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Abstract

An analytical solution for the time
optimal control function and optimal trajec-
tories of a second-order linear system with a
constant time delay has been obtained. The
system is a simple spring mass system with a
constant time delay in the position variable.
In addition to expressions for the control
function and trajectories, an edquation for
the 1imit cycle has been established as well
as a numerical construction of a pseudo
switching curve for this system. The optimal
control function was deduced from the maximum
principle of Pontryagin for systems with
delay. The two-point boundary value problem
associated with the differential-difference
equation in the synthesis of the control was
solved by use of a Newton~Raphson iteration
scheme. The results are expressed in a form
which can be easily compared to the well-
known results of the corresponding system
without delay.

Introduction

Recently, much interest and effort have
been spent in the attempt to answer questions
on the stability and control of linear
systems of the hereditary type; that is,
systems which are described by linear
differential-difference eguations whose
future behavior depends upon its past and
present states. Although these systems were
studied by Euler in 1750, no appreciable
application of them to physical situations
were discovered and employed before the first
quarter of the 20th century., Physical
systems which contain delays occur in such
fields of science as biochemistry, economics,
traffic flow, control theory, and so forth.

For example, in the remote control of distance
space vehicles, the communication delay can
adversely affect the stability of the system.
Time delays in engine response of large jet
transports can seriously affect the handling
qualities of the aircraft.

Many questions concerning the stability
of these systems have been answered by
Bellman (1953), Pontryagin (1962), Bellman
and Cooke (1963), Krasovskii (1963),
Kashiwagi and Flugge-Lotz (1967), Halanay
(1966), and Kashiwagi and Shaughnessy (1967),
Just to name a few. Questions concerning the
optimal control and the controllability of
systems containing delays have been partially
answered as well. Khratishveli (1961) has
extended Pontryagin's maximum principle to
systems described by differential-~difference
equations. Balakirev (1962) has applied the
extended maximum principle to a particular
linear system with delay to determine the
switching line. Chyung and Lee (1965) have
considered the time optimal problem for the
case of a general controller restraint set.
Ofuztorell (1966) has considered the control
of delay systems in general, and in particu-
lar, has extended the Neustadt method for
control synthesis to the system with delay.
Many questions concerning the time optimal
control of linear systems with delay remain
to be answered. The purpose of this paper is
to examine in some detail the basic character-
isties of a particular linesr system con-
taining & delay - namely, a second-order sys-
tem free of friction, but which contains a
time delay in its position feedback. Because
of the well-developed theory and application
of this problem without delay, many important
analogies and differences are discussed.
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Description of the System and
the Solution Trajectories

The mathematical model considered here
has the form

11\V4

x(t)

Ax(%) + Bx(t - 8) + Cu(t) (t=2o0)
o) (1)

WA

x(t) = g(t) (-8 <t
where "A, B, and ( are constant matrices,
and u{t) is the conmtrol function which is
bounded by the inequality ‘u(t)l <1.

The solution of equations (1) for the
state trajectory in terms of the control
function 1is given as

x2(t) = K(+)g(0) + J’“O K(t - 7 - 0)Ba(r)dr
-8

+\/mz K(t = v)Cu{r)dv (2)

where X(t) is the fundemental matrix for the
differential-difference equation given by
equations (1). The fundamental matrix X(t)
satisfies the following differential-
difference equation ‘and properties:

K(t) = AK(t) + BK(t - 8)
K(t) =0, £t <0 (3)
k(o) = I
In this paper, one of the simplest examples is
considered; that is, the case for -w
o 1 o 0 0
A= ’ B = H C=
0 0 1l 0 1

(%)
at2 + bt + ¢
a(t) =
2at + b

The initial function @(t) was assumed to be
quadratic in time. This choice makes it pos-
sible to represent many functions through the
proper choice of the constants a, b, and c.

For this system, the elements of the
fundamental matrix K(t) are

2n
kpqp () = kpp(t) = Mo (q)m L énn?)
n=0
N(t) t - 18 ontl
k() = kg (¢ +0) = g (~-)® (_@n%%_'__

(5)

where N(t) = [%] meaning the largest integer

less than or equal to E. The fundamental

6
matrix K(t) for the system behaves somewhat
like the fundamental matrix @(t) for the
system without delay. It can be seen from
figures 1 and 2 that for small values of the
delay (in this case 8 < 0.1), K(t) and (%)
are very nearly the same. However, for large
delsys (0 > 0.1) striking differences ocecur
between K(t) and @{t). The most obvious of
the differences is that the magnitudes of the
elements of K(t) increases rapidly with time.

If the results of equations (4) and (5)
are substituted into equation (2), the fol-
lowing elements of the state vector x(t)
result:

x (t) = (a6 - 1o + ¢ + 2a)k | (t + ©) W

- 2akll(t +20) + (b - Eae)klz(t + 8)

+ I {u(t),%}

x,(%) = ~(a6° - bO + ¢ + 2a)k ,(t)

+ 2ak12(t +8) + (b -~ 2a9)kll(t + 8)

+ I, E}(t),%] (%)

where

t
I, {?(t),%] a‘]ﬁo u(T)klg(t - T)dr

t
1 [u(t),tJ Efo u(r)kyy (6 = T)ar

A1) that is needed to reduce the expressions
given by equations (6) to a completely alge-
braic form is the integration of the integrals

Il and I2. These expressions can be inte=-

grated immediately, once the optimal control
function u(t) is determined.

(7)



The Time Optimal Control ¥Function
and Tts Synthesis

The time optimal control function for the
system given by equations (1) can be obtained
from the extended maximum principle of
Pontryagin for systems with delays. According
to this principle, the optimal value of wu(t)
is that value which maximizes the Hamiltonian

2

B [f(6),x(6),x(t - 0),m(t] =T ¥, (£)%(¢)
i=1

(8)

where the elements of the adjoint vector 31:_(1-,)

are determined from the differential-difference
equations for 0S+t<T -6 as

b0 = - 52 [(e),x(8) (s - 0),u(s)]

- TX§H£ [i(t +0),x(t + 8),x(t),ult + o)
i

(1=1,2) (9)

and for T -0 St ST as

10 = - 52y [0 (s - 0]
(1=1,2) (10)

For the system given by equations (1) and (k4),
these equations can be rewritten as

¥y(8) = -Au(t) - Byt + o)
(0€£t<T ~ 8)
(e) = -any(t)

(r-8<t<T

(11)

(12)

where A' and B' are the transposes of the
coefficient matrices given in equations (4),
gnd T 1is the optimal time. The value of
u(t) which makes the Hamiltonian as given by
equation (8) maximum subject to the constant

fu(e)] €1 is

u(t) = sgafv,(t) (13)

where \llz(t) can be obtained from the solu-
tion of equations (11) and (12). The solution
for ¥(t) is

¥(t) = KT - £)y(T) (0s+ET (1)

The resemblence of this result to the value of
the adjoint vector for systems with no delay
is clear.

Substitution of V¥, (t) as determined
from equation (14) into“the above expression
for the optimal control gives

u(t) = sgnﬂf2(T8 sgn[_l-{ll(T - t) + aklE(T - tﬂ
(15)

where o = Illl(T) WQ(T). This form for wu(t)

shows that both components of ¥(T) need
not be known; instead, all that is needed is

the ratio « and the value of sgnﬁrz('l‘)].

The fact that the optimal control function is
of the bang~bang type allows an evaluation

of the integral functions Il and 12 as

N
I, El('b),t] = sgn@2(0+ﬂ [(—l)m -k (t +0)

= L +9)
+2 g (-1)7 5y (6 - t

Lo

sgn |V, (Oﬂ [klg(t)

m
2] (-1)Pipp(t - tp>]

p=1

+

The value of m occurring in the above
expression is the number of switches required
to control the system, and tp is the pth

switching time as determined from the pth root
of the equation

kg (T = ) + ok, (T - %) =0 (1D

where O<tl<t <. <<t < T

. <.
2 he) P+l
It can be seen from equation (17) that the
value T - ¢ is a function of « only and
not of T.



The values of T and o which serve to
drive the perturbed state to the origin in
time T by use of a bang-bang control func-
tion can be obtained as the unique solution
for T and o of the set of equations

0

x, (T,a)
(e (28)
0

XQ(T;Q)

Since the partial derivatives of xl(T,a) and
%(T,a) with respect to T and « can be

computed analytically, the Newton-Raphson
scheme of solving for the root of a system of
equations can be used in equations (18), once
approximate values for T and o are given.
Optimal trajectories for several wvalues of
delay are shown in figure 3. The initial
function for this exawple was taken as a
linear function of time (eas. (%)) with

b =c=2.0. In addition to the obvious dif-
ferences in trajectory chdracteristics, there
is also an increase in the value of the opti-
mal time required to control the system with
increasing values of the delay.

Optimal Switching Curve and
Limit Cycle

An optimal switching curve can be con-
structed numerically for the system with delay.
In the analysis, the term optimal switching
curve will denote the curve that separates
the parts of the trajectory for which u = +1
from those for which u = -1 for a particular
family of initial functions. This curve
reduces to the ordinary optimal switching
curve in the case of vanishing small delay
values.

There are certain points on the switching
curve which will be referred to as cusp points.
For the system with no delay these points
correspond to the intersection of the
switching curve with the x; axis. Initial
states with these points as coordinates can
be driven to the origin in the time required
for a particular number of consecutive
switches of the control function. The value
of o corresponding to these initial states
are o = +to Or - Or equivalently
\trQ(T) = 0. The corresponding value of T is
a particular root of the equation ¢12(T) = 0.
In the case of systems with delay, the cusp
points do not necessarily occur on the x
axis and the value of T for the synthesis is

given by a particular root of the equation
k15(T) = 0. For the family of inmitial func-
tions given in equations (4), the value of
x1(0) and xp(0) are ¢ and b, respec-
tively. This means that if T,., satisfying
klz(Tr) = 0, 1s substituted into equations (6)
with x(Tp) = %(T) = 0, the resulting
values of ¢ and b -are the coordinates of
the rth cusp point. These coordinates
denoted by xl’r and x2,r’ respectively,
are N
ekl?_(Tr + 8)

2
1+ af” - 2ajl + NG R
+
k(T +8
2
Ky (Tr + 8) kll(Tr + 28)
+ 9)

X1,r

2 "Xk, (T
k), (T, + 0) 11y

1

kll Tr

(-1)* (19)

+

+ 0

+

r-l
P
2 p;l (-1) kll(Tr - Tp + 8)

klg(Tz_ + 8)

210~ (E. T Oy
k(T + 9

!

X,
2,r

J
where Tr is the rth root of the equation
le(T)=O, and 0<Ty <T,<...<T <
Tr+l <. The analytical determination
of the coordinates of these points is sig-
nificant to the construction of the

switching curve since much work is required
to locate them numerically.

s e

An example of the switching curve associ-
ated with a system whose initial disturbance
function is linear in time (a =0, b = 2.0
in G(t) is given for © = 0 and 0.3 in fig-
ure 4. Closely associated with the switching
curve is the limit cycle for the system. The
curve is symmetric with respect to the origin
and its equation for x2(t) <0 is

xl(t)' (B - l)kll(t +8) -1

(20)

1}

xy(t) = ~(B - 1)k, (t)

where B 1is the limit of the sequence
whose rth element is

&y



Tr~1
+2 _ (-1)Pkll(rrr - eﬂ (21)

P

The 1imit cycle 1s a closed curve in state
space which separates the space into two
regions. Disturbed states interior to this
curve can be controlled with the class of
time optimal control functions used here.
Disturbed states exterior to the curve cannot
be controlled with these control functions.
Disturbed states which lie on the curve remain
on the curve indefinitely. An example of how
the 1imit cycle of the system described by
equations (20) varies with increasing values
of the delay is shown in figure 5 for the case
of a = 0. As shown, the effect of increasing
the magnitude of the delay is to substantially
reduce the region .of state space which can be
controlled optimally. The extreme cases for
the 1imit cycles are a circle whose radius
becomes infinite as 6§ approaches zero (the
entire state space controllable) and the x
axls between £1 as © approachés infinity.

Comments on an Approximation

An gpproximation that has been used in
the past to study systems of the hereditsry
type with small delays is

x(t - 0) T z(t) - 8x(%) (22)
which represents the first two terms of a
Taylor's series expansion of x(t - 0). This
approximation reduces the hereditary system
given by equations (1) to an ordinary linear
system containing negative friction which is
described by the equations

x(t) = Ax(t) + B u(t)
° e (25)
x(0) = x
where
0 1 0 e
A = B B = , and X =
°© laa e o 1 I
(2k)

An indirect and simple method of com-
paring the results of this approximation to
the exact analysis just discussed is through
the fundamental matrices of the two systems.
Shovn in figure 6 are the elements of the
matrix, plotted versus time for exact calcu-
lations from equations (1) and approximate
calculations from equations (23) and (2L).
The figure indicates relatively good agree~
ment between the elements of the two matrices
for small delays (8 < 0.1), but sizable dif-
ferences for larger values of the delay. This
implies that the spproximation should give
reasonable results for systems with small
delays compared to the control time.

Concluding Remarks

A time optimal control study of a par-
ticular linear system containing a delay in
its feedback position has been conducted. It
was found that the optimal control function
is the bang-bang type whether or not a delay
is present; however, the times at which the
control function switches sign and the optimal
time for control are dependent upon the size
of the delay present in the system. For the
cases considered here, the control time
increased monotonically with increasing values
of the delay.

It was found that the switching curve for
the system with sizable values of delay dif-
fered considerably from the switching curve of
the corresponding system without delay. In
fact, the switching curve for the system with
delay attenuates along the x; axis. For
large values of delay it was found that a limit
cycle exists which substantially reduces the
region of state space which can be controlled
optimally.

The analysis further indicated that the
approximation of the term containing the
delay by the first few terms of a Taylor's
series comparison can be useful in cases for
which the delay is small compared to the con-
trol time, but should be abandoned for large
values of the delay.
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Figure 5.- Effect of increasing delay on the limit eycle.
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