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IDENTTIFICATION OF COMPLEX STRUCTURES

USING NEAR-RESONANCE TESTING

By J. P. Reney
NASA-Lengley Research Center
Langley Station, Hampton, Virginia

ABSTRACT

A recent innovation for determining the set of governing differen~
tial equations of motion of & complex structure is described. Numerical
values for the mass, stiffness, and damping coefficients of the dynamical
equations associated with a particular input—response or transmission
path are computed from the data usually obtained in conventional vibra—
tion tests of a structure. The theory is based on the dynamic properties
of multi-degree—of-freedom linear systems. The method requires the
steady response (acceleration, velocity, displacement, or stress) and
the driving sinusoidal force input for transmission paths of interest to
be experimentally determined for a few frequencies near each major struc—
ture resonance, Application of the method is illustrated by determining
from experimental data the equations of motion of 1/10- end 1/40—scale
models of the Apollo/Saturn V launch vehicle. Transient responses computed
using the identified equations for the 1/&O—scale model are shown to agree
favorably with experimental results.

INTRODUCTION

The purpose of this paper is to present a simple technique for experi-
mentally determining an acceptable set of equations of motion for a space
vehicle structure. This system identification approach, while yielding
the equations of motion, does not involve a detailed analysis or physical
ideslization of the structure. It relies solely on the experimental deter-
mination of the steady state response of the structure to a sinusoidally
verying input force for a few frequencies near each important structural
resonance and on the usuel assumptions regarding the behavior of lightly

damped, linear structures.



SYMBOLS

iM] system mass matrix; symmetric, positive definite

lc] system viscous damping matrix; symmetric, nonnegative definite

x] system stiffness matrix; symmetric, nonnegative definite

F(+)} system foreing function vector

x} system coordinate vector

X, kR system coordinate; an element of {x}

Xk amplitude of steady state displacement response at k

£x}(3) system coordinate vector due only to response in the jth mode

xl(:j) kth element of {x}(J)

[¥] matrix of modal vectors {@}(j) as columns

i@}(j) modal vector obtained from kK]A— Aj[thx} =0

qﬁj),qéj) the ith and kth elements of {¢}

"M,] diasgonal modal mess matrix

[“52] diagonal modal damping matrix

"%.1] diagonal modal stiffness matrix

{a} normal coordinates defined by (X} = [¥1{q}

a jth element of {q}

mj,cj,kj jth model mass, damping and stiffness

Fi(t) arbitrary external point force applied at i

Fi amplitude of Fisinwt

m§£),c§g),k§§) §ffective mass, damping aqd stiffness for the i-k
input-output path in the jth mode

eik phase angle between response and input force for the i~k path

ugg) effective percent of critical damping in the jth mode

® circular frequency



“3 jth resonant circular frequency

Units the units used in this paper are lb, in, sec

THEORY

The starting point for the development of the identification technique
of this paper is in the mechanics of lightly damped, linear systems. The
class of structures for which the technique is proposed is assumed to possess
the following somewhat quaiitatiﬁe features which are stated in the form of
.assumptions and are basic to the ensuing development:

1. Light damping typical of & space vehicle with no damping speci-

fica;ly designed into the structure.

2, The modes of interest are sufficiently uncoupled in the velocity
terms and separated in frequency so that a single degree-of-freedom
enalysis is adequate to represent the steady response above the
half power poin£'in a mode of interest.

These basic assumptions are designed to imply that the steady response
in each vibration mode of interest is not significantly affected by any
other mode and that each mode can be isolated and individually exploited as
discussed in detail in references (1) — (k).

With the above assumptions as a backgroun&, the proposed identification
technique and the supporting analytical arguments are now developed.

General. — The equations of motion for the system may be written (ref. 5)

M1x} + (&} + K1) = {F(e)} (1)
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The transformation

x} = [¥1lq} (2)

where

= 5 Vg (3)
% Ty

is assumed to produce uncoupled equations in terms of the normal coordi--

nates, g, so that
("M 160} + [,00a) + (K e} = (¥ fR(6)} ()

where

*H.] = [¥ITIMI(¥]

[C.1 = (¥Iclly]

('%,] = [¥17(kI0¥)
The equation for the jth normal coordinate is

- Q- ., = J)F t 5

mydy + ejd; + kya, ?@& 31(%) (5)

5
For only one external forcing function applied at i equation (¥) becomes

myd, + ey + kyay = o VF; (%) (6)

Near resonant response. — Equation (2) may be written

(3 = = {9} q,
d
so0 that the response in the jth mode is
39 - {03y, (7

- -



or

xij) = qéj)qj (8)
and x(J)
= B
IO N (9)
k

Substituting equation (9) into equation (6) and dividing by qéj)

my  \a(3) o3\ (B ) (9.

TYJTT(pia *E) AP OFE R Ravare #)-rm 6o
or |

mgg);&({j) + cg);ﬁ(j) + kgi)xl({:i) = F,(t) (11)

The significance of equation (11) is that it represents the system
dynamics for response &t point k due to forcing at point i. Also, the
derivation of equation (11) has not placed any restrictions on the forcing
function at 1. Fi(t) is, in fact, an arbitrary, external, point forcing
function. When Fi(t) = Fisinum withv w = wj only one equation of the
form of equation (11) is required to represent the system response. It is
upon tﬁis fact that the ideﬁtification scheme is based.

Equating the coefficients of equations (10) and (11), it is evident

that
n, = ) o) 9
ey = ol 43 P (12)

o <) o9 o
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Setting 1 =k

m, = {17 (23)

1

from which the modal amplitudes at i and k are found to be given by

———

(3) 7| 24
% 203
ii
(1k)
P ) R—

m
k mj({i)%d)

The quantities ms and mgg) are defined to be positive and hence ¢§j)
~ j 3)

is positive. A negative value for qu) implies a negative mik which
is wholly consistent with the facts.

Solutions for myy , Cix, and kyy. — The steady state or particular

solution of equation (11) with Fi(t) = Fysinwt is given by
x = X sin(wt - 6) (15)

Substituting equation (15) into equation (11) and solving for the

coefficients my,, ¢4 and ki results in

F
kgg) = mgg)u? +* i cos Oy (16)
and
. P
c§§) = ;%; sindsy (7

If one set of values of w, Fi’ Xk and eik for equation (17) and two
sets for equation (16) are known, the coefficients of equation (11) may be

computed.



Response to Arbitrary Force. — The total system response at k due

to any time dependent force Fjij(t) at i is found by superposition of

the solutions of each of the set of the following equations:

)+ S D o
| ] I |
I.. '. |
m(iﬂ),’ﬁ({j) + cgjz):r]({j) + kgﬂ)lxl({«j) - 7y (%) (18)

|
| | i
m:(i%:); ]ip)+ cgﬁ);ﬁ(:p) + kgﬁ)lxﬁp) = Fg(‘b)

| i |

and is given using equations (3) and (8) as

2o (3)
*x =j§1 %



EXPERTMENT AL, PROCEDURE

The Langley 1/10-scale and 1/40—scale models of the Apollo/Saturn v
launch vehicle are shown in figures 1 and 2 and the coordinate systems for
both models are presented in figure 3. The 1/10-scale model is fully
described in reference 6.

1/10-scale model. — The 1/10-scale model was complete in the lift—off

structural configuration, but was entirely empty of simulated propellants.
The boundary conditions were cantilevered-free. A steady frequency,.tran&—
verse, sinusoidally varying input force was applied in the pitch plane
through a strain gage type force gage at station 386 and the displacements

at stations 418 (the tip of the escape tower), 377, and 282 were measured
using a contacting, cantilever, strain gage beam. The strain gage displace—
ment transducers had natursl frequencies in the order of 60 cps and were used
within their flat response regime. The signals from the force and the
displacement transducers were processed through a balancing bridge, diffe-
rential amplifier, D.C. isolation amplifier and were then recorded together
with the calibration signals on an FM analog tape recorder. The selection

of both strain gage force and displacement transducers with both signals
processed through identical electronics was to assure the accurate determina-
tion of phase angle, 6;; , for use in equations (16) and (17).

1/40~scale model. — The 1/40-scale model was also complete in the lift—

off structural configuration. Propellant loading corresponded to first
stage burnout and the boundary conditions simulated were free-—free. A steady

frequency transverse, sinusoidally varying input force was applied in the
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pitch plane through a crystal type force gage aiternately at stations O
and 42 and the acceleration responses were measured at model stations
102.9 and ~2.7. The crystal transducers were used with this model in
order to evaluate the quality of data produced by the two different
instrumentation schemes. The signals from the force gage and accelero—
meters were processed through similar conditioning equipment to minimize
relative phase shift and, together with calibration signals, were recorded
on tape,

Data reduction. — The experimental anaslog data were digitally filtered

using a 2#—ppint per cycle Fourier aﬁalysis from which the numericel émpli—
tudes of the fundamental components of the input force and of the displace—
ment and acceleration responses and the input-response phase angles, eik’

were computed.
IDENTIFICATION PROCEDURE

System Equations

For convenience equations (18) were written as

(1) (1) (1) 2(3)
e A e L
l m

i

1

|

| ik
l 1 |l (19)
| i
-Ap) _ (p) .(p) (») _
ST N s =;.(.].:P.5.Fi(t)
ik
and
P
5 = 20 (20)
521



Computer experiments. — A controlled computer experiment wes

conducted in which an exact numerical solution of equations (19)

and (20) was generated for an assumed set of typical coefficients.
The solution was then corrupted and the coefficients mgﬁ) 3 cgg) ’
and kgi) were computed using equations (16) and (17). The results
indicated that errors of up to + 10 percent in Fy/X, and + 10
degrees in 8, can be tolerated by this identifier when applied to
systems which satisfy the basic assumptions of this paper. Since it
was felt that the accuracy of the experimental data fell within theée
limits, identification of the 1/10-scale and 1/40-scale models was
attempted.

Solution for coefficients. — The digitized experimental‘data, Fys

X or <§k 5 eik corresponding to a near resonant value of ® were
used to determine the values of mgg) 2 cgg) ’ kgﬂ) for each signifi-
cant mode for eaéh of the selected iﬁputeresponse paths for each model.
Four or five frequencies near each resonance were used. The value of
cgg) for each point was computed using equation (17). The values of
mgg) and kgg) were determined by solving equation (16) as a pair of
simultanepus equations for slightly different near-resonant values of

w., The average value of effective mass, demping, and stiffness for each
mode was then determined. Typical first mode wvalues for station

ATt response of the 1/10~-scale model are as follows:

- 10 -



Frequencies Coefficients of Eqn. Coefficients of Egn.
(1) 1)
1 1 1 _ec _k 1
T
ik ik ik
h,52 28,39 « 3479 458 304.9 191 876.4 2.87
k.72 29, 64 .3381 .1615 296.2 HTTT 876.7 2.96
h,99 = 3.3 « 3311 .1611 290.1 14866 876.2 3.02

The sign of mgg) computed using equation (16) was very simply verified.
The sign was teken to be positive if q)l({ej) was in phase (approximately 0°)
with cpg.j) and negative if cpl(;j) was out of phase (approximately 180°)
with q:gj), The identification results for both models are listed as coeffi-

cients of equation (19) in Tables I and II.
RESULTS AND DISCUSSION

Comparisons of the identification and experimental frequency responses

for the two models are presented in figures 4-10.

1/10-scale results.— The results for the 1/10-scale model are shown in

figures U-6, plotted as the response ratio 3‘_15 versus frequency. The
F

i

particular solutions of equations (19) were obtained for F;(t) = sinut,

= station 386, for 0 =.&. < 30 using the coefficients listed in Table I.
2x



The frequency response at stations 418, 377, and 282 were then obtained

using equation (20). For example,

2
q18 = xy *+ %y + %3}

1/40-scale results. — The results for the 1/40-scale model are shown

in figures 7-10. The frequency response solutions for forcing first at
station O and then at station 42 were computed using equations (19) and
(20) and the coefficients given in Table II. For example, for response at

station 102.9 due to forcing at station L2

xiéig + 3.1&5:%;.9 + 69,530::;;.9 = ~10.1 sinwt
x:gg% o * 1&.5&:.(](_5‘),2. g+ 289,500::55;_9 = 16.2 sinut
;ig;.g + 15.713':5;'9 + 681,160::%2.9 = —12,2 sinwt
;§22‘9 + 26.25i§g;.9 + 929,870x§§;.9 = ~11.7 sinuwt

and
*102.9 = *102.9 T *102.9 ¥ *102.9 T *102.9
Discussion. — The identification results for both models agree quite
favorably with the experimental response data. In addition, the associated
phase angles, §§ » 8lso agree, usually to within 5 to 10 degrees.
F

i
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Therefore, it is felt that, for both models and for the input-response
paths investigated, systems of equations suitable for computing the
response to an arbitrary forcing function have been obtained.

In this connectlion, the uniqueness of the identified equations has
not been rigorously established. It is, however, felt that amplitude
agreement a&s shown in figures 4-10 together with phase agreement to within
5 to 10 degrees, constitutes sufficient conditions for a system identifi-
cation adequate for all engineering purposes. The experience thus far
also;indicates,'for the class of systems considered in this paper, that
an identifier based on requiring coincidence of frequency response ampli-
tudes only, without regard to phase, will produce basically the same
results as if phase information were employed. This fact can be useful,
because, in general, some obvious small adjustments of the identified
parameters to give better results based on amplitude comparison is usually
possible. Figures 4-10 as presented indicate the results that were achieved
using the method of this paper without iteration. However, parameters were
easily selected to produce perfect coinéidence of the amplitude plots of
both figures 8 and 10, for example. The phase differences were negligible.
Therefore, it is felt that refinement of the identified equations to pro-—
duce perfect amplitude agreement is permissable, if not desirable.

The advantages of using the approach of this paper are that a detailed
structural idealization and associated analytical model is not required.
The modes that actually contributed to the response were immediately iden—

tified as the only ones observable for a given input response path. This

- 13 -



obviated the usual concern over the problem of including all of the
significant vibrétory modes of the structures.

Once the equations of motion for a structure have been identified
the transient response to an arbitrary force can be computed with confi-—
dence. In this connection, rigid body modes, if required, can be
calculated from model drawings or experimentally determined. Results
thus far of transient tests with the l/ko—scale model have produced
excellent agreement between the acceleration response computed using the
identified equations and the experimental transient acceleration reéponses.
For example, a comparison of identification and experimental transient
acceleration and displacement responses for the 1/40-scale model is' shown
in figure 11(a) and (b). The coefficients used in computing the accelera—
tion response as predicted using the system identification results are
given in Table IT for i =0 and k = 102.9 (see figure 7). In addition,
the two rigid body modes required for this free-free system were included
which resulted in five equations of motion which were integrated using the
measured velues of the transient input shown in figure 1l(c) which was
applied at station 0 of the model. The identified equaetions predict
transient acceleration and displacement responses at station 102.9 which
are in good agreement with the experimentally determined response. The
results of figure 11 are especially important because they demonstrate the
ability of the identified equations to predict accurately the response to

an input of a different character than was used for their derivation.
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CONCLUDING REMARKS

A technique for determining the eguations of motion of a complex
structure has been presented. Both the number of the essential degrees
of freedom and the coefficients of the equations are determined by the
procedure which is applicable to a large class of aerospace and other
structures. The procedure requires that good quality experimental frequen—
cy response data be obtained for the significant resonances assocliated
with specified input response paths.

It is felt, for the class of structures considered in this paper, that
coincidence of the ldentified and experimental frequency response amplitudes
constitutes a sufficient condition for a satisfactory identification. This
hypothesis, if true, suggests that refinement of the initial identification
results to produce perfect amplitude agreement is desirable and may be
useful in the formulation of an identifier that does not require explieit
experimental phase information.

It is felt that this identification procedure should be advantageous
when the dynamical equations of motion for an existing structure are desired.
For example, if the avalilasble resources are not sufficient to allow the for—
mulation and verification of & detailed analytical model of an existing
structure, of if only sinusoidal test equipment is availeble but transient
response data are required, the procedure of this paper may be very useful.
In particular, the identified eguations were shown adequately to predict the

system acceleration response to an srbitrary transient forece.
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Figure 1l.- 1/10-scale Apollo/Saturn V model.



scale Apollo/Saturn V model.

Figure 2.~ 1/40
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