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Abstract

The flow behavior in an electromagnetically
driven viscous vortex is investigated for a concen-
trie, cylindrical electrode geometry with outward
radisl mass flow through the chamber, The closed-
form solutions obtained by Kessey and also Lewellen
for the velocity, pressure, and indueced magnetic
field distributions with inward radial flow are
applied to the present study with the assumption of
small magnetic Reynolds numbers and negligible flow
Wvariations in the axial direction. An approximate
form of the energy equation that includes a temper-
ature dependent electrical conductivity is solved
nﬁmerically for the temperature distribution across

sthe vortex. For the case of constant radial current
flow, the applied voltage and input power are also
calculated. The results of this study are compared
with experimental measurements made with several
arc-driven vortex accelerator configurations. The
theoretical and experimental results are in agree-
ment with regard to the velocities in the outer
portion of the vortex, the inner and outer boundary
pressures, and the power required to heat and accel-
erate the flow. Significantly, the solid-body-like
rotation predicted by this analysis appears to be
present in the experimental devices.

Introduction
e present study deals with the flow behavior
Xisymmetric, electromagnetically driven,
i vortex that is confined between cylindrical
electrodes, and has a net outward radial mass flow.
The widespread interest in the production of con-
tinuous hypervelocity nozzle flows provided the
motivation for this analysis and for the experiments
with several vortex accelerator configurations that
are reported here.

A number of analytical studies have been
reported in recent years in which a plasma moves

within a cylindrical geometry. MbCune(l) and

Donaldson(g) obtained solutions for the flow vari-
ables in a coaxial cylindrical system neglecting

induced magnetic field effects. Lewellen(B)
obtained analytic solutions for the velocity, pres-
sure, temperature, and induced magnetic field dis-
tributions in a "long cylinder" electrode geometry
for the case of small magnetic Reynolds numbers.

Kessey(u) analyzed both the inviscid zero mass flow
and viscous nonzero mass flow problem and obtained
solutions for the velocity, pressure, and induced
magnetic field distributions within a coaxial cylin-
drical geometry. All of these studies have consid-
ered either the case of deceleration due to electro-
magnetic interaction, or acceleration of the plasma
with zero mass flow, or a net inward radial mass
flow. Although the mathematical nature of the solu-
tions to the equations that govern the vortex is the
same regardless of whether the flow is radially
inward or outward, the flow within the vortex is
drastically altered from the inflow case if the mass
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flow is in the outward direction. This is true
because the azimuthal velocity has an exponential
dependence on the radius. The exponent is the
radial Reynolds number which is positive for out-
flow but negative for inflow.

The practical significance of an electromag-
netically driven vortex with outward radial mass

flow has been demonstrated by Stewart and Wallio(5)
and the theoretical and experimental results of the
present work provide some insight into the nature
of the high energy gas flow that exists within
these devices.

Symbols
a integration constant
B magnetic flux density
B reference value of magnetic flux density
c constant
E electric field intensity

Gy  radial mass flow rate per unit area at the
inner electrode

hg half-length of vortex chamber

hy  total gas enthalpy

I current

J current density

k thermal conductivity
P pressure

r radial coordinate

v velocity
? reference value of velocity
Z axial coordinate

p plasma density

i} viscosity
<] azimuthal coordinate
g electrical conductivity

[0} applied voltage between the electrodes

I magnetic permeability

Subscripts: N
[¢) quantities evaluated at the outer wall or a
_ constant



1 quantities evaluated at the inner wall
1,0,z quantity along a coordinate axis

Principal dimensionless quantities:

¢ = = radial coordinate
To
E = Z axial coordinate
To
Vo
v o= ??' azimuthal velocity
Bg
b == azimuthal magnetic flux
5 :
P
P = o pressure
2/
pVypr
ey = m radial Reynolds number
Vo
M= Mach number
yRTZ

Hartmann number

Hy = Bappliedrovg/ﬂ

Rep = poVyr radial magnetic Reynolds number

Rationalized MKS units are used.

Basic Considerations
The flow system under consideration consists of
an axisymmetric electrically conducting viscous vor-
tex confined in a long annular region such that
axial flow variations due to end-wall effects are
negligible. The electrode surfaces are perfectly
conducting and porous to allow for mass flow through
the vortex. Fluid motion exists in the azimuthal
and outward radial directions and figure 1 shows
the electrode geometry and basic nomenclature.

The

conventional magnetohydrodynamic equations( are
used with a right-hand cylindrical coordinate sys-
tem. The following principal assumptions are made:

1. The radial magnetic Reynolds number is
small.

2. The plasma is incompressible.

3. The axial velocity is negligible as well as
axial variations of the azimuthal
velocity.

L, The vortex is axisymmetric.

These are essentially the same assumptions dis
discussed in detail in references 1 to 4. By vir-
tue of assumption 1, the Hall current can be
neglected. With constant density from assumption 2
and using assumptions 3 and 4, closed-form solu-
tions can be obtained for the radial momentum equa-
tion and the equation determining the induced azi-
muthal magnetie field. For nonzero radial mass

flow the azimuthal momentum equation does not
require a constant density assumption and is valid
for both compressible and incompressible flow if the
radial Reynolds number is constant. Assumption 3 is
the long cylinder approximation that amounts to
neglecting the effects produced by end walls in a
finite length chamber. Assumption 4 provides a con-
venient simplification to the governing equations.

With these assumptions 1t has been shown(7)
that By = 0 and Bz = Bgpplied, SO that the three
components of the momentum equation and the equa-
tion for the induced azimuthal magnetic field can
be written as shown in the following section.

Governing Equations

Vg Vg 3 {1 0rvy B, OrBg
- —_— —_ = 1
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Several simplifications can be obtained for this
system. Integrating the continuity equation gives

(5)

and from the radial component of Ampere's law when
I, = constant

I’Vr = Cl

orB
1 <]
T ur oz - T ®)
and
2
dB
= - (7)
oz

Thus, equations (1) and (&) are two second order
differential equations for Vg and Bg.

The boundary conditions for Vg and By are
the following:

Vg = Vg at =1y (8)

1

Vg =0 at T =1, (9)

Where Vel results from either a rotating inner
electrode or azimuthal gas injection through the



electrode surface. Using the =z component of Omm's
law and Ampere's law, two boundary conditions for
Bg can be determined, thus:

at r

it

Ty (10)
o(xB
ﬁ—.e—) = RmBe
dr

at T

i}

r (11)

o

The external circuit chosen for this study pro-
vides a symmetrical current flow through each end
of' the center electrode. Such a circuit configura-
tion is needed in order to avoid the net axial
Lorentz force on the plasma that would be present if
all the current were introduced through only one end
of the center electrode. Thus, the end wall bound-

1ary conditions on the induced azimuthal magnetie
field are:

“Ipfu
Bg = = —— t
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—— at 4
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In order to work with dimensionlegs equations,
the dimensional reference quantities V and B for
the velocity and magnetic induction will be defined

by the expression: 3B = vVEE where p 1is the
plasma density. The following dimensionless guan-
tities are thus defined:

|
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and
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P = the dimensionless applied voltage
BVrg
Gy
AN == the dimensionless radial mass flow
pvV where G = prrl the radial mass
flow rate per unit area at the
inner electrode -surface
1 prgV .
= = reference radial Reynolds number
o 1
. pcro% reference radial magnetic Reynolds
A3 number

B has been taken as 1.0 weber/meter? for all of the
calculations presented. With these definitions
equations (1) to (4) with the boundary conditions
given by equations (8) to (13) can be written in
dimensionless form as follows:
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The dimensionless equations (14) and (17) have
the boundary conditions.

v =vy at I; = Cl (18)
v=0 at t=1 (19)
_ i by _ he
b= - 2 %o at R (20)
s hO o
b = é%-;; at E=- (21)
at t = gi (22)
b _ Reyb = O
B§ en ,
at t =1 (23)

Solutions

The solutions to equations (14) and (17) that
satisfy the boundary conditions (18 to 23) can be
obtained in a straightforward manner similar to that

worked out by Kessey.(u) Thus, equation (14) has
the general solution for nonzero radial mass flow

¢ .
1+R 3 Ni€
-v = -Cpt €T _ = ¢ (21")
S ST
where
vyt g;—é_— 4 Re%
Op = M !
)'Q\lgl _L - g 1+Rer
g, L
and
Cz = -Co + Ni



For an applied magnetic field and a radial
current in the positive 2z and r directions,
respectively, the azimuthal velocity is in the neg-
ative 6 direction (hence the negative sign on v
in eq. (24)).

A solution to eqguation (17) that satisfies
equations (22) and (23) is

b = (al * aeﬁ)% (25)

and substituting the boundary conditions of equa-
tions (20) and (21) into equation (25) gives

il

_i__hg=il_+ia(@> R

To
and. (26)

. a a, h, h,
i&=_i+_2<__9> at £ o

To

is found to be zero so

that the solution to equation (17) that satisfies
the boundary conditions in equations (20) to (23)
is

From equations (26), aq

b=t 27)

With v and b given by equations (24) and (27)
the pressure distribution can be obtained by first
integrating equation (16) to get

2
P=-2 e (28)
and so
s
» 97 afly)
A T (&9

From equations (15) and (29) it is seen that:

1 .2 2 151 . loo _
o 5 3 * > +§(v 12) (30)

Equation (30) can be integrated to give:

£(8) = - 1€1 f(v2 be)—g—’rCu (31)

Substituting equation (31) into equation (28) and
evaluating the integral for -b /§ yields

7\
M7~ Cl fve a & (32)

The pure constant of integration  C) is elim-
inated by evaluating equation (32) at one boundary
and. subtracting the resultant expression from equa-
tion (32). In this study the pressure at the outer
boundary p, will be chosen to eliminate Cy.
Thus the pressure distribution for the case of net
outward radial mass flow is found.

The applied voltage is given by

1
o= - f Eyrg dt (33)
&y

which can be written in dimensionless form as

1 iA 1
5 af
£y &1

For the case of constant electrical conductivity,
equation (34) can be integrated directly. TFor a
temperature dependent electrical conductivity, Az
in equation (34) is replaced by its definition in
terms of ¢ and a numerical integration can be
carried out once oft) is found from the tempera-
ture distribution across the flow.

The power input required to heat and accelerate
the flow is given by

1(32
Power = L/ﬁ ~= - VgBzJr hﬂhoroeg at (35)
€1 -

and in dimensionless form equation (35) is
1 1%5
Pyp = ztif _g— - 2vNjdt (36)

For a variable electrical conductivity equation (36)
is numerically integrated in a manner similar to
equation (34).

A determination of the temperature distribution
can be obtained from the energy equation using the
long cylinder approximation considered in this study.
Because the joule heating terms can be expected to
have a predominant effect on the temperature distri-
bution, a useful approach is that of assuming that
the viscosity and thermal conductivity are constant
and that o wvaries in a known manner with tempera-
ture. With these simplifying assumptions the energy
equation can be written as

2 2
J av, v,
aT r 5] (¢} k d aTt
pCyVy =— = - + 71("'— - _r_> + = —-(r E;) (37)

Rewriting equation (37) in terms of the dimension-
less radial coordinate ¢ and rearranging gives

2
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Jr I‘02 _
====0 (38)



where Pr i1s the Prandtl number, R is the gas
constant and Cp - Cy = R has been used. Egua-

tion (38) was mumerically integrated using a tem-
perature dependent electrical conductivity that was
obtained from the data of reference 7. A fifth
degree polynomial was used to curve fit the electri-
cal conductivity of equilibrium air at a pressure

of 1 atmosphere. The integration was carried out on
a computing machine using a classical fourth order
Runge-Kutta formula.

Theoretical Results

The solutions of the previous equations for the
behavior of the vortex exhibit many interesting and
widely different features from previously studied
electromagnetically driven vortex flows. The most
pronounced effects are due to the high positive
radial Reynolds numbers (corresponding to outward

sradial mass flow) coupled with strong electromag-
netic interaction across the flow. The range over
which the controlling parameters in this study are
varied has been arbitrarily chosen; however, these
,Vvalues include conditions at which experiments have
been made and therefore they are of practical
interest.

Figure 2 is a plot of the azimuthal veloeity
distribution across the flow for the conditions
denoted on the figure. This figure shows that the
velocity is a rising function of the radius across
the vortex and has the appearance of a solid-body
rotation between the inner and outer electrode sur-
faces. The high value of the radial Reynolds num-
ber forces the viscous effects into a narrow region
near the outer wall. As the ratio of the inner to
the outer electrode radius is increased (increasing
Ql) the azimuthal velocity exhibits a marked

decrease at all points in the flow. The distribu-
tions are similar to the lower {7 profiles, how-
ever, and the peak velocities occur at nearly the
same location independent of ;. Results obtained
with a radial Reynolds number of 10.0 indicate that
the peak azimuthal velocities occur at a ¢ value
near 0.80. For still lower values of the radial
Reynolds number the viscous effects move farther

out into the main part of the vortex, and the veloe-
ity distributions become similar to the zero radial

mass flow profiles obtained by Kessey.(

Figure % shows the pressure distributions that
correspond to the previous results for the azimuthal
velocity. All of the profiles shown in figure 3
are characteristic of solid-body rotation modified
by the net mass flow through the chamber. Azimuthal
injection of gas at the inner electrode surface does
however raise the pressure within the vortex by as
much as 27 percent above the zero azimuthal injec-
tion yelocity case for the conditions shown in fig-
ure 3. For G; constant, the pressure at any point
in the flow is strongly dependent on the boundary
pressure py, as might be expected.

The temperature distributions corresponding to
the previous conditions for the velocity and pres-
sure are shown in figure 4 along with the particular
choice of boundary temperatures. The distributions
are nearly independent of the boundary temperatures
that are chosen, and show an exponential behavior
near the outer wall that is similar to the velocity
distributions. Outside of the electrode boundary
regions the Jjoule heating terms are many times

greater than the viscous dissipation and heat con-
duction terms and thus the assumptions made in
arriving at equation (3%8) appear to be justified.
The Mach number distributions across the flow were
obtained from the previous results using the local
speed of sound given in reference 9. Figure 5 shovws
the regions where sonic velocities are reached
within the vortex. When {; = 0.7, the entire vor-

tex is subsonic as a result of the relatively short
interaction length in the flow at this high value
of §7. With the temperature and pressure known,

the dependence of the electrical conductivity on
zeta is known, and the power input can be obtained
by numerical integration of eguation (36). The
power input divided by the chamber volume is shown
as a function of the radius ratio £y in figure 6.

The change in chamber volume with {1 produces

large differences in the total power required. For
the conditions shown in this figure, the total power
reguired when Cl = 0.3 is nearly four times the

power required for the {7 = 0.7 case. Figure 7

shows the induced azimuthal magnetic field distri-
bution for the case where §; = 0.3. In this fig-
ure Bg 1is plotted as a function of the axial
coordinate £E. The cylindrical surfaces of the
vortex chamber determine the maximum and minimum
values of the flux distribution shown in the figure.
For symmetrical current flow through each end of the
center electrode the induced magnetic field has the
direction shown in figure 7 for each half of the
chamber. The flux distribution is symmetrical about
the z-axis and the curves plotted in figure T show
that the largest axial forces on the plasma will
occur near the end walls of a finite length chamber.
These forces are in a direction that tends to move
the plasma away from the end walls toward the axial
midplane of the chanmber when positive current flows
in the outward radial direction.

The dependence of the azimuthal velocity on the
Hartmann number is not contalned explicitly in equa-
tion (24); however, the effect of different values
of this number can be indicated by plotting
Vo/Vprirt as a function of zeta. Figure 8 shows

this veloeity ratio for the conditions indicated.
Similarly, figure 9 shows the pressure ratio,

D .

2
% PVprirs
vious figures the drift velocity is evaluated at its
maximum value near the outer wall. Higher values
of the Hartmamm number can be viewed as ylelding
higher azimuthal velocities although figure 9 shows
a significant flattening of the pressure ratio as
the Hartmann number is decreased. From a practical
standpoint, the shallower pressure profiles are
desirable because they tend to reduce secondary
flows within the end-wall boundary layers.

as a function of zeta. In both the pre-

With the radial and azimuthal velocity known
at each point within the vortex, fluid streamlines
can be plotted and figure 10 shows a typical fluid
element streamline for the conditions denoted. For
low values of {7 and high values of the electro-
magnetic parameter Ni, it is apparent that large
interaction lengths can be obtained within moderately
sized chambers.



Experimental Measurements

Experiments have been made with several arc-
driven vortex accelerators, and diagrams of these
devices are shown in figures 11(a) and 11(b). BRarly
experiments with the device shown in figure 11(a)
are reported in reference 5, and subsequent modifi-
cations to both accelerators have provided a means
for gas injection with subsonic and supersonic
azimuthal velocities on each side of the center
electrode. The radial injection velocity is sub-
sonic for all of the experiments reported here.

Dual light pipe viewing stations in the accelerator
exit channel have allowed direct measurements of
the exit gas velocity to be made and compared with
velocities obtained from simultaneous solutions to
the energy and mass continuity equations and the
equation of state using measured quantities as
inputs to these .equations. A gas accelerating cham-
ber with an axial length of 0.635 centimeter was
used with the end walls recessed as indicated in
figure 11(a). Also, experiments with a
3.8-centimeter-long chamber and a 2.l—weber/meter2
applied magnetic field were carried out with the
device shown in figure 11(b). A comparison between
measured quantities and values obtained from the
theoretical flow model is subject to a number of
limitations. The experimental devices have a single
azimuthal gas exit rather than the porous wall
assumed in the flow model. Inlet gas is inJjected on
each side of the center electrode and not through
-the electrode surface. Also, there is a pericdie
motion of the conducting gas within the chamber of
the experimental devices which is analogous to a
rapidly rotating arc rather than an axisymmetric
plasma. (Arc-rotational frequencies up to

28,000 revolutions per second have been measured
within the chamber for some of the tests reported in
this study.) An experimental indication of the
validity of the assumption that the flow is axisym-
metric has been obtained with a rapid response pres-
sure transducer (piezoelectric crystal) mounted
within the outer wall. For several different chanm-
ber pressure levels, the magnitude of the periocdic
pressure fluctuations was a small fraction of the
time-averaged outer wall pressure. In addition,
time-averaged pressures measured on the inner elec-
trode surface and around the outer wall showed
almost no deviation from an axisymmetric distribu-
tion existed. On the other hand, nonaxisymmetric
heating from the arc was not investigated. In the
experiments, use of time-averaged energy input to
the gas may lessen the validity of a comparison
with an axisymmetric model. Because of the long
interaction length within the chamber, however,

the effects of nonuniform heating tend to be
reduced. Finally, all of the input parameters to
the theoretical results cannot be uniquely specified
from the experimental measurements. In particular,
the experimental chamber is of finite length which
has the effect of altering the radial mass flow
through the vortex. Also, the radial current is
measured rather than the radial current density.
With these considerations in mind, figure 12 shows
three theoretical velocity distributions for the
range of conditions of the experiments. Also shown
are three experimental values of velocity in the
outer flow. The agreement between the theoretical
and measured velocities at ¢ = 0.875 1s quite
reasonable.

For {, = 0.6, figure 13 shows both the theo-

retical and measured pressures at the vortex bound-
aries that correspond to the previously discussed

velocity results. The calculated and measured val-
ues of applied voltage are shown in figure 14. If
anode and cathode fall voltages were subtracted
from the measured voltage, some disagreement would
exist between the calculated and the experimental
values of applied potential. These results may well
be due to an effectively higher electrical conduc-
tivity in the arc than is obtained from the theo-
retical model. Finally, the calculated and measured
power input to the vortex is shown in figure 15.

For €7 = 0.5, the experimental power input is

11 percent above the calculated result. The neglect
of electrode boundary losses in this analysis may be
primarily responsible for this discrepancy. For
¢y = 0.6, the measured power input 1s 37 percent

below the calculated value. An explanation for the
result with {; = 0.6 is difficult to justify and

further experimentation must be made to resolve this
question.

One point of interest regarding the experimentaa
observations concerns the induced azimuthal magnetic
field. The calculated values of Bg indicate thet
it is a small quantity at all locations within the®
vortex chamber. Early tests, however, were made v
with the total current introduced through one end of
the center electrode and, as might be anticipated,

a net axial Iorentz force drove the plasma against
one end wall and caused an axial component of current
to flow. By introducing an equal value of current
through each end of the center electrode the axial
forces on the plasma cancel each other and appear to
result in s purely radial current flow.

Experiments with the device shown in fig-
ure 11(b) have shown large increases in azimuthal
velocity and energy input to the gas in comparison
with the previous measurements. With an applied
magnetic field strength of 2.1 webers/meterz, a
current of 1300 amperes, and a radial Reynolds num-
ber of %30, the measured total gas enthalpy is
38 x 100 joules/kg which is 1.8 times the enthalpy
obtained with the device shown in figure 11(a).
Pressure measurements made on the outer wall show
an axisymmetric distribution and figure 16 shows a
measured velocity and the predicted velocity dis-
tribution. The applied voltage is shown in fig-
ure 17 and the power input is shown in figure 18.
Further experiments will allow at least a gross
comparison of the differences between the devices
shown in figure 11(a) and 11(b). The device shown
in figure 11(b) is exhausted to low pressure through
a 100 diverging nozzle that has a 24 centimeter by
24 centimeter square exit. Velocity and pressure
measurements made in the nozzle and at the exit
indicate a nearly isentropic expansion that produces
a 15-centimeter by 15-centimeter core at the exit.
Lateral and vertical pitot probe traverses show a
symmetrical pressure distribution about the axis.
The nozzle exit static pressure is 0.45 millimeter
of mercury, the stream velocity is 6400 meters/second,
and the Mach number is 5.1 when pure nitrogen is
used as the tést gas. As yet no limit to the maxi-
mum mass flow that can be heated and accelerated
has been established, although higher power input
is required as the mass flow and chamber pressure
are increased. Experiments at considerably higher
power levels than are reported here have been
initiated.

Considering the highly idealized flow model
chosen for this study, the agreement between mea-
sured and predicted flow behavior seems encouraging.



If, as 1t appears, solid-body-like rotation exists
within the experimental devices, then favorable
conditions exist for producing considerably higher
gas velocities and gas energies than have been
obtained up to the present time.

Concluding Remarks

1. The basic nature of the electromagnetically
driven vortex studied in this analysis is governed
by the coupling between the azimuthal Lorentz force
and the high positive radial Reynolds numbers that
are brought about by outward radial mass flow.

2. All of the calculated resulis exhibit a
strong dependence on the inner to outer electrode
radius ratio. For small values of this ratio the
solid-body-like azimuthal velocity distributions
produce high gas velocities in the outer portions
of the vortex.

3

3. At currents near 1500 amperes and magnetic
field strengths of 1.0 and 2.1 weber/meter®, reason-
able agreement exists between the theoretical and
gxperimental results regarding the velocities in the
outer portion of the vortex, the inner and outer
boundary pressures, and the power required to heat
and accelerate the flow.

4. For chamber pressure levels of 1 atmosphere
and greater, high energy input to the working fluid
appears possible by the heating and electromagnetic
acceleration considered here. In addition, high
peak velocities are attainable within practical
electrode and magnetic field geometries.

. Hansen, C. F.:
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Figure 7.- Induced azimuthal magnetic field
distribution.
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Figure 6.- Power input variation with radius
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Figure 8.- Hartmann number effect on azimuthal

velocity.
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Figure 11.- Concluded.
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Figure 12.- Experimental azimuthal velocities.
gure xperm s Figure 15.- Experimental pressure at vortex

boundaries.
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Figure 14.- Experimental applied voltage.

Figure 15.~ Experimental power input to vortex.
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Figure 17.- Experiméntal applied voltage.
Figure 16.- Experimental azimuthal velocity- & 7 P P &

modified vortex accelerator.
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