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-^	 OXYGEN•RECLAMIATION FROM CARBON DIOXI t-	 NG A SOLID OXIDE ELECTROLYTE

Joseph Weissbart; Ph.D., Wilson Smart, Ph.D., and Theodore Wydeven, Ph.D.

Biotechnology Division, Ames Research Center, NASA

the presence of small amounts of water vapor
introduced into the carbon dioxide feed gas to

act as a catalyst for the cathode reaction (5).

Table 1 shows the test results of a long-

duration electrolysis experiment using a 1-amp,

TABLE 1. PERFORMANCE OF I-AMP ELECTROLYZER WITH GLASS CERAMIC SEAL DURING
1128-HR LIFE TEST

Tim.
hr

ToW.,
'C

CO2 flow,
al/min

Cell voltages,
V

Cell resistances.c

ohms
C.E.02,

t

No.	 1 No. 2 No.	 1 No. 2

0 857 140 3.80 3.5S 5.25 4.50 98.5
2.5 8 1..7 140 4.05 3.69 9.6d 98.s

29.2 84i 140 4.3S 3.9: --- --- 94.5
92 845 140 4.59 4.23

(
6.88 6.00 95.0

94 858 130 4.35 4.01 6.39 5.65 99.0
9S 858 63 4.36 4.03 --- --- 97.5
12s 8S8 51 --- 4.08 --- --- 91.6
125.5 858 77 --- 4.10 --- --- 93.7
191 --- 75 4.66 4.3: --- --- 94.7
263 --- 71 4.80 4.42 --- --- 96.3
294 --- 83 9.44d --- --- 98.7
456 858 87 S.18 1	 4.70 8.0 7.1 99.5
600 858 80 S.36 4.81 --- --- 97.4
797 858 78 I0.08d --- --- %. 7 

1011 858 73 5.59 4.84 8.6 7.2 96.1
1128 857 1	 80 1	 6.94 5.50

1

I	 11.0 1	 8.4 97.5

"Area of each electrode - 5 cm*, ; thickness of each disk = I.IS aim;
electrolysis current . 500 IRA per cell. 	 `

bThe resistance of the leads to each cell was approximately 1.5 ohms
resulting in a voltage drop of 0.75 V per cell or 1.50 V for the two

tells in series. These values have not been subtracted from the voltages

given in the table.

c In addition to the 1.5 ohms per cell of (b), the leads to the impe-
dance bridge add 0.3 ohm. Thus, 1.8 ohms per cell or 3.3 ohms for the

two cells in series should be subtracted from the resistance shown in the

table.	 V

dValue for both cells in series.

two-disk CO 2 electrolyzer. During the test, care
bon dioxide saturated with water vapor at room
temperature (-25 0C) was fed into the quartz enve-
lope (Figure 1) and oxygen was generated at the
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Recently, Foster (1) reviewed some of the

techniques which are being considered for reclaim-
ing oxygen from expired carbon dioxide during pro-

longed space missions. One of the more promising
concepts reviewed was the high-temperature elec-

trolysis of carbon dioxide using a solid oxide
electrolyte.

Some of the inherent advantages in using the

solid oxide electrolyte system for oxygen recovery
follow. Since only oxide ions can migrate through

the solid electrolyte in an electric field, the

separation of oxygen from the carbon dioxide in a
sealed cell is excellent. No liquids are involved

in the solid electrolyte system and therefore the
problem of gas-liquid phase separation at zero-G
is not encountered. Unlike fused salt electro-

lytes (2), the solid electrolyte is noncorrosive
and therefore the number of materials that can be

used for cell construction is less limited. The
solid electrolyte system can be used continuously
for the electrolysis of either carbon dioxide or
water vapor or a mixture of the two gases.

The recent progress (3,4) made in the appli-
cation of the solid electrolyte concept toward the
development of an oxygen generator for spike will
be presented. Progress has been made in both the

fabrication and extended operational performance
of carbon dioxide electrolyzers utilizing disk-
shaped solid electrolytes. Advances which have

been made in the technology of electrolyte fabri-
cation, in the formulation and application of gas-
tight high-temperature sealants, and in electrode
preparation will be discussed.
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Details of electrolyte fabrication, electrode

application and sealant preparation can be found
elsewhere (3,4).
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The most serious disadvantage in using a

solid oxide electrolyte system for the electroly-
sis of carbon dioxide is that a high temperature
(-1000 0C) is generally required to maintain a
high Faradaic :fficiency for oxygen generation
(>950). Iligh-temperature operation poses problems

in terms of materials for sealants and cell struc-
tures, power for maintaining the high temperature,
increased cell weight and volume required for
insulation, and reliability. Therefore, it is
desirable to operate at lower temperatures if a
high Faradaic efficiency can be maintained and

electrolysis power requirements are not excessive
because of higher cell resistances at lower
temperatures.

In this research we have been able to oper-

ate at a high oxygen Faradaic efficiency below
1000°C. Experiments were normally condlicted near
850 *C at current efficiencies approaching 100%.

The ability to achieve high Faradaic efficiencies
at these lower temperatures was due primarily to
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anodes located in the interior of the lollipop.

The electrolyte composition for this experiment
was (Zr02)'0 , 85(CaO)0 , 15 and the sealant was mag-
,I,_sium aluminum . silicate. The current density
was maintained at 100 mA/cm 2 for a total current

of 500 mA/.cell. The two cells were connected
electrically in series. It is apparent from

table 1 that the oxygen current efficiency
remained near 100% although the cell resistance
increased with decreasing CO 2 flow rate. This

suggested that the cathodes were starved for CO2

as a result of the large volume of the quartz
envelope and the relatively low gas-flow rate.

Therefore, in subsequent experiments carbon diox-
ide was fed to the inside of the lollipop and the

interior electrodes were made the cathodes.

After termination of the 1128-hour life test

the 1-amp battery was disassembled and examined.

Photomicrographs revealed that the sealant had
Penetrated the electrolyte and cell body. The
seal areas of the disks were greatly weakened,

indicating that the magnesium aluminum silicate
sealant would be unsuitable for long-term reli-

able operation even though the sealant withstood
1128 hr of operation.

Further experiments were conducted with
another 1-amp unit containing a gold metal seal

instead of a magnesium aluminum glass-ceramic
seal; in addition, the .arbon dioxide was fed to
the inner chamber of the lollipop and not into the

quartz envelope. The performance of this unit

during a 2016-hour test is summarized in table 2.

'I'ABLI. 2. PERFORMANCE OF 1-AMP ELECTROLYZER WITH PRECIOUS METAL SEAL
WRING 2016-HR LIFE TEST

Tine,
hr

Temp.,
'C

CO2 flow,
Wain

V

Cell voltages .b C.E,OZ.

No.  o.

0 SS3 24 3.40 3.17 100
17 BS3 16.7 3.13 2.96 97.6
18 flS3 21.8 3.08 2.91 97.6
24 853 20.5 3.10 2.94 96.S
48 853 22.9 3.21 2.94 99.1

IRS RS3 21.6 3.21 3.00 96.0
11 8S2 20.5 3.23 3.04 97.9
SSO 857 19.9 3.29 3.09 96.6

11101 850 20,6 3.43 3.23 97.4
1362 849 19.3 3.61 3.39 94,7
14.36 , 853 19.6 3.49 3.25 94.2
1436 d 8S2 19.7 3.SS 3.31 96.3
1584 RS2 19.f, 3.58 3.29 97.S
20u, 852 19.7 3.74 3.39 97.8

a Area of each electrode - S cat ; thickness of
disks: No. 1 = 1.3 mm, No. 2 = 1.1 mm; electrolysis
current = 500 MA per cell.

I'The lead resistance of approximately 1.5 ohms
gives a voltage drop of 0.75 V per cell which has not
beensubtracted from the values shown here.

cThe unit was shut down after 1436 hr of operation
because of a planned interruption in laboratory power.

dAfter being off for five days, the unit was
placed back in operation.

The oxygen Faradaic efficiency was again near
100'., but unlike the previous run the applied

voltage did not increase with time at constant
current. No visible degradation of this unit was
apparent at the completion of the extended test

and the unit remained in working condition.

It is of interest to determine what portion
of the total applied cell voltage could be attrib-
uted to IR drops or ohmic losses, polarization and
theoretical cell voltage. This was done for cell
No. 1, table 2, after 18 hr of operation. The
breakdown in the voltage is as follows:

IR drops _ 1.15 V, polarization = 0.28 V, and

theoretical cell voltage = 0.90 V. It is appar-

ent from the foregoing that ohmic losses account
for most of the voltage higher than theoretical
in the cell. Ohmic losses can be reduced signifi-

cantly by reducing the electrolyte thickness. No
emphasis was placed on fabricating thin electro-

lytes in this work.

Based on the results of the extended tests,

the following conservative design parameters for

a one-man prototype CO 2 electrolyzer seem reason-

able at the present time: operating temperature,

8SO eC; current density, 100 mA/cm 2 ; 0 2 Faradaic

efficiency, -100%, and an electrolysis power

efficiency, -SO%.
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