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ABSTRACT

The shapes of liquid drops resting on flat surfaces were determined by a Runge-
Kutta solution of the Laplace capillary equation. A characteristic length equal to the
square root of surface tension divided by the product of density and gravity was used to
nondimensionalize the numerical results. In addition, asymptotic solutions for small
and large drops were combined to give explicit expressions for the maximum drop height
and radius. These correlations apply for the complete range of liquid volumes and con-

tact angles.
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LIQUID DROPS: NUMERICAL AND ASYMPTOTIC SOLUTIONS OF THEIR SHAPES
by Kenneth J. Baumeister and Thomas D. Hamill

Lewis Research Center

SUMMARY

The equilibrium shapes of liquid drops supported by a flat horizontal surface were
determined as a function of the contact angle by solving the Laplace capillary equation.
In addition, asymptotic solutions of the Laplace capillary equation for the case of large
and small drops were combined to give explicit expressions for the maximum height and
radius of the drop as a function of the contact angle for any liquid volume.

INTRODUCTION

The boiling and condensing heat-transfer characteristics of wetting and nonwetting
liquids depends quite often on the geometrical characteristics of liquid drops in contact
with solid surfaces. The contact areas are of particular importance in determining heat-
transfer and vaporization rates.

For example, in the two-phase-mist-flow regime in the liquid-metal Rankine boiler,
spiral inserts centrifuge entrained liquid droplets to the heated-tube wall. At the wall,
the shape of the drop must be known if the vaporization characteristics are to be pre-
dicted. Poppendiek (ref. 1) has developed an analytical model for this flow based on a
Leidenfrost boiling model. However, a complete analysis of Leidenfrost boiling re-
quires a knowledge of the heat-transfer areas associated with a given size drop (ref. 2).

These facts provide the incentive for the present report, in which the equilibrium
shapes of liquid drops supported by a flat horizontal surface are determined.

A liquid drop supported by a horizontal surface assumes a shape that depends on
both molecular forces and body forces (gravity, etc.). For example, the photographs in
figure 1 (taken from ref. 3) show the effect of gravity on a mercury drop resting on a
surface. Clearly, the gravitational body force g will affect the energy transfer to the
drop in a heating situation.




Molecular forces lead to the macroscopic phenomenon of surface tension. Since
molecules are subjected to an unsymmetrical force field, the surface molecules are, in
effect, pulled towards the interior of the liquid more strongly than towards the vapor.
Complications arise because of the interaction between liquid molecules and the molecules
of the solid supporting surfaces. These forces lead to the macroscopic phenomenon of
contact angle, which is designated by 6 in figure 2. The effect of surface attraction is
pictured in this figure. However, from a macroscopic viewpoint, the shape of the drop
is determined by gravity, surface tension, liquid density, and contact angle.

The mathematical formulation of the criterion of equilibrium of the drop surface is
the Laplace capillary equation (ref. 4)

R1 R2 o

where o is the surface tension between the liquid and its vapor, R1 and R2 are the
principle radii of curvature at any point on the drop surface as shown in figures 3 and 4,
and AP is the pressure difference across the liquid interface at the point in question.
Equation (1) can be derived from static equilibrium considerations (ref. 5) or by a varia-
tional technique of minimizing the total free energy of the drop (ref. 6). Equation (1) is
rewritten in differential form by expressing the two radii of curvature in terms of differ-
ential notation.

Laplace, Gauss, Poisson, Gay-Lussac, and others (as cited in ref. 4) have at-
tempted to solve equation (1). As yet, no general solution appears possible. The most
complete work on this subject to date was by Bashforth and Adams (ref. 4). By suitable
geometric transformations, Bashforth and Adams transformed equation (1) into a non-
linear second-order ordinary differential equation. This differential equation was then
solved numerically by hand and the results tabulated in reference 4.

In their numerical solution of equation (1), Bashforth and Adams nondimensionalized
the governing equation by introducing the radius of curvature of the drop at its apex as a
characteristic length. However, for a given drop volume, the radius of curvature at the
apex is not a known quantity. Consequently, as pointed out by Wark (ref. 7), parametric
plots must be constructed from Bashforth and Adams tabulated results if the drop height
and radius are to be explicitly related to the volume of a drop. This procedure proves
to be inconvenient.

The characteristic length

A= q/—C (2)



which is introduced in this report is more convenient to use since it depends only on the
properties of the fluid and the gravitational field; whereas, Bashforth and Adams charac-
teristic length depends on the shape of the drop. Because the characteristic length used
in this report is different from that of reference 4, the numerical results were more
easily obtained by a Runge-Kutta solution of equation (1) on a digital computer rather than
attempting to use the tabulated results of reference 4. Also, the digital result has much
greater accuracy.

Numerical solutions are presented for the maximum drop radius, drop height, and
contact radius in terms of the drop volume for contact angles from 1° to 180°. I addi-
tion, asymptotic solutions of the Laplace capillary equation for the case of large and
small drops are combined to give explicit expressions for the maximum height and radius
of the drop as a function of the contact angle 6 for any liquid volume V.

SYMBOLS

C constant

acceleration of gravity, cm/sec2

g dimensional conversion factor, (g)(cm)/ (dynes)(secz)
(pertains only to work done in English system of units)

h height of drop, cm

1—1 average height of drop

h* dimensionless height of drop, h/x

h* h/x

h, maximum asymptotic (large drop) height of drop, cm

hX dimensionless h,, h_/A

J sin ¢

AP pressure drop across interface, dynes/cm2 (N/cm2)

R0 radius of curvature of drop surface at apex of drop, cm
* . .

R dimensionless R, Ro/x

Rl’ R2 radii of curvature of drop surface, cm

R}, R} dimensionless radii of curvature, R;/x and Ry/A



T maximum radius of drop, cm

r* dimensionless r, r/a

r, surface contact radius, cm

rg dimensionless r, rc/h

r, radius of drop associated with h_, cm
r¥ dimensionless r,, r. /A

S unit of arc length, cm

s* dimensionless S, S/A

A" volume of drop, cm3

v* dimensionless V, V/A3

X radial coordinate
x* dimensionless x, x/X
Ax numerical integration increment, cm

Ax*  dimensionless Ax, Ax/A

z height coordinate, cm

z* dimensionless z, z/A

Z, z at apex of drop, cm

z; dimensionless z, zo/?\

0 contact angle, deg

A characteristic length (see eq. (2))
Py, liquid density, g/cm3

Py vapor density, g/cm3

(o] surface tension, dynes/cm (N/cm)
% angle, deg (see fig. 4)
Subscripts:

i numerical integration index

max maximum



GOVERNING EQUATIONS

The solution of the Laplace capillary equation (eq. (1)) will determine the shape of
the drop. This equation represents a force balance which relates the surface-tension
forces and the pressure difference across the surface of a drop. At equilibrium the
surface-tension forces must be balanced by the pressure difference across the free sur-
face of the drop.

By expressing the pressure difference across the drop surface in terms of a liquid
head and by introducing the characteristic length A into equation (1), the governing equa-
tion becomes dimensionless and is of the form

,

e 3)
Ry Ry

(The starred quantities denote dimensionless terms.) The derivation of equation (3) is
given in appendix A.

Equation (3) must, of course, be rewritten with the radii of curvature expressed in
differential form before it can be solved directly. I Ri‘ and R§ are expressed in
terms of x* and z* equation (3) can be transformed into a second-order nonlinear dif-

ferential equation (see appendix A) of the form

3/2

2 % *\2 * *\ 2

dz”, L 1+<——dz> —dz*=ﬂ:z*1+<-—dz> (4)
dx*z x* dx* dx dx *

where x* and z* are the dimensionless coordinates of a point P on the drop surface
(see fig. 4).

In principle, this differential equation must be solved to determine the shape of
the drop. Since this equation cannot be solved explicitly, numerical procedures must be
used. However, rather than a direct numerical attack on equation (4), reference 8 sug-
gests the introduction of a new variable

j=sineg (5)

as a means of simplifying the numerical work. When the new variable j is used, the
Laplace capillary equation is transformed into a coupled pair of first-order differential
equations (see appendix A). These equations are given by



I I 6)

dx* :I:(l ] jz)l/z

Equations (6) and (7) represent the governing differential equations for the drop.
These equations are solved by the Runge-Kutta method. (See appendix B for details of
the numerical solution. )

DISCUSSION OF RESULTS

The numerical Runge solutions of the Laplace capillary equation are presented
graphically in figures 5 to 9. Basically, for a given dimensionless drop volume and con-
tact angle, these graphs enable the calculation of the following parameters:

(1) Maximum dimensionless height, h*

(2) Maximum dimensionless drop radius, r*

(3) Dimensionless contact radius, ré‘
These three parameters, illustrated in figure 3, enable a sketch of the drop to be drawn

and the contact areas to be determined. The numerical results from which these curves
were plotted are given in table I.

Drop Height

In figures 5 and 6 the drop height h* and h*/V*l/ 3, respectively, are plotted as a
function of drop volume for various contact angles from 1° to 180°.

Any particular curve is characterized by two asymptotic regions. For very large
volumes the drop height approaches a constant, the particular value of which depends on
the contact angle. The second asymptote occurs for very small volumes. A very small
drop assumes a spherical shape subject to the constraint imposed by a fixed contact angle.
A completely nonwetting liquid (9 = 1800) forms a spherical drop in the limit as the
volume approaches zero, while wetting liquids form truncated spheres in the zero
volume limit. The two asymptotic regions are discussed quantitatively in the following
paragraphs.

In the large-volume regime, a unique relation exists between the members of the
family of curves. That is, the asymptotic height is given in terms of the contact angle

by (ref. 9)
6




nt=_" - 4/2(1 - cos 0) (8)

08,
pi B
This equation was derived by neglecting one of the radii of curvature in the Laplace

equation. Equation (8) also predicts that the slope in the large-volume regime should be
-3, since

h* V2(1 - cos ) ©)

V*1/3 V*1/3

or

log V¥ =3 logl:vz(l - cos 9):| -3 log< h* ) (10)

V*1/3

The equation allows the asymptotic thickness of a drop to be computed for arbitrary con-
tact angle in the large-volume regime. As seen in figure 5, the large-volume regime is
determined by V* > 100.

The vertical asymptotes of figure 6 characterize the small-volume regime. Each
contact angle gives a different asymptotic value for the dimensionless drop height, which
can be computed from elementary geometric considerations. The equation for the dimen-
sionless height in terms of the contact angle, derived in appendix C, is given by

Lim h* = 3(1 - COS 9) 1/3 (11)
V*~0 y*1/38  [7(2 + cos 0)

The small-volume asymptotes derived numerically for various contact angles in fig-
ure 6 are identical to those predicted by equation (11), providing a further check on the
accuracy of the numerical method. The plotted results of figure 6 indicate that a drop is
r'gmall' if V* < 0.01, which serves as the criterion for the applicability of equation (11).

Drops whose volumes fall into the range 0.01 < V* <100 are neither spherical nor
pancaked in shape. No theoretical expression for the height of drops exists in this inter-
mediate range. Based on the two asymptotic solutions, however, an empirical expres-
sion was deduced to fit the curves over the entire dimensionless volume range. The gen-
eral correlation is given by



Jm -1/3m
47(2 + cos 6)sin =

h* _ 2
h—*_ 1+ pe (12)

where m is an empirical constant chosen to fit the data in the intermediate range. The
best choice of m is m = 1.0; this gave agreement to within 10 percent. Thus,

1/3
h

* 3v*

h* ) (13)

© |3V*+47(2 + cos 0)sin 2
2

=

The general correlation is compared graphically with exact numerical results in figure 7.
The particular form of equation (12) was chosen, because irrespective of the choice of m
this equation approaches equations (8) and (11) in the limit of very large and very small

volumes, respectively.

Maximum Drop Radius

In figure 8 the dimensionless drop volume V* is plotted against the dimensionless

maximum radius rr’;lax with contact angle 6 as a parameter. These curves are also
characterized by two asymptotic regions.

For large volumes,
V* = mrX2nX (14)

leading to a slope of 2 on a log-log paper, since h;"o remains constant in this range.

Solving for rf,"o in terms of volume and contact angle by employing the expression for

h¥ (eq. (8)) gives

o* o v* i - <_Vi> 2 (15)
- 7V2(1 - cos 6) mhe,

For very small volumes, geometrical considerations (see appendix C) lead to



V* = 17[(1 - cos 9)2 —_;: (1 - cos 6)3]R*3 (16)

This equation gives a slope of 3 on log-log paper, as indicated by figure 8.
Solving for the radius of the sphere gives

- y*1/3 an

1/3
171/3[(1 - cos 9)2 - -:]; (1 - cos 9)3] /

For contact angles greater than 90°, the radius of the sphere represents the maximum
radius of the drop. However, for contact angles less than 90°, the maximum drop radius
r is given by

v*1/3 sin o

771/3[(1 - cos 9)2 —% (1 - cos 6)3:|1/3

r*=R*sin 6 = (18)

Now, the large- and small-drop results can be combined in the intermediate region be-
tween the two.

In the intermediate range there is a gradual change of slope in which the two asymp-
totic solutions blend into each other. There is no analytical expression for computing the
maximum radius in the intermediate range. However, combining the two asymptotic so-
lutions over the entire dimensionless volume range in the following manner gives, for
6 < 90°,

o\l/2n
¥ 71/3p* sin20
=1+ 23 (19)
r
® V*l/s\:(l - cos 6)2 _1 (1 - cos 9)3]
3
and for 6 > 90°,
m\1/2n
1/3 x
% T h
rell o - 2/3 20)
r
* V"‘l/3 [(1 - cos-e)2 —% (1 - cos 9)3]



A choice of n = 1.8 correlates the exact numerical results to within 2 percent. The
agreement between the correlation and the exact numerical results is so close that no

graphical comparison was made.

As before, the particular choice of the correlating equation is such that independent
of the value of n the equation will converge to the proper asymptotic solution for the
case of large and small drops.

Contact Radius

The contact radius rz, which determines the area of physical contact between liquid
and solid, is plotted against the maximum radius r* in figure 9 for contact angles of
135° and 180°. For contact angles equal to or less than 90° the maximum radius equals

the contact radius.

Average Drop Thickness

A pafameter that has had some use in heat-transfer analysis is the average drop
thickness h defined as

o V' 1)
wr*z
and
n* =V*2/3 (22)
V*1/3 ar*2

Both these quantities are listed in table Ifor various size drops.

Experimental Data

Some experimental data were available for various liquids, as indicated in figures 6
and 8, on the relation between volume and the maximum drop radius and height. The
data given in reference 10 are for liquids in Leidenfrost film boiling, in which the liquid
does not wet the surface. Consequently, the contact angle is 180°.

10



CONCLUDING REMARKS

Numerical solutions of the Laplace capillary equation were presented graphically for
various contact angles. In addition, the generalized correlating equations for the maxi-
mum thickness and radius of a drop for arbitrary drop volume and contact angle were
synthesized by combining the asymptotic solutions for very large and very small drops.
These correlation equations are accurate to within 10 percent on drop height and 2 per-
cent on maximum drop radius.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, May 22, 1968,
129-01-11-02-22.
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APPENDIX A

TRANSFORMATION OF LAPLACE'S CAPILLARY EQUATION

The governing equation for the shape of the drop, Laplace's equation, is given by
equation (1) (repeated here for convenience).

1 + 1 _ AP (A1)

R1 R2 ()

The pressure difference across the drop is proportional to the sum of the reciprocal
of the radii of curvature in two mutually perpendicular directions, as depicted in figure 4.
Note in equation (A1) that the expression

1 1

—_—

Ry R2

is an invariant with respect to the coordinate system chosen.
The pressure difference AP in equation (A1) is a function of z which can be con-

veniently expressed as

AP =p;(z - 2) gi +C (A2)
C

where the vapor density p v is assumed much less than P1, and the constant C repre-
sents the jump in pressure across the liquid-liquid interface at z =z o and x = 0 (the top

of the drop).
At the top of the drop, the radii of curvature are equal; thus, Laplace's capillary

equation (eq. (Al)) becomes

AP|, . = (A3)
o

x=0

J |8
I
Q

where R, is the radius of curvature at the top of the drop. Substituting equation (A3)
into the expression for AP (e.g., eq. (A2)) gives

AP=pLz§+2—°—z0£pL (A4)
g (o} g

12



Up to this time, the quantity z o represented an arbitrary distance from the refer-

ence coordinate to the top of the drop. However, z o is now taken as

[\

g
z, = 40 € (A5)
Ro P g

Substituting this expression into equation (A4) gives

aP=pyzE (A6)
gc

Thus, the governing equation (eq. (Al)) becomes, by substituting equation (A6) into equa-
tion (Al),

g
1,1 c (AT)

The radius of curvature at the top of the drop R0 can now be written from equa-
tion (A5) as

R =_ 29 (A8)

The parameter =z o is considered an independent variable which can be chosen arbitrarily
to give various radii of curvature at the top of the drop.

Choosing z, as the independent variable, the volume of the drop becomes a depen-
dent variable, that is

V =i(z,) (A9)

The functional form in equation (A9) cannot be determined explicitly, rather it can be
represented in a geometrical fashion from the numerical solution of equation (Al).

The governing equations have been discussed briefly and now will be transformed to
a more convenient form for solution.

Dividing both sides of the governing equation (A7) by the characteristic length A
(defined by eq. (2)) yields

13



1,1 _ % (A10)

* *
R; Ry
where
R¥ = Eﬂ
17
\ (A11)
R* = E%
27y
and -
by

(The starred symbols represent dimensionless coordinates. )

The dimensionless Laplace capillary equation given by equation (A10) can now be
written in terms of dimensionless variables x* and the angle ¢ (see fig. 4).

Consider the point P on the surface of the drop defined by the coordinates ¢ and

x*. The radii of curvature R{ at the general point P can now be represented from

geometrical considerations (see fig. 4)

Ry= X %% (A13)

The radius of curvature RE must intersect the x* = 0 line because of the symmetrical

nature of the drop.
Similarly, the radius of curvature Ri‘ can be expressed in terms of x* and ¢ by
considering the distance traveled along an elemental length change dS*. Mathematically,

ds* = R;‘ do (A14)

However, the arc dS* is perpendicular to the arc traversed by RJ; thus, from geomet-
rical considerations

dx* = cos ¢ ds* (A15)

Combining equations (A14) and (A15) and eliminating ds* yields

14



_1.*.—_~cosq)_d£.=__d sin ¢ (A16)
Rl dx * dx *

Substituting the values of R; and R; from equations (A13) and (A16) into the
governing equation (eq. (A10)) yields

dsing , SN ¢ _ 4« (A17)
dx * X*

However, sin ¢ can be expressed in terms of the variables z* and x* by noting that

d_Zj =tan @ = __sing (A18)
dx * 9
:I:‘/l - sin“¢
and
sin ¢ = ﬂ_ (A19)
ﬂ/I + tan2<p

The sign is determined by the quadrant in which the integration occurs.
Eliminating sin ¢ from governing equation (A17) by use of equation (A19) and re-
placing tan ¢ by dz*/dx* from equation (A18) yield

3/2

2 2 ¥\ 2

d%z% 1o g, (92X 92 _ Lk |p 4 (92X (A20)
dax*2 X* dx * dx* dx *

This is the basic governing differential equation for the shape of a drop. The equation is
a second-order nonlinear differential equation which, up to the present time, has not been

solved explicitly.

Bashforth and Adams (ref. 4) solved the same type of equation by a direct numerical
assault. However, Timoshenko and Woinowsky-Krieger (ref. 8) suggest the introduction
of the new variable

j=sing (A21)

as a simpler approach to solving the problem.
Substituting the new variable j (eq. (A21)) into equations (A17) and (A18) yields

15



% o (A22)
X

dZ*

= 1/2 (423)
:!:(1 - ].2)

Thus, the second-order governing equation (A20) has been transformed into two

first-order differential equations which are much simpler to handle mathematically.
These equations are equations (6) and (7) in the main text.

16



APPENDIX B

NUMERICAL PROCEDURES

The numerical procedures used in solving the governing equations (6) and (7) are de-
scribed briefly. These equations are solved by a double-precision fourth-order Runge-
Kutta numerical integration. The numerical procedure for solving two simultaneous
first-order differential equations by the Runge-Kutta method is given in most texts in nu-
merical analysis and need not be discussed herein. However, there are a few salient
points that will be considered.

Increment Size

The increment size for the various drop volumes was chosen to be sufficiently small
such that in most cases the results are accurate to three significant figures. This accu-
racy was accomplished by iteration using ever smaller values of Ax. The values of Ax
chosen are listed in table I along with the numerical resulits.

To increase the accuracy of the integration in the region where ¢ equals 900, Ax
was reduced by a factor of 100 (0.01 Ax) for 85° < ¢ < 95°.

Initial Conditions on zg

At the top of the drop, principle radii of curvature become equal because of sym-
metry. Consequently, at the top of the drop the governing equation (eq. (3)) takes the
form

(B1)

where o denotes the apex position of the drop. At the start of the numerical integration,
the position of the apex of the drop is chosen arbitrarily at some value of zg (fig. 3). By
choosing zg‘ as an initial condition of the solution, the radius R;‘ and the volume of the
drop will be uniquely determined. Thus, the drop volume becomes a dependent variable.
I z; is initially chosen to be small, the radius of curvature at the apex of the drop
becomes large (see eq. (B1)). The drop takes on a pancake or disk-like shape. K z;‘
is initially chosen to be large, R;‘ becomes small, and the drop takes on a spherical

shape. By choosing numerous numerical values of z;‘ and solving each problem, the

17



shape of the drop can be found for various values of V (see eq. (A9)).
In addition, it should be noted that the Runge-Kutta technique puts an upper limit on
the choice of Ax, in that at the initial starting point,

Ax* <2 (B2)
Zg

in order to prevent the occurrence of imaginary numbers resulting from the denominator

in equation (7).
Thus, for large initial choices of z  consideration must be given to the choice of

Ax*,

Tan ¢
The differential dz*/dx* in equation (7) equals tan ¢. Consequently, for ¢ < 90°
the tan ¢ is positive while for ¢ > 900, tan ¢ is negative. Thus, a + sign is dis-

played in equation (7) to indicate that a sign change is required during the numerical inte-

gration.

Initial Conditions

From the choice of coordinates shown in figure 2, the initial conditions for this prob-

lem are
x*¥=0 z¥ = zg‘ (B3)
x*¥=0(r j=0) dz* _ o (B4)
dx *
. z*
x¥=0 L= ?0 (B5)
X

Initial condition (B5) comes directly from combining equation (A13) with equation (B1) at
the apex of the drop.

18



Drop Volume

Since the solution of the governing equations requires numerical integration, the nu-
merical results will be a set of ordered numbers z’i", xi" which describe the shape of the
drop. The dimensionless volume V* is computed by using the trapezoidal rule as

n

Ve T 3 (o - ) (2 e xP i) @6)
i=1

X

where n represents the total number of numerical steps in the integration.

19



APPENDIX C

GEOMETRICAL RELATION FOR SPHERICAL DROPS

The volume of a truncated sphere (often called a spherical segment) is given by

V=§h2(3R - h)

(C1)

(see fig. 10) where h is the vertical distance from the plate to the apex of the spherical
drop and R is the radius of the sphere. From geometry a unique relation exists among

R, h, and the contact angle 6; thus,

=_..____h—
(1 - cos 6)

Substituting equation (C2) into equation (C1) and rearranging gives

h h* 1

V1/3_V>.=1/3= n< N
L\l -cosé 3)

or

h* _|3(1 - cos 9)'1/3
V*1/3 7(2 + cos 0)

This relation is valid for all contact angles.
Combining equations (C2) and (C3) gives for the radius of a sphere

V*1/3

R* =
1
n1/3 I:(l - cos 9)2 - % (1 - cos 9)3:' /3

20
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TABLE I. - NUMERICAL VALUES OF DROP SHAPE

sin 0 v* r* h*
z, = 0.4E 02; Ax = 0.1E-05
0.17460E-01 0.912e-11 0.373E-03 0.762E-05
0.87160E-01 0.568E-UB Ue436E-02 0.190E-03
0.25883E 00 0.451E-06 0.1296-01 0.170E-02
0.42262E 00 0.334c-05 0.211E-01 0.468E-02
0.70712E VO O« 304E- 04 0.35%4E~01 0.146E-01
0.10000E 01 0.26LE-03 0.500E-01 0.499E-01
0.70709E 0O Oe492E-03 U.354E-01 0.851E-01
-0.26043E-04 UeH22E-03 0.2 0DE-02 0.996E-01
= I |
h= 0.665-01 h/V /3 0.826
z, = 0.1E 02; Ax = 0. 1E-04
0.17500E-01 0.589E-09 0.350E-02 0.306E-04
0.87203E-0lL 0.364E-06 0.174E-01 0.762E-03
0.25884E 00 0.288E- 04 0.518E-01 0.681E-02
0.42264t UV 0.213E-03 UeB44E-01 0.187E-01
0.7C714E 0O 0.193E-02 O.l4le 00 0.583E-01
0-10000& U1 U.l63E-01 0. 199t U0 0.197E 0J
0.70711& 0U 0.303E-01 U.1l43E 00 0.331E 00
-0.10494E- 04 0.322c-01 0.314E-01 U.382E 02
_ . %k
h= 0.2608 00 h/V'1/3= 0.816
z, = 0.4E 01; Ax = 0.1E-04
0.174060E-01 J.912c-08 0.873E-02 0.762E-04
0.87161E-01 U.568E-05 U.436F-01 0.190L-02
0.25882E UU 0. 448E-03 U129t VO 0.170E-01
0.42264E 00 0.328E~02 0.210L VO Ue464E=-01
0.707L1E VO 0.287E~-01 0.348c 00 0.143E 09
0.10000E U1 0.222E 00 O.481E 00 0.458E 00
0.70709 00 Ue.396F 00 U.371E 00 0.734E 00
-0.24069E-04 O0.424t 0O Uslo7E 00 0.827¢ 00
h= 0.5326 00 nvH/3 2 5105
z, = 0.1E 01; Ax = 0.1E-03
0.17453E-C1 U.583E-Ub 0.349E-U1 0.305E-03
0.071786-01 U. 359k~ 03 U.l74E 00 V.757TE-02
0.725886E 00 Us 260k -01 U.502k 00 0.650E-01
0.42205E 00 O.lo5E 00 O.782c 00 0.166F 0)
0.70711c O V.104t OL Us.llok O1 0.439E 0U
0.100008 01 U.484E 01 U.la7e Ul 0.108E 01
0.70710c 00 U. 755k Ul U. 130t 01 0.151F 01
-0.2135%4k-0U3 U.8lok Ol U.992E 00 0.164F 01
— "‘ *
h= ov.121E 01 h/V'1/3= 0.599
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h*/V*1/3

0.365E-01
J.107E 00
0.222E 30
0.313E 00
0.469E 00
0.78lE 00
0.108E 01
J.124E 01

0.365E-0U1
0.107E 0O
0.222E 00
0.313E 00
0.469E 00
J.777€ 00O
J.106E 01
0.120E 01

0365E-01
0.107L 00
0.222E 00
0.313t U0
0.4606L 0O
0.757E 00
J.100& 01
0.110E 01

0.365E-01
0.1U6E 00
0.219E 0V
0.304E 00
J.433E 00
J.636E U0
0.767E 0O
V.815E 0O




sin 6

0.17457E
0.87171E
0.25845¢€
0.42263¢
0.70711E
0.10000t
0.70710¢
~-0.22743E

h=

0.17456¢c
O.d37196k
0.25883¢E
0.422062E
0.70712¢t
C. 1 000OF
0.70702k
-0.16288E

h =

O.1745%2E
0.87158F
0.25884¢t
0.42204E
0.707T17F
0.10000¢€
0.70704¢c
~0.12740F

0.17455¢
D.87176L
0.25886k
0.42286k
0.70713k
0.99993GE
0.70536E

TABLE L

-0.67963E~-03

h=

- Continued. NUMERICAL VALUES OF DROP SHAPE

v* r* h*
Z, = 0.4E 00; Ax =0.1E-03
-0l 0.909E- 05 V.3 72E-01 0.761E-03
-0l 0.52 76 - U2 0.426E 00 0.184E-01
00 0.271E 00 O.llle 01 0.136E 0)
00 0.123t Ul 0.157e Ol 0.299E 00
0o 0.505k 01 U.208E Ul 0.549E 00
gl O.lot U2 0.241t 01 0.135E 01
0o De24a5t 02 0.223c 01 0.179E 01
-U3 U.203t 02 0.190E Ol 0.194& 01
U.l4sE Ol E/V*l/?‘.= 0.438
z, = 0.1E 00; Ax = 0.1E-03
-0l 0.5556-03 0.344E 0O 0.298E-02
-ul 0.169c 00 0.133E Ol 0.540E-01
0o 0.269E 01 U.253E 0L 0.239E 00
D0 O.T45t Ul 0.306L 01 0.429E 00
0o 0.205L 02 0.360E 01 0.795€ 00
0l 0.520k 02 0.393c 0l 0.149€ 01
20 0.736E 02 0.375¢ 01 V.194€ Ot
-03 V.793L 02 U.341c 0L 0.209& 01
J.l69 01 E/V’"l/3 = 0.382
z, = 0.4E-01; Ax = 0.1E-03
-01 0.695k-02 0.806E 00 0.676E-02
-Cl 0.730E QU U.234E Ul U.768E-01
Ju V.042t Ol V.354E Ol 0.269E 00
00 0.1526 02 0.407t Ul 0.458E 00
0u 0.370E 02 U.451E Ul 0.821E 0
ul 0.8756 02 0.493E 0l 0.151E Ol
ou 0.121c 03 U.4Tob UL 0.196E 01
-03 V.131t 03 V.4 1E Ol 0.211E OL
0.1716 01 hyv/3 - ols37
z, = 0.1E-01; Ax = 0.1E-02
-01 0.109E 00 V.210k Ul 0.145E-01
-0l U.267E Ol U.387E 01 0.916E-01
00 0.1526 02 U.506E U1 0.282E 00
00 U.320E 02 0.558E 01 0.468E 00
00 0.707c 02 0.611k 01 0.824E 0
) V.1b6E 03 0.643k Ol 0.150F 01
00 0.213t 03 0.625L 01 0.195E Ol
0.230E 03 0.590E 01 0.210E Ol
U.177E Ol E/V*1/3= 0.289

n*/y+1/3

0.365E-01
0.106E& 0O
0«210E 0O
0.279€ 0O
0.378E 00
0.527£ 00
0.618c 00
0.650E 00

0.363E-01
0.977E-01
J.172E QO
0.220E 0V
0.291E 00
0.399E 0O
J.463E 00
0.485E 00

0.354E-01
J.853E-01
0.145& 00
0.185E 00
De246E 0O
0.340E 00
0.396E 00
J.415€E 00

0.303E-01
0.660E-01
O.114E 00
D.1l47E 0O
0.199E GO
3.279E 0O
0.326E Q0
0.342E 00
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TABLE 1. - Continued. NUMERICAL VALUES OF DROP SHAPE

sin 6

0.17462E-01
0.87228:-01
0.2538938c 00
0.42270€ 0V
0.70716& 00
0.99999E 00
0.70676E Q0O
—0.48775£-03

V*

0.308t
O.4606L
0.231E
0.403¢t
0.486E
D.212E
V.2817E
Ue3l1lE

h= 0.180E 01

0.17460E-31
0.87182e-01
0.25390E QU
0.42290c VU
0. 70753t 0O
0.19000 Ut
0.70581E vU
—-0.14043E-02

0.826¢&
O. 80651
0.3¢7¢t
Q. {27E
J.149c
0,312t
O« 419k
0.454t

h= 0.184 01

U.l 7463E-01
0.87192E~-431
0.25901E vV
0,42281lt LU
0.70778E WU
0.99999F 0
0.70530c UV
-0.71106t-03

0.222L
U, L73¢E
0.097t
Ue L 29
0.255¢E
051 {E
Ue 091K
O. 74381

h= 0.187F ol

0.17457E-01
0.87192e~01
0.25898t 00
0.42270E OO
0.70768t 00
0.10000E 01
0. 70600E VO
-0.14109E-02

0.688E
D.4b4t
DelolE
V.287t
Oeb4 7t
Ue Ll Udt
0.143¢E
U. 195t

h= 0.191 ol

24

z, = 0.4E-02; Ax = 0.1E-02

00
01
02
02
g2
03
03
03

Z = 0.1E-02; Ax = 0.1E-02

00
oL
02
02
03
03
03
03

z, = 0.1E-03; Ax = 0.1E-02

Ji
02
02
03
03
03
03
03

z, = 0.1E-05; Ax = 0. 1E-02

01
02
U3
03
03
04
04
U4

r*

U.311E 01
U.488E 01
V. 6uUbE 01
O.657E 01
U. 709t Ul
O.741lE Vi1
V.723t 01
Ve0d8t 0l

h*

0.174E-01
0.940E-01
0.282E& 00
0.466E 0
0.819E 00
0.150E 01
U.194E 01
0.209E 01

E/V*l/3 = U.256

Ve 404E 01
U. 638t 01
U793t 01
U.305t U1
Ue dboE U1
O.888t 01
0.870t Ul
Je.d83%E 01

H/V*I/B _

Ues 712k U1
O.0882t 01
V.996t 01
UeluUbE L2
O.11uk V2
U.il13E 02
Vellle 02
U.108E vZ

0.187E-01
0.941€E-01
0.279E 00
0.462E 00
0.812E 040
0.148E 0l
0.192E 01
0.207E 0Ol

0.239

0.187E-01
0.926E-01
0.275E 0V
0.455E 00
0.802& 03
O0.147t 01
0.191E O1
0.206E 01

B/v*/3 2 5206

0.120E 02
U.l36E 02
UelaBtE 02
Ue.lb52E (2
Ue.158E 02
O.l61E u2
U.159t 02
V. 155k 02

0.182€-01
0.907E-01
V.271E 00
O.448€c 00
O0.791E 00
0O.l45E V1
0.189t Ol
0.204E 01

E/V*1/3= 9.165

h*/v*1/3

0.257E-01
0.563E-01
V.990E-01
U.130E 20
0.177E 00
J2.251E 00
0.294E 00
0.308E 00

0.200E-01
U.458E-01
0.833£-01
J.111E 00
0.153E vo
J.219E 0O
U.257E QU
0.270E 00

Vel44E-01
J.354t-01
0.669£-01
0.901E-01
J.126E 00
J.183E 00
0.216E 00
J.227E 00

0.959E-02
0e254L-01
0.497t-01
0.679E-01
0.967E-01
O.142E U0
0.168E 00
0.176€E 00



TABLE I. - Concluded. NUMERICAL VALUES OF DROP SHAPE

sin 6 v*
0.17455F~-01 Oe140E
Qe817192E~01 Qed51E
0.25901t 0O 0.288t
De42299E 0V Ve H04E
0. 70769E UQ U.944E
0.99999E 09 Q. 183E
0. 70603E UD Q.242E

—0.868492E-03 Ve262E
h = O0.193E 01}
0.17466E-01 0.235t
Ve87194F-01 Ve l37E
Q.25888E U0 Ve 4blE
D.4228338 00 O.781E
U 70755E U0 Oelabe
Ue 99999 QO Q.2177E
0.70980 00 Qe 300E
-0.19Y854E-02 Ue 396E
h = 0.194E 01
0.17462E-01 Q.42 2t
Qa87T209E-01 0.237E
0.25895F Q0 Ve /63E
Q42?263 00 Vel 31lE
Q. 70783 00 Qe 39E
0.9999GF 0 Ue.455c
0.70552F U0 Q.599E
-0.12490c-02 Ueb48E
h= Oa.l195E 01

z, = 0.1E-07; Ax = 0.1E-02

02
02
03
03
03
04
04
04

z, = 0.1E-09; Ax = 0.1E-02

02
Js
03
03
C4
U4
04
U4

z, = 0.1E-12; Ax = 0. 1E-02

02
03
U3
04
U4
04
Q4
04

r*

UalofE
Us LB4E
U.195E
U.200¢t
Ua.205E
Ue20U8E
Us 2ULE
Us20U3c

02
02
02
02
02
02
02
02

h*

0.180E-01
0.893E-01
0.208E 0OU
O.444E QJ
0.785E 0U
O.144E 01
0.188E Ol
0.203E O1

B/ VY3 = o140

U.214E
0.231€E
U242t
Ue247E
U.252E
UeZ29bE
U.253E
0a250¢t

02
02
02
02
u2
02
02
02

0.179E-01
0.267E 00
J.442E 0J
U.781e 09
O.l44E Ol
0.187E 01
0.202E 01

Bv/3 2 o123

0.285E
U.3VlE
0.312E
U.317€E
0.322¢c
U.325c
U.323E
U.320L

h/V

02
02
02
G2
02
02
02
02

*1/3

0.178E-01
0.888E-01
0.26%E 00
V.440E 00
Q.778E 03
V.143E Ol
0.186E 01
0.202E 01

= U.135

h*/V*1/3

0.747E£-02
0.204E-01
0.406E-01
0.558E-01
0.800E-01
0.118E 00
VU.140E QO
0.147€ 00

0.625E-02
0.173E-01
0.480E-01
U.691E-01
J.102E 00
0.121E 0O
0.128E 00

0.511E-02
0.l44E-01
04291E-01
0.402E-01
0.582E-01
0.863E-01
6.103E 00
0.108E 00
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{a) Zero gravity.

|

'C-66-3242 -

1
(¢} 1= g's.
> g

Figure 1. - Variation of mercury droplet
shape with gravity level. (Ref. 3)



M
2

(a) Wetting drop, 0° <9< 90° (b) Intermediate case, 8 = 90°. {c) Nonwetting drop, {d) No surface attraction.

90° <9< 180°,

Figure 2. - Drops resting on flat surface, shown in order of decreasing molecular attraction between liquid and solid.

Reference plane

| Section A-A

Figure 3. - Drop schematic.
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Dimensionless height, h*

N —lf———

Section A-A

Figure 4. - Drop cross section,
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Top view of drop

Dimensionless volume, V*

Figure 5. - Dimensioniess drop height as function of contact angle.
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Dimensionless volume, V*

Contact angle,

102 8
deg ———— Numerical solution
— — —— Asymptotic approxi-
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Figure 7. - Comparison of humerical and approximate solutions for heive13
as function of dimensionless volume for various contact angles.



Dimensionless volume, V*
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Figure 8. - Maximum drop radius as function of volume of drop and contact angle.
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Dimensionless contact radius, L

P

10 1 1 e
3 | 1]
)’ ANN
will]
A | 11
V%V 1]
Y
4
‘Contact angle, /
} |74 |
G 7 H
T Al
10 to 90 i
’ /A [
// // 1 I ]
“a /111
Y
B A - b :
7 [ L3 ]
10D T
RN ] A
/ = 11
/ . 1
180 11 |
.01 NER IR 1
.1 1 10

Maximum dimensionless radius, r*

Figure 9. - Relation between contact and maximum drop
radius.
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N — "

Figure 10. - Spherical drop.
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