

Dividing both sides of the governing equation (A7) by the characteristic length X 
(defined by eq. (2)) yields 
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where 

and 

z* = -z 
x 


(The starred symbols represent dimensionless coordinates. ) 
The dimensionless Laplace capillary equation given by equation (A10) can now be 

written in terms of dimensionless variables x* and the angle q (see fig. 4). 
Consider the point P on the surface of the drop defined by the coordinates q and 

x*. The radii of curvature RT at the general point P can now be represented from 
geometrical considerations (see fig. 4) 

* x* -x* 
R2=---sinq j 

The radius of curvature RZ must intersect the x* = 0 line because of the symmetrical 
nature of the drop. 

Similarly, the radius of curvature RT can be expressed in terms of x* and q by 
considering the distance traveled along an elemental length change dS*. Mathematically, 

However, the arc dS* is perpendicular to the arc traversed by RZ; thus, from geomet­
rical considerations 

dx* = COS q dS* 

Combining equations (A14) and (A15) and eliminating dS* yields 

14 
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+-=z* 

-+-  

dcp - d sin cp-1 = cos cp --
R; dx* dx* 

Substituting the values of R; and Rg from equations (A13) and (A16) into the 
governing equation (eq. (A10)) yields 

dsincp sincp 
dx* X* 

However, sin cp can be expressed in te rms  of the variables z* and x* by noting that 

and 

sin u? = tan cp 

The sign is determined by the quadrant in which the integration occurs. 
Eliminating sin 40 from governing equation (A17) by use of equation (A19) and re­

placing tan cp by dz*/cbr* from equation (A18) yield 

d2z* 1 [1 +(dzzy]dzZ- ­- ---*1+ [ (dzz)73’2 
&*2 x* 

This is the basic governing differential equation for the shape of a drop. The equation is 
a second-order nonlinear differential equation which, up to the present time, has not been 
solved explicitly. 

Bashforth and Adams (ref. 4) solved the same type of equation by a direct numerical 
assault. However, Timoshenko and Woinowsky-Krieger (ref. 8) suggest the introduction 
of the new variable 

as a simpler approach to solving the problem. 
Substituting the new variable j (eq. (A21)) into equations (Al?) and (A18) yields 

15 



(
** * I - j 2 Y 2  

Thus, the second-order governing equation (A20)has been transformed into two 
first-order differential equations which are much simpler to handle mathematically. 
These equations are equations (6) and (7) in the main text. 
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APPENDIX B 

NUMERICAL PROCEDURES 

The numerical procedures used in solving the governing equations (6) and (7) are de­
scribed briefly. These equations are solved by a double-precision fourth-order Runge-
Kutta numerical integration. The numerical procedure for solving two simultaneous 
first-order differential equations by the Runge-Kutta method is given in most texts in nu­
merical analysis and need not be discussed herein. However, there are a few salient 
points that wil l  be considered. 

1ncrement S ize 

The increment size for the various drop volumes was chosen to be sufficiently small 
such that in most cases the results are accurate to three significant figures. This accu­
racy was  accomplished by iteration using ever smaller values of Ax. The values of Ax 
chosen are listed in table I along with the numerical results. 

To increase the accuracy of the integration in the region where 'p equals 90°, Ax 

was reduced by a factor of 100 (0.01 Ax) for 85' < 'p < 95'. 

Initial Conditions on z l  

At the top of the drop, principle radii of curvature become equal because of sym­
metry. Consequently, at the top of the drop the governing equation (eq. (3)) takes the 
form 

where o denotes the apex position of the drop. At the start of the numerical integration, 
the position of the apex of the drop is chosen arbitrarily at some value of z,* (fig. 3). By 
choosing z,* as an initial condition of the solution, the radius R,* and the volume of the 
drop will be uniquely determined. Thus, the drop volume becomes a dependent variable. 

If z: is initially chosen to be small, the radius of curvature at the apex of the drop 
becomes large (see eq. (Bl)). The drop takes on a pancake or  disk-like shape. If 2: 

is initially chosen to be large, R: becomes small, and the drop takes on a spherical 
shape. By choosing numerous numerical values of z,* and solving each problem, the 
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shape of the drop can be found for various values of V (see eq. (A9)). 
In addition, it should be noted that the Runge-Kutta technique puts an upper limit on 

the choice of Ax, in that at the initial starting point, 

Ax*<- 	4 
Z*0 


in order to prevent the occurrence of imaginary numbers resulting from the denominator 
in equation (7). 

Thus, for large initial choices of zo consideration must be given to the choice of 
k*. 

Tan (0 

The differential dz*/dx* in equation (7) equals tan cp. Consequently, for cp < 90' 
the tan cp is positive while for cp > 90°, tan cp is negative. Thus, a f sign is dis­
played in equation (7) to indicate that a sign change is required during the numerical inte­
gration. 

Initial Conditions 

From the choice of coordinates shown in figure 2, the initial conditions for this prob­
lem are 

x 2 


Initial condition (B5) comes directly from combining equation (A13) with equation (Bl) at 
the apex of the drop. 
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Drop Volume 

Since the solution of the governing equations requires numerical integration, the nu­
merical results will be a set of ordered numbers zr, x: which describe the shape of the 
drop. The dimensionless volume V* is computed by using the trapezoidal rule a s  

where n represents the total number of numerical steps in the integration. 
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APPENDIX C 

GEOMETRICAL RELATION FOR SPHERICAL DROPS 

The volume of a truncated sphere (often called a spherical segment) is given by 


s 2 
V = - h  (3R-h)  (C1)

3 


(see fig. 10) where h is the vertical distance from the plate to the apex of the spherical 

drop and R is the radius of the sphere. From geometry a unique relation exists among 

R, h, and the contact angle 8; thus, 


R =  h 
(1 - COS e)  

Substituting equation (C2) into equation (Cl) and rearranging gives 

or 


This relation is valid fo r  all contact angles. 

Combining equations (C2) and (C3) gives for the radius of a sphere 
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TABLE I. - NUMERICAL VALUES OF DROP SHAPE 

sin 0 V* r* h* h */V*ll3 

z0 = 0.4E 02; AX = 0.1E-05 

0.17460t-0 1 0.9 1zt - 11 0. d73E-03 U.762E-05 0.365E-U 1 
0.87160f-ti1 0.5t38t - t iB U .  436E-iJZ O.LY3E-03 3.107� 0 0  
0.258i33t 0 0  0.43 It- 06 0,129E-Ul 0.17OE-02 0.222E 30 
0.42242t  0 0  0.334c-05 0.21 l t - 0 1  0.468E-02 0 . 3 1 3 E  0 0  
0.70712E 110 0.3 u4t - 04 0.354t-UL 0.140 E-0 1 0.46YE 00  
0.1003OE 111 0.26L E- 03 0.5UOt-UL 0.499 E - 0 1  0.7SLE 0 0  
0.70709t  (10 0.4Y2t-U3 U. 3 5 4 E - 0 1  0 .a 5 1 E-OL 0.108E O b  

-0 .26043t-O4 0.52Zt-03 ti. 2 05c-02 U .9 9 6 E - 0  1 LIo124E 0 1  

z
0 

= 0.1E 02; AX = 0.1E-04 

0.1750Ot-01 0.5tj i lE-UY 0.350E-02 0.306E-06 00365E-01 
0.8 7203E-01 0.364k-06 0.174t-01 0.762 E - 0 3  0.107E 00  
0.2 5884t 0 3  0.2 biik - 04 0.5LHt-dl 0.68 L E - 0 2  O.222E 30  
0 .47264t  Uc) 0 .  L 13E- 0 3  U . 8 4 4 t - 0 1  0 ,  L87f-01 0.313E 00 
0.7G714k U O  0.1 Y3t-02 0.14Lt 00 0 . 5 8 3  E-OL 0.469E 00  
0.1uUc)Ut L ) l  0 .  1 6 3 L - 0 1  U, 1 Y 9 t  69 0.197E 0 3  3.177f d o  
0 .70  71  It 0 0  0.303E -U l  U. 143t 0 0  0.33LE 03 3 . l c ) b E  0 1  

-0,104Y4E-04 0 . 3 L Z t - 9 1  3.3 14E  -01 i).382E 0 3  0.1ZOE 0 1  

Zo = O.4E 01; AX = 0.1E-04 

0.1 74bOE- 0 1 d.YLZt -Ut l  0.8 73k-02 0.762 E-04 0 3b5 t -0  1 
0,871hLli-Oi  9. >t t t3E-05 U . 4 3 6 E - d l  0 .193L-02 0.107f 00  
0.25882E 0 0  0.448t -03 c ) . l l Y t  c)0 0 ,17OE-01 U*222E 00 
0 . 4 2 2 6 4 E  i)i) 
0.7071Lti 3 0  

O.3LdE-02 0 . L l i r t  30 0. / + 5 4t-OL 
d . L k i 7 k - 0 1  U . 3 4 8 t  00  0 .143E 0 3  

0.313E 0 0  
0 . 4 6 6 ~  0 0  

O . 1 0 d O O E :  31 0.222E 00 0 . r td l t  00 0 . 4 5 8 �  03 0.757E 0 0  
0.70709k Oc) 

-0 .240h9t-U4 
i). 3 Y b t  0u u.37LE 00 0.734E 03 
0 . 4 L 4 t  u0 U . 1 0 7 t  0 0  O.827t 03 

3.10Ot 0 1  
0 .  L13t 0 1  

i;/v*1/3 = 0.7 75 

zO 
= 0.1E 01; AX=O.lE-03 

0. L7453E-CL 0.  j 4 ’ 3 t - I ) L  0 . 3 0 5  E-03 0 365E-0 1 
0.6 7 1 78E- d 1 3.174c 00 d . 7  5 7 E -02 0 .1d6E 0 3  
0175886t; dil 
0.432b5tr 0 0  

0.5u)Lt 
0.762t  

3 0  
0 0  

d.650E-OL 
0.1bhF OJ 

1).219t 
0.3d4E 

dU 
0 0  

0.707111~ 3 d  U.Ll6t 01 0 . 4 3 9 t  0 0  3 , 4 3 3 t  0 0  
0. 10000L~d 1 u . l + 7 t  01  0 .LO)HF.  0 1  3.630C UO 
0.7071Ct 0 0  0 . L 3 0 t  01 8 .151E 01  0 .767 t  0 0  

-0.2 L 3 5 4 t - 0 3  u . r92 i  u0 0.L54E 0 1  d.81515 00 
- ­

01
h =  0 . 1 ~ 1 ~  h/V*lI3 = 0.599 
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TABLE I. - Continued. NUMERICAL VALUES OF DROP SHAPE 

sin e 

0.17457E-0 1 

0 .  8 71 7 1E- 0 1 
U.25RddSFr 00 
0.42263t  0 0  
0 ,  7 0 7 1 1 t  013 
0.10000t JL 
0 . 7 U 7 1 0 t  0 0  

- 0 . 2 2 7 4 3 k - U.3 

0 . 1  74 5 5 t - 0 1 
0 . 8 7 1 7 6 g - 0 1  
0 . 7 5 8 8 6 t  00 
0.472Hhf 00 
0 . 7 U 7 1 3 t  U O  
O - 9 9 3 9 9 E  (JU 
0.7U536t  00 

- 0 . b  7 9 6 3 E - 0 3  

V* 

z0 

0 .  Y O Y t  -0'3 
0.527E-UL 
0.27Lk Oti  
U . 1 2 3 t  U l  
0.505t 01 
0. 1 6 7 t  u2 
l ) . L ; t 5 t  02 
0.2o5t u2 

z
0 


0 . 5 5 % - . 0 3  
0. lbYt  0 0  

r* h* 

= 0 .4E 00; AX = 0.1E-03 

0. d 72t-01 0 .76 1E-03 
O.426E 0 0  0.184E-01 
U.lllt U l  0 . 1 3 h t  0 3  
0 .157 t  U l  6.299E 03 
0 . 2 0 8 t  Ul 0 . 5 4 9 E  03 
0.24Lt 01 0 . 1 3 5 E  0 1  
0.22-3t 01  0 .179E 01 
O . 1 9 0 E  01 0 .194k 0 1  

= 0.1E 00; AX = 0.1E-03 

0 .344E 00 0.298 E-02 
l ) . l 5 d t  O L  0 .543 t -01  

d . 2 6 Y t  01 U . 2 5 3 E  0L 0 .239E 03 
d. 7 4 5 t  01 0 . 3 U b i  d l  a.429E 03 
0. L O 5 t  02 0.36Ut 01 0.795E 0 0  
0.5,Zot 07. 0.393t 01 0 .149E 01 
0 . 7 3 b t  0 2  u. 3 7 5 t  01 U.194E 01 
lJ.79dt 0 2  0.34l. t  01  0 .209 t  01 

-
h/V*lI3 = 3 .382  

z0 = 0.4E-01; AX = 0.1E-03 

0 . 6 9 6 k - 02 0 -675 E-02 
0. ( 5  \ J t  0 d  U ,763  E-0 1 
U . 4 4 L t  01 0 .269E 0 2  
0. 	 152t U L  0 . 6 5 B E  09 
0.3 7UE 02 0.H21E 03 
u . t l 7 5 t  02 0.151E 01 
0. L 2 l t  u3  0.196E 01 
O . 1 3 L t  0 3  0.2LlE 0 1  

-
h/V*1/3 = 0. 3 3 7 

z
0 = 0.1E-01; AX = 0.1E-02 

0 0  0.145E-OL 
01 0.9 16E-0 L 
02 0.282E 03 
02 0.46dE 03 
02 O.824E 0 3  
03 0.153� 01 
03 0.195E 01 
03 0.210E 01 

h*/V*1/3 

0.365E-0 1 
0.106E 00  
0.210E 00 
0.279E 00 
0 . 3 7 8 f  0 0  
0.527E 00 
0.618t 00 
0.650E Or) 

0.36 3E-0  1 
0.977E-01 
3 .172E 00 
0.220E 00 
0.291f 00 
0 .399E 6 0  
3,463)E 0 0  
0.48Sf 00 

0.354E-01 

3.853t-01 

3 . 1 4 5 t  00 
O.185E 0 0  
00246E 00 
0 .343 t  0 0  
0 .396E 00 
3 . 4 1 5 E  0 0  

0.303f-0  1 
0.660E-0 1 
0 . l l 4 E  0 3  
0.147E 00 
0.159t 00 
3.279E 00 
0,32bE 00 
3,342E 0 0  
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TABLE I. - Continued. NUMERICAL VALUES OF DROP SHAPE 

sin e 

0.17462t - i ) l  
0 .8 7 2  28t-3 1 
0.258 '38t  0 0  
0.47270t 0d 
0.701'16t 00 
i).9YYY)3E 00 
0 . 7 0 6 7 b t  0 0  

- 0 . 4 8 7 7 5 t - 0  3 

(1.1 7 4 h 3 E - t l L  
0 . d  7 1 Y 2 t - c ) l  
0.75901E 0 3  
0,4228lt Uc) 
0.70778E d 0  
0.99999Fr 0 0  
0.70530t u0 

-0.711UbE-U3 

0 .17457E-01 
0.8719ZE- U 1 

0.2 58Y8t 0 0  
0.42270t 3)c) 
0. '7 0 7 6 8 t  0 0 
0.10000E 0 1  
0.70600E 0 0  
.0-1 4 1 0 9 E - 0 2  

V* r* h* 


z0 = 0.4E-02; AX 

0.3 08t  00 U.311E 
0.466t 01  U.488E 
0.23 I t  02 U.Gd5E 
0.463k 02 0.657E 
0. Y86k Ciz 0.70Yt 
0.212k 03 0.74LE 
0.28 7k U 3  U.723 t  
0.31 Lt 03 U.oB8t 

z
0 = 0.1E-02; AX 

= 0.1E-02 

01 0 174E-01 
01 0-94UE-01 
01 0 0 2 8 2 E  03  
01 0.46tiE 0 3  
01 0.819E 03  
3 1  0.150E 01 
Ob i ) . L 9 4 E  0 1  
d l  U.209E 0 1  

= 0.1E-02 

0.8Z6E 00 L). 404t 0 .187E-01  
0.865k 01 U. 638t 0 . 9 4 1  � 4 1  
0.377t 02 u. 7 5 3 t  0 .279E 0 3  
u. 1 2  7E 02 v. d U 5 t  0 . 4 6 2 E  0 3  
0 .  1 4 Y t  03 0. d 5 b t  0.812E 03 
0.311t 03  O.888t 0.148E UL 
0.41Yt 03 0 .87Ut  0 . 1 9 Z E  0 1  
0.454t 03 u. d33t 0 .207E 0 1  

z
0 = 0.1E-03; AX = 0.1E-02 

U. 7 1 2 t  01 0.18 7 E - 0 1  
0.  d 8 L t  01 0 . 9 2 6 t - 0 1  
LI. YYbt 01 0 .275E O J  
u. 1 u5t U2 0 .455E 00 
0. l l U t  U L  0 . 8 0 2 E  03 
U . i l 3 E  0 2  0 . 1 4 7 t  01 
U . L l l l t  0 2  0.191E 0 1  
u. 	l06t 02 0.206E 01 
-
h/V*li3 = c). 2 0 6  

z0 = 0.1E-05; AX = 0.1E-02 

0 . 6 h 8 t  01 0 2  0.182 E-01 
0.45rtt 02 32  0 ,907 E-01 
0.L6lt 03 0 2  0.271E 0 3  
c). 2 8 7t 03 0 2  0 . 4 4 a t  0 3  
u.547t U3 02 0.7'91E 03 
U . L U d t  04 c)2 0.145E 0 1  
0.143E 0 4  0 2  O . l t 3 3 t  01 
0. 153t 04 02 0.204E 01 

0.257E-01 
0 5 6 3 E - 0  1 
0.99UE-0 1 
U.130E 3 3  
0.177E 00 
3 .251E 00 
0 .2Y4E 00 
0 .308E 00 

0.200E-0 1 
0 .45 8E-0 1 
3.83.3E-01 
D . L L 1 E  0 0  
3 . 1 5 3 E  U 0  
3 . 2 1 9 E  0 0  
U.257k 
0 .27UE 0 0  

0.144E-01 
3 . 3 5 4 t - 0 1  
0.669t-0 1 
0 .Y 0 LE-0 1 
3.126f 00 
3.183E 00 
0.216E 0 0  
3.227E 0 0  

0 .959E-02  
0 2 5 4 C - 0  1 
0.49 7t-01 
0.6 79E-0  1 
i) ,967E-0 1 
3 . 1 4 2 t  U0 
0 . k 6 8 t  00 
0 . 1 7 6 t  03 
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TABLE I. - Concluded. NUMERICAL VALUES OF DROP SHAPE 

sin e V* r* h* 

z0 = 0.1E-07; AX = 0.1E-02 

0.140E 02 U. l b  7 E  02 0.183 E-0 L 
O . d 5 l t  02 Uo184E 02 0. d 95 E-0 1 
0.28Ut  0 3  0. l Y 5 k  02 0.208E OL) 
1).51)4t 0 3  u. 2 i ) O t  0 2  0 .444E 0 3  
0.944k 03 0.2 05E 02 0 . 7 a 5 ~  00 
0.183E 04 u. 2U 8 t  0 2  0.144E 01 
0,242t 04 0.2 
O.2b2t 0 4  0.2 

z
0 = 0.1E-09; 

0.233t 02 
0.137E 33 
U. 4 3 1 t  d3 
O o 7 t ) J . t  03 
0.145t. 0 4  
0.2 77E 04 
U . 3 l i o E  04 
U. 396E 0 4  

-
h =  0 . 1 Y 4 E  0 1  

z
0 = 0.1E-12; 

cibE u2 0 . 1 8 3 E  01 
u3c 02 0 .203E 0 1  

AX = 0.1E-02 

0.17Y E-01 
c) .El 9 2  E - 0  1 
0.267E 0 3  
0.44LE 0 3  
9 . 7 8 1 ~  0 3  
0.144E 01 
0 . 1 8 7 E  01 
0.202E 01 

AX = 0.1E-02 

h*/v*1/3 

0 0747E-02 
i) .204E-01 
0 .406E-01 
0 5 5 8 E - 0  1 
0.800E-OL 
0 . l l t ) E  0 0  
0.140E 0 0  
0.147E 00 

0 - 6 2 5 E - 0 2  
0 .  173E-0  1 
0.348E-0 1 
0.480E-01 
0 - 6 9  L E - 0  1 
3.102E 0 0  
0.121E 0 0  
U.128E 0 0  

0.51 1E-02 
0 0 L 4 4 � - 0  L 
0 2 9  1E-0 1 
9.402E-01 
0 . 5 8 2 E - O L  
0.863E-OL 
0.103E 00 
0.108E 0 0  
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0 . 4 2 L t  02 
0 . 2 3 7 t  0 3  
0 .  	f 6 3 t  u3  
d . 1 3 l E  0 4  
0 . i 3 Y t  0 4  
u .455,  04 
9 . 5 Y 9 E  04 
U.648E 04 

0 . 2 8 5 t  0 2  0.1  78 E - 0 1  
cj .3ULE 0 2  0 . 8 8 8 E - 0 1  
0 . 3 L 2 E  0 2  0.265E 0 0  
U.317E 0 2  0.44UE 00 
0 . 3 2 2 t  a2 0.77YE 0 5  
u . 3 2 5 t  0 2  0 .143E O L  
U . 3 2 3 t  0 2  9.186E 01 
0.32Ut  02 0.202E 01 
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(a) Zero gravity. 
rc-. a v L  

' C-66-3242 

(c) 1-1 g's.
2 

Figure 1. - Variation of mercury droplet 
shape with gravity level. (Ref. 3) 
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(a) Wetting drop, 0" < e < 90". (b) Intermediate case, 0 = 90". (c) Nonwetti ng drop, (d) No surface attraction. 
90" < e < is04 

Figure 2 - Drops resting on flat surface, shown in order of decreasing molecular attraction between liquid and solid. 

Reference plane


-'1 2 


Figure 3. - Drop schematic. 
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Figure 4. - Drop cross section. 
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Figure 5. - Dimensionless drop height as function of contact angle. 
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Figure 6. - h V P U 3  as function of volume of drop for mrious contact angles. 
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Figure 7. - Comparison of numerical and approximate solutions for h*/V*1/3 
as function of dimensionless volume for various contact angles. 
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Figure 8. - Maximum drop radius as function of volume of drop and contact angle. 
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Figure 9. - Relation between contact and maximum drop 
radius. 

Figure 10. - Spherical drop. 
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