BOUNDARY CONDITTONS AND ITERATIVE PROCEDURES FOR
o PLASMA SHEATH PROBLEMS

Lee W. Porker
Mt. Auburn Rescarch Associates, Inc., Cambridge, Massachusctts
and
Edward C. Sullivan

Goddard Space Flight Center
National Aeronautics and Space Administration, Greenbelt, Maryland

Computer methods have recently been applied to a large class
of steady-state collisionless plasma sheath problems, including, for

(1-5)

exanple, moving satellites in the ionosphere, stationary plasma

(6-8) (10)

. . 9 e
probes, ion englnes,( ) and placsma diodes, These problems

involve numerical solutions of the Poisson equation, One aspecct of
such golutions which can cause difficulties is that in many cases(l-s)
one boundary is at infi;ity, where the potential and net charge'density
vanish, Because of the limitgtions of digital computers, the potential
and density descriptions arefestricted to a finite portion of space, so
that the boundafy condition corresponding to ”;nfinity” must be simulated
by a necessarily artificial finite condition. Another aspect is that
theidensity is generally a non-linear functional of the potential
distribution, and that,-with specified boundary conditions, an iteration
procedure must be used in order to obtain a self—coﬁsistent solution.

The stability of the iteration procedure depends, not only on the

particular algorithm, but also on the artificial boundary condition

ewployed, as will be shown later, Even in finite problems bounded by
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electrodes, the stability of the itervation is related to the
magnitude of the electrode separation.(g-ll)
This paper is concgrned with the numerical effects of employing
certain artificial finite boundary conditions and iterative procedures
for self-consistent Poisson problems, Studies have been made with
spherical probe and plasma diode models, with the goal of developing
economical procedureé for more gencral-pfoblcms. Results obtained by
the use of such models are not expected to depend strongly on their
one-dimensionality. A third aspect of the plasma sheath problem, which
is nunerically non-trivial but will not be discussed, is that of finding
the density when the potential distribution is given, in the presence of
absorbing boundaries and non-isotropic velocity distributions. Alter-
native approaches for this calculation in a gencral problem are suggestéd

in Refs. 2-6 and 12,

A common approach to the artificial finite boundary has been

“simply to set the potential to zero on a boundary surface as far "out"

- (1-3)

as possible, within computer limitations.
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"Floating-potential"

boundary conditions have also becn used, in which linear relation-

_ships have been assumed between the potential and its gradient. The

question of how well a finite boundary condition approximates the "true'"

(3-8)

infinite boundary condition has been treated recently. In these

investigations, sequences of Poisson problems with identical boundary

conditions were solved, where the boundary was successively moved
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outward until no further changes occurred, either in the potential

(3-4)

distribution in the vicinity of the satellite, or in the collected
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probe current. The soluiion obtained in this way may be taken to

represent that for the "infinite'" boundary condition, and will be said

"to have a '"stationary' property with respect to the boundary position.
Computational costs are proportional to the size of the region

enclosed by the boundary. If the boundary can Bc moved inward as a

result of changing the boundary condition, without changing the stationary

property of the solution, the calculation becomes nore economical, In

the case of a stationary spherical probe, for example, the potential is

known to obcy an inverse-square asymptotic law, and computer procedures

(7-8)

employing fleoating boundary conditions bascd on this law have been

found to be far more economical than procedures in which the potential

(4)

is set to zero. 1In the case of a moving satellite

(5-6)

or a circular planar
probe, where axially symmetric potential distributions occur and no
theoretical asymptotic analysis is available, various ad hoc floating-
potential relationships, based on intuition, have similarly been found
to be more economical than setting the potential to zero. Taylor,(h)
for example, has employed an exponential law as well as certain other

(5-6)

special relationships, while Parker and Whipple have employed a
dipole law, 1In view of these results, it scems worthwhile to look for
generally efficient assumptions. For exomple, for the spherical probe
we have found that setting the gradient of the potential to zero at the

(13)

boundary is as economical as using the asymptotically correct inverse
square law., Calculations will be presented which will compare floating

conditions with the zero-potential condition.



The iterative phase of the procedure for obtaining self-consistent
numerical solutions may be discussed in terms of the Pcisson matrix equa-

tion in dimensionless form, namely:

L8 = -0 , &

In (1), L is the Laplacian matrix opefator resulting from the differencing
of the Laplacian on a grid in configurational space. The components of
the vectors B>and 5>are the values of the potential and the net charge
density, respectively, at the grid points. A general iterative procedure

may be based on the mixing or coupling of density iterates, namely:

n
L= Z b o8 ). 2)

=0

where E; denotes the n-th iterate for 5{ Alternatively, of course, one
may instead couple the potential iterates. The coefficients bm determine
the stability of the iteration.

Using the spherical probe wmodel, we find that the iteration
converges when the boundary radius R is less than a certain critical
value Rc’ and diverges when R is greater than Rc' Let RS denote the
boundary radius such that the probe current is stationary when R > Rs.
The iteration will converge to the desired solution (with respect to
the current) when RC > Rs' With "direct" (uncoupled) iteration, id
which b =8 (Kronecker delta), R is usually less than R, Now R_ is

m mn c s ]

fixed by the chosen boundary condition, but RC can be made to become

greater than R by a cuitable choice of the coupl
s



In the iteretion scheme with mixing parameter & < 1, defined by

—> - - —> ~> . = -
L¢n+1 - 1dn-i-l h ap(¢n) + (l a) Fn (3)

(where f; = 0 so that 5; is the Laplace solution), the stability of the
iteration (3) is found to increase as'a decrcases. For any value of Rs’
one can apparently force convergence, i.e., cause Rc to cxceed Rs’ if one
chooses a sufficiently swmall value of a. Equation (3) implies that Lm

in (2) is given by a(l - a)n'm, so that for small ¢¢ the coupling is
approximately cqually distributed over a large number of past iterates.
The usc of such an iteration corresponds to replacing the problem by an
equivalent time-dependent parabolic heat-diffusion problem in difference
form, in which the time index is analogous to the iteration index, and

(2)

the steady-state soiution is the desired one. The use of a small
value for ¢ corresponds to the introduction of high damping in the
heat-diffusion problem. The required number of iterations, and therefore
computer time, is roughly inversely proportional to Q.

Various versions of the iteration scheme (3) have been

(1-3, 5-6, 8-11) (8)

used, Laframboise has found that significant gains
can result from additional sophistication, such as the use of an empirical
diagonal matrix for o rather than a scalar, that is, a different mixing
parameter for each grid point. We are pursuing this promising approach
and hope to report new results.

One—diﬁepsional plasma diode problems also afford convenient

(10-11)

models for studying iterative stability. Numerical instability

seems to be connected with the existence of an extended region of space



wherce the charge density is swall, in the vicinity of the point where it
changes sign., As the clectrode spacing increases, the extent of the regime
of small charge density grows, and the parameter @ must be reduced for
convergence. If, in the plasma diode problem, we restrict attention to
a rcegion in the vicinity of the point where the charge density changes
sign, and if we assume a linear relation between p and ¢ in this region,
then it can be shown analytically that & must be smaller than a number

i . 2,2 . .
proportional to A /D7, where A is the Debye length, and D is the exteunt
of the region of linearity. 1If D is taken to be the electrode separation

(10)

in an empirical formula, the data of Prince and Jeffries indicates
a constant of proportionalify between 1 and 10 for large values of D/\.
It is interesting to note that in satellite problems with high ion Mach
. (2-3) . i 1sew . c Lo
numbers, iterative stability is found to increase with increasing
Mach number. One can probably define in this case an effective Debye
length, which is based on the ion energy and is therefore large.
e In our experiments with the spherical probe model we have
found that;}or interesting values of the physical parameters, the scheme
of Eq. (3) requires @ to be of the order of 1/100., This small value
_ implies that many iterations will be required, i.e., of the order of
' X (14) o, . ) .
hundreds. Details of these experiments will be presented,

Based on the parabolic nature of the iteration problem, it

should be possible to devise more sophisticated iteration schemes which

will reduce the number of iterations required and therebyreduce computer
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Suggested for the satellite wake problem by A, H, Davis (private
communication)

As compared witb the order of 10 iterations for the satellite wake

1, 3 (6)

problem -and the circular planar probe problem



