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IDENTIFICATLON OF COMPIXX STRUCTURES 

USING NEAZE-.RESONANCE TESTING 

By J. P. Raney 
EASMangley Research Center 

Langley Station, Hatupton, Virginia 

ABSTRACT 

A recent innovation for determining the set of governing differen- 
tial equations of motion of a complex structure is described. 
values for the mass, stiff'ness, and damping coefficients of the dynamical 
equations associated with a particular inpufiresponse or transmission 
path are computed from the data usually obtained in conventional vibra- 
tion tests of a structure. 
of multi-degree-of-freedom linear systems. 
steady response { accelerat%on, velocity, displacement, or stress) and 
the driving sinusoidal force input for transmission paths of interest to 
be experimentally determined for a few frequencies near each major struc- 
ture resonance. Application of the method is illustrated by determining 
from eqerimental data the equations of motion of l/lO- and 1/40-scale 
models of the Apollo/Saturn V launch vehicle. 
using the identified equations for the l/lfO-scale model are shown to agree 
favorably with experimental results. 

Numerical 

The theory is based on the dynamic properties 
The method requires the 

Transient responses computed 

INTRODUCTION 

The purpose of this paper is to present a simple technique for experi- 

mentally determining an acceptable set of equatians of motion for a space 

vehicle structure. This system identification approach, while yielding 

the equations of motion, does not involve a detailed analysis or physical 

idealization of the structure. 

mination of the steady state response of the structure to a sinusoidally 

varying input force for a few f'requencies near each important structural 

resonance and on the usual assumptions regarding the behavior of lightly 

damped, linear structures. 

It relies solely on the experimental deter- 



SYMBOLS 

cpil 
cc 3 
CK3 

system mass matrix; symmetric, positive definite 

system viscous damping matrix; symmetric, nonnegative definite 

system stiffness matrix; symmetric, nonnegative definite 

Ixl 

system forcing function vector 

system coordinate vector 

kth system coordinate; an element of 1x1 
amplitude of steady state ddsplacement response at k 

system coordinate vector due only to response in the 

kth element of k)(j) 
matrix of modal vectors iCp](j) as columns 

modal vector obtained from [[K] - AjcM$X] = 0 

the ith and kth elements of 

jth mode 

[cpj 

diagonal modal mass matrix 

diagonal modal damping matrix 

diagonal modal stiffness matrix 

normal coordinates defined by b] = [Y]cq) 

jth element of [q] qJ 
m j  c k jth modal mass, damping and stiffness 

F i W  arbitrary external point force applied at i 
Jr j 

*i amplitude of FiSinwt 

m(j),c(j) (j) effective mass, damping and stiffness for the i-k 
input-output path in. the jth mode i k  ik 'kik 

phase angle between response and input force for the i& path 

effective percent of critic 1 damping in the jth mode 
'ik 
(3 )  

%k 
W circular frequency 
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Units 

jth resonant circul equency 

the units used in this pap e lb, in, sec 

The starting point for the development of the identification technique 

of this paper is in the mechanics of lightly damped, line 

class of structures for which the technique is proposed i 

systems. The 

ssumed to possess 

the following somewhat qualitative features which are stated in the form of 

assumptions are basic to the ensuing development: 

1, Light damping typical of space vehicle with no darnping speci- 

fically designed into the structure. 

8 of interest are sufficiently uncoupled in the velocity 

terns and separated in frequency so that a single degree-of-freedom 

pis is adequate to represent the steady response above the 

f power point in a mode of interest. 

These basic assumptions are designed to imply that the steady response 

in each vibration mode of interest is not significantly affected by any 

mode and that each mode can be isolated and individually exploited as 

discussed in detail in references (1) - (4). 

With the above assumptions as a background, the proposed identification 

technique and the sugprting analytical arguments are TWW developed. 

General. - The equations of motion for the system may be written (ref. 5) 
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The transformation 

where 

is assumed t o  produce uncoupled equations i n  terms of the normal coordi- 

where 

The equation for the j th  normal coordinate is 

5 
For only one external forcing function apppfied a t  i equation 

m o b .  + c.6 + kSqj = (pi ( 3 )  Fi(t) 
j J  J j  

. - Equation (2) may be writ ten 

so tha t  the response i n  the j th  mode is 
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Or 

and 

Substituting equation (9) into equation (6) and dividing by (p (3) 
i 

or 

The significance of equation (11) is that it represents the s y s t e m  

dynamics for response at point k due to forcing at point i. Also, the 

derivation of equation (11) has not placed any restrictions on the forcing 

function at i. Fi(t) is, in fact, an arbitrary, external, point forcing 

f'unction. 

form of equation (11) is required to represent the s y s t e m  response, 

upon this fact that the identification scheme is based, 

When Fi(t) = Fisin& with w = wj only one equation of the 

It is 

Equating the coefficients of equations (LO) and (ll), it is evident 

that 
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Setting i = k 

whickn the modal. ~ ~ ~ f ~ u d e s  at; f and k are found to be given by 

ntities mj and 4:) defined to be positive and hence &j)  
i 

is positive, A ne ive value for cp(j) implies a negative n which 

is w h o l l y  consistent with the facts. 

(j) 
k ik 

Solutions for mik , c a r  and kike - The steady state or particular 

solution of equation (11) with Fi(t) Fisinurt is given by 

IC = x sin(urt - e) (15) 

Substituting equation (15) into equation (11) and solving for the 

coefficients m&, cik and kik results in 

nd 

If one set o f  values of w, Fi, xk and eik for equation (17) and 

sets for equation (16) are known, the coefficients of e 

computed, 

ion (U) may be 
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Response t o  Arbitrary Force. - 
to any t i m e  dependent 

the solutions of each 

force F i ( t )  

of the set of 

The t o t a l  system response at  k due 

a t  i is found by superposition of 

the following equations: 

I I 

I 
I 

I I 
1 i 

and is given using equations (3) and (8) as 
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The Langley l/lO-+cale and 1/4O-scale models of the Apollo/Saturn V 

launch vehicle are shown i n  figures 1 and 2 and the coordinate systems for 

both models are presented i n  figure 3. 

described i n  reference 6. 

The l/lO-scale model is fully 

l/lO-scale model. - - The l/lO-E;cale model was complete i n  the l i f t -o f f  

structural  configuration, but was entirely empty of simulated propellants. 

The boundary conditions were cantilevered-free. A steady frequency, trans- 

verse, sinusoidally varying input force was applied i n  the pitch plane 

through a s t ra in  gage type force gage a t  s ta t ion 386 and the displacements 

a t  stations 418 (the t i p  of %he escape tower), 377, and 282 were measured 

using a contacting, cantilever, s t ra in  gage beam. The s t ra in  gage displace- 

ment transducers had natural frequencies i n  the order of 60 cps and were used 

within their f l a t  response regime. 

displacement transducers were processed through a balancing bridge, diffe- 

ren t ia l  amplifier, D.C. isolation amplifier and were then recorded together 

with the calibration signals on an FM analog tape recorder. 

of both s t ra in  gage force and displacement transducers with both signals 

processed through identical  electronics was t o  assure the accurate determina- 

t ion of phase angle, 

The signals from the force and the 

The selection 

@ik , for use i n  equations (16) and (17). 

l / h c a l e  model. - The l/4&scale model was also complete i n  the l if t-  

off structural  configuration, 

stage burnout and the boundary conditions simulated were free-f’ree. 

f’requency transverse, sinusoidally ng input force was amlied i n  the 

Propellant loading corresponded t o  first 

A steady 
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pitch plane through a crystal  type force gage alternately a t  stations 0 

and 42 and the acceleration responses were measured a t  model stations 

102.9 and 2 .7 .  The crystal  transducers were used with th i s  model i n  

order t o  evaluate the quality of data produced by the two different 

instrumentation schemes. 

meters were processed through similar conditioning equipment t o  minimize 

relat ive phase s h i f t  and, together with calibration signals, were recorded 

on tape. 

The signals fromthe force gage and accelero- 

Data reduction. - The experimental analog data were digi ta l ly  fi l tered 

using a 2bpoint per cycle Fourier analysis from which the nufnerical ampli- 

tudes of the fundamental components of the input force and of the d i s p l a c e  

ment and acceleration responses and the input-response phase angles, ea, 
were computed. 

IDENTIFICATION F B O C ~  

System Equations 

For convenience equations (18) were written as 

i 

and 
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e - A  controlled computer experiment was 

conducted i n  which an exact numerical solution of equations (19) 

and 

The 

nd 

(20) was generated for  an assumed set of typical coefficients. 

solution was then corrupted and the coefficients m 

k ( j )  were computed using equations (16) and (17). The result 
Ik 

indicated that  errors of up t o  5 10 percent i n  Fi/Xk 

degrees i n  

systems which sa t i s fy  the basic a sumptions of th i s  paper. 

c be tolerated by th i s  ident i f ier  when applied t o  

Since it 

was felt  that the ccuracy of the experimental data fe within these 

imits, identification of the 1/1 cale and l/kQ-scale models was 

ttempted, 

Solution for  coefficients, - The digi t ized q e r i m e n t a l  9 Fi9 
0.  

or  & 9 eik c sponding t o  a near resonant value of u) were 

used t o  determine the values of a&) 

cant mode for each of the selected i 
c g )  for each signifi- 

Four or five ch resonance were used, The value of 

~ ( 3 )  for each p i n t  was computed using equ ion (17), The values of ik 
d k! 3) were determined by solving equation (16) l k  

simultaneous equations for  s l ight ly  different ne 

w. The average of effective mass, danping, and s t i f fness  for each 

mode was then determined. Typic first mode values for station 

3'77 response of the l/lO-scale model e as follows: 
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Frequencies Coefficients of Eqn, Coefficients of Eqn. 

4.52 28.39 -34.79 -1458 304.9 e 4191 876-4 2.87 

4.72 29.& .3@1 a613 296-2 * 4777 876-7 2.96 

4-99 31.34 .33u .16u 290.1 e 4866 876.2 3.02 

The sign of m ( j )  computed using equation (16) was very simply verified. 
i k  

The sign was taken t o  be positive if  dj) was i n  phase (approximately Oo) 

with cpiJ) and negative i f  43) was out of phase (approximately 180°) 

w i t h  cp(3). 

cients of equation (19) i n  Tables I and 11. 

The identification results for both models are listed as coeffi- 
i 

RESULTS AND DISCUSSION 

Comparisons of the identification and experimental frequency responses 

for the two models are presented i n  figures k=-lO. 

l/lO-ecale resultse- The results for the l/lO-scale model are shown i n  

figures 4-6, plotted as the response ra t io  121 versus frequency. The 
1 A' 

particular solutions of equations (19) were obtained for Fi(t) = sin&, 

i = station 969  for 0 * (u * 30 using the coefficients listed i n  Table I. 
2Jt 



The frequency response at  stations 418, 377, and 282 were then obtained 

using equation (20). For example, 

(1) (2) + x ( 3 )  
x418 = x418 + x418 418 

1/40-scale results. - The results for the l / h c a l e  model are shown 

i n  figures 7-10. 

station 0 

(20) and the coefficients given i n  Table 11. 

station 102.9 due t o  forcing a t  station 42 

The frequency response solutions for  forcing first a t  

and then a t  s ta t ion 42 were computed using equations (19) and 

For example, for response a t  

and 

(1) 
"102.9 = xlo2.g 

Discussion. - The identification 

+ x(2) 4. x (3) + x (4) 
102.9 102.9 102.9 

results for both model8 agree quite 

favorably with the experimental response data. I n  addition, the associated 

phase angles, , also agree, usua l ly to  within 5 t o  10 degrees. 
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Therefore, it 3.s fe l t  that, fo r  both models and for the input-response 

paths investigated, systems of equations suitable f o r  computing the 

response t o  an arbitrary forcing function have been obtained. 

I n  this connection, the uniqueness of the identified equations has 

not been rigorously established. It is, however, felt  that amplitude 

agreement as shown i n  figures 4-10 together with phase agreement t o  ‘within 

5 t o  10 degrees, constitutes sufficient conditions f o r  a system Identifi- 

cation adequate for  a l l  engineering purposes. 

&so indicates, fo r  the class of systems considered i n  th i s  paper, that 

an ident i f ier  based on requiring coincidenfe of frequency response ampli- 

tudes only, without regard t o  phase, w i l l  produce basically the same 

results as i f  phase information were employed. 

because, i n  general, some obvious s m a l l  adjustments of the identified 

parameters t o  give better results based on amplitude comparison is usually 

possible. 

using the method of t h i s  paper without iteration. 

easi ly  selected t o  produce perfect coincidence of the amplitude plots of 

both figures 8 and 10, f o r  example. 

Therefore, it is fe l t  that refinement of the identified equations t o  pro- 

duce perfect amplitude agreement i s  permissable, i f  not desirable. 

The experience thus far 

This fact can be useful, 

Figures 4-10 as presented indicate the results that were achieved 

However, parameters were 

The phase differences were negligible, 

The advantages of using the approach of th i s  paper are that a detailed 

s t ructural  idealization and associated analytical model is not required, 

The modes 

t if ied as 

that  actually contributed t o  the response were immediately iden- 

the only ones observable f o r  a given input response path. This 
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obviated the usual concern over the problem of including all of the 

significant vibratory modes of the structures. 

Once the equations of motion fo r  a structure have been identified 

the transient response t o  an arbitrary force can be computed with confi- 

dence. I n  t h i s  connection, r ig id  body modes, if  required, can be 

calculated from model drawings or  experimentally determined, 

thus f a r  of transient tests with the 1/4O--scale model haw? produced 

excellent agreement between the acceleration response computed using the 

identified equations and the experimental transient acceleration responses, 

For example, a comparison of identification and experimental transient 

acceleration and displacement responses for the 1/4O-sc 

i n  figure l l ( a )  and (b), 

t ion  response as predicted using the system identification results are 

given i n  Table I1 fo r  i = 0 and k = 102.9 (see figure 7 ) .  I n  addition, 

the two r igid body modes required for this free-free system were included 

which resulted i n  five equ 

measured values of the transient input shown i n  figure l l ( c )  which 

applied at  s ta t ion 0 of the model, The identified e ions predict 

transient acceleration and displacement responses a t  

are i n  good agreement w i t h  the experimentally determined response. 

results of figure U are especially important because they demonstrate the 

a b i l i t y  of the identified equations t o  predict accurately the response t o  

an input of a different character than was used fo r  the 

Results 

e model i s  shown 

The coefficients used i n  computing the accelera- 

ions of motion which were integr ed using the 

ion 1 0 2 a 9  wbich 

The 
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A technique for detemi 

esented. 

the equations of motion of a c 

Both the number of $he essential degrees 

ocedure which i s  ~ ~ p l i c a ~ e  to a large class of aerospace and other 

procedure requires that good quality experia@mta3, frequep. 

frequency response 

t sufficient t o  
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Figure 1. - l/lO-scale Apollo/Saturn V model. 



Figure 2.- l /b -sca le  Apollo/Saturn V model. 
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