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FOUR.IER TRANS i' ORM REPRESENTATION OF AN
IDEAL LENS IN COHERENT OPTICAL SYSTEMS

Gerald J. Grebowsky

ABSTRACT

This document presents a mathematical analysis of the approximations re-
quired to obtain the Fourier transform representation of an ideal lens. An at-
tempt is made throughout the; paper to demonstrate the physical significance of
the approximations and the variations from ideal results produced by neglected
terms in the mathematical formulation. The approximations involved are con-
sidered in terms of the output signals in optical spectrum analyzer, optical im-
aging, and optical correla or systems.
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FOURIER TRANSFORM REPRESENTATION OF AN

IDEAL LENS IN COHERENT OPTICAL SYSTEMS

INTRODUCTION
In recent years there has been a growing interest in the application of optical imaging tech-

.	 niques for the purpose of processing data signals. These efforts are largely based on the interpre-
tation of .optical imaging systems as spatial filters. By introducing Fourier transform methods
the relationbetween an object and its image has the same form as the relation between the input
and output signals of an electrical system. Comparing the transform of the object and image, the
imaging process (unity, magnification is assumed here) can be described by the expression:

1 (,, x , ,,, 
y )	

r (.,
x
 , ;, 

Y ) ° (``'x' ,,y )

Image spectrum = Transfer function x Object spectrum

This expression has the same form as that for an electrical network except that the spectrums are
two-dimensional. Since optical objects and images are two-dimensional, a Fourier transform must
be taken with respect to each of the two spatial coordinates instead of the single time coordinate
which appears in electrical signals.

It is the transfer function relation given above which leads to the spatial filter interpretation of
optical imaging systems. The optical transfer function T(w x ,wd is a characteristic of the optical
elements in a system. An ideal imaging system would have a transfer function T(w x , wy ) which is
constant over the abject frequency range. In such an ideal system the image would be an exact
replica of the object. The corresponding electrical system would have a flat frequency response
over the bandwidth of the input signal.

It may appear at first thought that the transfer function notation is nothing more than an arbi-
trary selection of notation. However, in optical imaging systems, an object represented by a si-
nusoidal variation of light amplitude is imaged as a sinusoidal variation even in the presence of
aberrations' . Aberration effects result in reduced contrast and a lateral shift of the sinusoidal
image. Thus using sinusoidal test gratings it is possible, in theory, to experimentally determine
the transfer function for a given optical system. In general, the optical transfer function can have
complex values. The magnitude is related to the reduction in contrast, and the phase is relat d to
the lateral shift of the image. In an actual system the transfer function will not have constant ampli-
tude and phase as for the ideal imaging system described above.

Since the optical transfer function is determined by comparing the output image to the original
object input, introducing any additional element into the optical system to vary the amplitude and/or
phase transmission properties will change the optical transfer function. To utilize an optical system

y	
as a spatial filter in a fairly direct manner, it is necessary to know what amplitude and phase vari-
ations should be inserted and where they should be inserted. Otherwise, obtaining a particular
transfer function for a spatial filter application would be a trial and error propositno;:. This im-
plementation problem is solved for many cases of practical importance by the optical Fourier trans-
form representation which is discussed in this report.
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Within certain limitations the light amplitude distribution in the back focal plane of a lense is
proportional to the two--dimensional Fourier transform of the light amplitude distribution of a two-
dimensional object inserted on the front side of the lens. Within the range of validity for this opti-
cal Fourier transform representation, the transfer function is varied by a multiplicative factor
represented by the amplitude and phase transmission properties of an element inserted into the
back focal plane of the lens. For example, to set the transfer function equal to zero for a particu-
lar frequency component, the light passing through the corresponding point in the back focal plane of
the lens is simply blocked. 	 s

The mathematical development of the optical Fourier transform representation presented in
this report is intended to clarify the limitations and interpretation of the Fourier transformu opera-
tion of a lens. The derivation is based on the Rayleigh-Sommerfeld diffraction formula anti optical
paths defined by geometrical ray tracing. As each limitation is introduced, an attempt is made to
describe the effects on the accuracy of the optical Fourier transform representation. Such detailed
consideration has been found lacking in available treatments 3 of the derivation and is the main pu ,-
pose for the development presented in this report.

FOCAL PROPERTIES OF A LENS

To derive the formula for a focussed diffraction pattern, we will define the properties of an
ideal lens. We will restrict our discussion to the case of an ideal lens and ignore the effects of
lens aberrations, and diffraction at the edge of the lens. We assume that these effects can be taken
into account by modifying our end result or by restricting the range of variables to a region in which
our ideal assumptions are valid within experimental accuracies.

Our definition of an ideal lens will be based on the geometrical focussing properties shown in
Figure 1. The properties assumed can be stated as follows:

1. The lens can be represented by a plane L perpendicular to the optical axis and all refrac-
tion takes place at this plane, This is the thin lens approximation which neglects the thick-
ness of the lens.

2. The rays passing through the point O (intersection of the optical axis and the lens plane f.)

are called principal rays and will not be deviated.
3. All incident rays parallel to a principal ray will be focussed to the point at which the prin-

cipal ray intersects the back focal plane F' . That is, the light reaching a point in the
back focal plane F' at a distance p = f tan g (f is the focal length-distance between the
planes L and F ) from the optical axis is contributed by a principal ray making an angle
e with the optical axis plus all rays parallel to this principal ray. 	 E

4. If we construct a plane P perpendicular to a bundle of parallel incident rays, the optical
path length will be the same along any of the parallel ray paths from P to the common
point of focus in F'.

For any set of parallel rays, Figure 1, represents the projection of the parallel rays onto
the plane through the optical axis and the principal ray as shown in Figure 2. In Figure 1 the
distance p and p, are measured from the optical axis in the plane of the figure. As shown in
Figure 2, these distances p and p, represent different quantities in the planes F and F'

2
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Figure ]—Ideal focussing of parallel rays.

F PLANE



3A. F' PLANE 3B. F PLANE

x

xI'Y1^
1

X1

respectively. The distance p in the back focal plane F' is the distance from the optical axis
to a point (x, y). In the plane F, p, is not the distance from the optical axis to a point (x i , y,)
1'1 is the projection of this distance onto the Taxis defined by the intersection of the plane V with
the plane through the optical axis and a point (x, y) in the plane F' . Since the orientation of the
P 1	 axis will depend on the point (x, y) being consideread in F', p, will be a function of x, y, x, ,
and y, whereas p depends only oil and y . The difference in meaning of p and p, also appears
when the algebraic sign is considered. In Figures 1 and 2, p is the distance from the optical axis
to the point of focus and is a positive quantity regardless of where the point is located. On the other
hand p i is a coordinate of the intersection of a ray with the F plane and we will use the sign con-
vention that p i is positive above the axis and negative below the axis when drawn as in Figure 1
(rays sloping down to the right). In reference to a point (x, y) in F' the positive p l axis will lie
in the quadrant opposite to that of the point (x, y) .

Y	 Y 

i

Figure 3—Geometry for p and p,.

Figure 3 shows the geometry of the various lines in planes F and F' and demonstrates the sign
convention for p l . From the geometry of Figure sA we find the relations:

	

x	 y

	

cos 0 = p	 sin	 - p

p = (x2 +y2)1/2

(1)
I

1
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From the geometry of Figure 3B we can determine p, for any point (x,, y,) as follows;

l	
x,	

`r+	 C'oQ? r	 ^.	 sill r	
yl	

r	
1X12	

y i2 1 2

I	 r cos,;	 - r cos ( l - /)	 r (cos / cos " + sin ; sin'x )

or v 1 	- 'x l cos / - y l sin .1

Substituting the relations for cos 	 and sin ' obtained from 3A we can rewrite the expression for
P, as

	

XX1 
yy

1 	_ XX 1_yY1
f ; r	 _	 1	

( 2+y2^1^2	
(2)

The dependence of p on x and y and of p, on x, y, x,, and y , is explicit in equations (1) and (2) respec-
tively. These results agree with our discussion in the last paragraph.

Figure 4—Geometry for optical path length.

We will now use Figure 4 to determine an expression for the optical path length from a point
(x 1 , y) in F to a point (x, y) in F ' . Figure 4 shows a principal ray AA ' and a representative
parallel ray (dotted). The plane P is perpendicular to the incident rays. Since we are neglecting

5
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the thickness of the lens in our discussion, the optical path length r for the principal ray AA will
be given by the geometrical length:.

i
x

From the geometry of Figure 4, Z is given by the expression

1
(f2 {,, 

Y)1 2

By similar triangles, we find that t 2 is given by

A 2	 f(if
-	

4r	 ' 2 T`
t	

,1

For the principal ray AA the optical path length from the plane P to Oo point A in the back focal
plane F is Z + 	 Using equations(4) and (5) this length is given at

	

df	 ^ 1 2 + cif	 f2 q / , 2 + d 

By the fourth of our assumptions for an ideal lens the optical path length from the plane P to
the focus point A ' is the same for all the rays parallel to the principal ray AA ' (note thatz, +Z,
does not depend on p, ). Therefore the expression found for t i

 +Z2 holds for every parallel ray
and the expression for the optics: path length r can be written as

f 2 +^, 2 +cif

	

r,1 + f, 2 +	 3	
(f2	 7 1/2 +	 3	 (6)

The term t3 remains to be determined and by comparison of the principal ray and the representa-
tive ray in Figure 4 it should be obvious that this term will not be the same for all parallel rays.
From the right triangle with Z 3 as a leg, t3 can be expressed as

3 - p1 sink'

(3)

(4)

(5)
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However, sin ^ --^^- —p--	 and the expression for e l can be rewritten as
( f2 + p2 i i to

(7)

Substituting for t3 in the expression for the optical path length r we obta ir

f2 f (If i	 ,2 f

".	

^,

8

	

l	 l )i^f2 f 	 I) I

We have previously derived expressions for p and p, as given by equations (1) and (2). S-w,Aitu-
ting for p and p, in equation (8) we obtain

f 2 t X2 + y 2 j cif ^ xx.^ -yyl

	

f2+ x2+ y2 1'2	 (9)

This expression gives the of tical path length from any point (x,, y,) in a plane F (a dista.ice d in
front of the lens) to a point (x, y) in the back focal plane F ' . To facilitate further discussion we
will write this expression as

r ^. R(x, y) - ax, - 12y,
	

(1a)

where:

R(x, y) -
f2+df+X2+y2

f 2 f x 2 +y2) 1/2:

X_
a _ (f

2 ,.,, ^.` 2
)I

f2 +X2 +yy2)V2

To summarize our results at this point, we can consider a point A in the plane F as shown in
Figure 5. Assuming that light is radiated in all directions from the point A, we will consider the
portion of light propagated in directions at an angle © with respect to the normal n to the -,,),( ,ne r .
The light rays representing these directions will form the surface of a cone of half angle 6 as
shown in Figure 5. For each of these rays a parallel principal ray can be drawn and each principal
ray will make an angle e with the optical axis. Thus for each ray at arr. angle a with respect to the
normal to F at the point A, we can apply the results derived above. That is, each .ray is focussed



to a point on the ring of radius p 	 f tan 0 where the corresponding principal ray intersects the
back focal plane u	 The optical path length from A to each point on the, ring is given by equation
(10). Since this holds for any point A, we can state the general focal properties of our ideal lens
as:

1. The light 'radiated from all points on 1{ in directions at an angle 0 with respect to the nor-
mal to F is focussr..d into a ring of radius p = f tan 0 in the back focal plane

2. The optical path length r from any point (x,, y t ) on the plane F to any point (x, y) in the
back focal plane F ' is given by equation (10).

In these statements the plane Y is a plane perpendicular to the optical axis at a distance d in front
of the lens.

Figure 5—Focussing of a cone of light.

Anticipating the derivations in the next section, the relation between p and 0 specified by the
first focal property above can also be expressed in terms of cose as

cos B =	
f	 =	 f	 —

(f2+p2)1/2	 f2 + X 2 +y2)1/2	 (11)

This expression can be derived from the geometry of the figures in this section or can be derived
from the equation in terms of tan0 by applying trigonometric identities.

8
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FOCUSSED DIFFRACTION PATTERN

Since we will consider only light distributions on plane surfaces, we can use the Rayleigh-
Sommerfeld diffraction formula (see Appendix). In rectangular coordinates this diffraction for-
mula has the form:

ik r 

[ik-A(x, y, z) 'I A' (x I , y,) ! c 	 r1 cast' dx i dyt
(12)

Figure 6—Relation between points (x, y, z) and (x^, y^) in diffraction formula.

This formula gives the complex light amplitude A (x, y, z) at any point in space (z > 0) due to a i
monochromatic coherent light. distribution A (xl , y,) given for every point (x l , y t ) in a plane F .

Referring to Figure 6, the terms in the diffraction formula a ^e defined as follows:

1. A (xl , y l )	 is the coinpl ox amplitude of monochromatic light given for all points (x l , Y,)
in a plane F located at = 0

2. A (x, y, z) is the complex amplitude of light prod:,ced by A (x,, y, ) at a point (x, y, z) in
space (z >_ 0) .



3. r is the distance from a point (x i , y i ) in plane Fi to the point (x, y, r)
4. o is the angle between r and n where r is directed from (x.; , yd to (x, Y. 1) and n is the

normal to the plane F at (x,, y, ) in the direction of the positive z axis. The term Cos 0
is usually referred to as the obliquity factor.

5. k = ,, where A is the wavelength of the monochromatic light.

In general each of the three vector components of the electromagnetic field representing the light
distribution must be determined by the diffraction formula. For our discussion we will consider
the light amplitude distribution as a scalar which requires only one equation 4. In practice this is
permissible if polarization affects can be neglected. Thus we will define the light amplitude such
that the square of its absolute magnitude gives the intensity which is a measurable quantity.

We can simplify the diffraction formula immediately by considering the relative magnitudes of
the terms inside the brackets.,

	

11	 2rt	 1

	

lik - rJ	 1	
_ 

r

For wavelengths X as long as 100 microns (far infrared) the first term is relatively large (500)
while for r larger than 1cm. the second term is less than one. For visible light X is much less
than 100 microns (0.4 to 0.7 microns) and k is of the order of 10 5 . Since our discussi-IA (as in
most cases in optics) will deal only with r greater than one centimeter, ther term is negligible
and can be dropped without any appreciable effect on accuracy. The diffraction formula equation
(12), can therefore be written as

ik r

A( x , y , Z) =	 A' ( x l , Y1) e r cosO dx l dy,	 (13)

where the constant factor ik has been taken outside the integral.

The obliquity factor cos 0 is a we ,ghting factor which accounts for the difference ir_ the amount
of light radiated in diff.aren.t directions. Since cos 0 has a maximum value of one at o equal to
zero, this factor has a maximum value of one for light contributions propagated normal to the signal
plane and drops off as the angle with respect to the surface normal increases. Referring to Figure
6, if we assume the light from a point (x,, y l ) contributing to the light at the point (x, y, z) travels
the straight line r, this line is a light ray at an angle 0 to the normal n . In the previous section,
we showed that through the focal property of an ideal lens this angle is a constant for all light con- ;-.

tributing to a point (x, Y) in the back focal plane and' that x, y and 0 are related by the expression
A

f
cosh 	 (f2 + x 2 + y 2 )112	 (11)

10 y^.
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In other words, an ideal lens focusses light of constant obliquity factor into a ring of radius
( X2 + y 2 ) 1,'2 specified for a given o by the above expression.
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Figure 7—Comparison of diffr gc)ion with and without focussing.

The significance of this focal effect can be seen by comparing the two diagrams in Fi&mre 7.
In 7A, the points A and B are sample points in the F plane and the point C and D are sample
points in a parallel plane at Z = d + f . If we consider the point C , we note that the paths AC and
BC have obliquity factors of cos 6, and cos 9 2 respectively. From this example it is obvious that

for a point such as C (or D) the obliquity factor will depend on the location of the contributing
point (x 1 , y 1 ) in F. Likewise if we consider the point A in F , we can note that the paths AC and
AD have obliquity factors of cos e l and e3 respectively. This indicates that the obliquity factor

11
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also depends on the location of the point (x, y, z) . Since determining the obliquity factor is in-
cluded in the derivation of the diffraction formula, we will give it here without proof for z " d ; f as
shown in 7A:

d + f
co y r

[(x- x1)" (y`y1 )2+((1+ f ) 2 1 t2	 `14)

This expression includes the coordinates of both the point (x,, y , ) in the source plane and the point
(x, y, z) at which the diffracted light amplitude is to be found. The expression for the general case
will have a z in place of (d + f) which was used for the special case of Figure 7A. In the diffrac-
tion formula the obliquity factor appears under the integral sign since x, and ,y, are the variables
of integration and these terms appear in the obliquity factor as given by equation (14).

Let us now consider the case of focussed diffraction as illustrated in 7B. In 7B only the rays
AC and BD of 7A are considered and as indicated by the angle B i , AC and BD are parallel rays.
The dotted portion of these rays indicates the path of light followed in 7A. Due to refraction by the
lens these paths are changed to those focussed to the point E. Now when we consider a point such as
E we find that the obliquity factor cos o , is the same for points A and B and therefore independent
of the coordinates (x,, y l ) of the point in F . If we consider any other point G in F we recall that
to contribute to a point G a ray must be parallel to the principal ray OG. Rays parallel to OG will
have an obliquity factor cos a different from cos o1 for the point E . Thus the obliquity factor
does depend on the location of the point (x, y) in the back focal plane. The obliquity factor for the
case of a focussed diffraction pattern is given by equation (11) as cos o = f 	i ^2 and does
not depend on the coordinates x 1 and y, .	 (f

2

 + x2 + y
Z 

)

Since the obliquity factor for the focussed diffraction pattern is independent of the integration
variables x a and y1 , this factor can be taken outside the integral and we can write equation (13)
as

-i f	 e'k
A(x, y) _ 

X( f2 +x2 + y 2 )1/2 	 (x1, y 1 )	r dx I dyi	 ( ),15,

where A(x, y) now represents the complex light amplitude at a point (x, y) in the back focal plane
of a l,ns.

To complete our discussion we will now consider the term r which was defined as the distance
from the contributing point to the point of interest. In Figure 6 this distance r is measured along
the straight line from (xl , y,) to (x, y, z)	 In Figure 7B, the light traveling from A to E does not	 }
follow a straight line due to refraction at the lens plane L. We can assume that the effects due to
the length of the refracted path are the same as traveling an equivalent distance in a straight line,
and the r in the diffraction formula can be interpreted as the optical path length which we determined

12
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in the previous section. Thus a kr represents the change in phase over an optical length r , and
1 is an attenuation factor which decreases the amplitude contribution as the optical path lengthr
increases.

Substituting the optical path length expression for r , as given by equations (9) and (10) the
equation ( 15) becomes

 ik(R(x,Y)-x
f	 A' (x2 ^ YI) c

(
f2+ x2+y

') 1 2 J f2 1 x2 y 2 + df -Xx " YY1	 ,

^f2
+X2 { y2), 2

(16)

The terms (f 2 + x2 + Y2)) /2 cancel and e' kR (x } Y) can be taken outside the integral to give

i2^t G axe %t^.+^y 1 /%^

-if	 A' ( X l , Y i ) 0
A x, y	 -	 e ikR(x,y)	 dx dy(	 )	

ff f 2 +x 2 +y 2 +df - xx - YY	
1 i

1

(17)

We can now introduce the new variables p and q defined as

	

a	 x
P	

_	
f2 + X 2 I.y2)1/2

13 _ Y

	

9 y /X,
	

(f2 +x2 +y2)1/2

and factor f2 + df from the denominator of the integral of equation (17) to obtain:

i
A' (X Y e

_i2rr(px I +qy )

	

ff

	 )
A(x, Y) - ^(f+ d) 

eik R (x, v) 	 y_y ) dx t dy
 

t
X ( x - X ,) + 

Y

1+	 f(f+d)

FOURIER TRANSFORM APPROXIMATION

We can now use 'he algebraic identity:

	

1	 1

	

M - 1 -	 N
1+_9

(18a)

(18b)

(19)

13



to obtain:

	

X(X- Xj)	 Y(Y- Y1)	

1 - 

1+	
f(f +d)

1	 f 	 + d)	 X(x - xl)	 Y(Y Y1)

Introducing this identity we can write egriation (19) as

^i	 C, X ,Y) ff 1^	 1	 A^ ( X 	e - i2r(Px1+^lY1)
 (IX dA(x, Y) _: ^( f + d) 	 ( + /)	 Y^ :	 a Y > 	 (20)

1 + X(x-X 1 ) + Y(Y-Y1)

We can rewrite equation (20) with an integral for each term in the bracket which gives

_ t ^	 -i2'R Px 1+'9Y1	 YA(x, Y)	 ^,(f +d) e ikR ( x ,Y)

ff
 A ( X I , y l ) e	 (	 ) dx l d 1

(21)

	

A' X , y	
E'-i27T(Px I+qY 1)

+	 1	 eikR(x,Y)

ff-
 ( 1	 1	 +d)	 dxi dylk(f +d) 
1+ X(X-X 1 ) + Y(Y Yi)

By restricting the maximum values (aperture limits) of x, v, x j , v j , the second integral of equation
(21) can be made negligible compared to the first since the denominator of the integrand can be made
large. This approximation will be discussed in more detail later; here we will simply assume that
it is possible to neglect the second integral.

The diffraction formula can then be written approximately as:

^LeikR(x,y)
A( x, 'Y) -	 ^,( f + d) F(P, q )	 (22)

where F (p,q) is the two-dimensional Fourier transform of A' (xl ,Y , ) :

ff	
'n	 9Y

F(p, q) 	 A/ (X1, yl, e^ i2 Px +( 1 	1) dx l dyl

14
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If we were to measure this light distribution, we would measure the intensity which is the square
of the magnitude of the complex amplitude A(x,y) . This intensity is given as:

I(x, y )	 A(x, y ) A* (x, y)	
Z

 [.^r d)^2 F( p. q ) F* ( p , q)

I ( x , y)

E F(p, q)1 2
or	 ^'	 ^[^(f4d)] 2

Thus the intensity in the back focal plane of a lens (within the limits to be determined for the ap-
proximation made) is, given by the square of the magnitude of the Fourier transform of the light ampli-
tude in the plane F .

If our aperture restrictions in the back focal plane limit the maximum values of x and y so that
the phase variations due to the exponential term in front of the integral in equation (22) can be con-
sidered constant, we can write

A(x, y) 
T 

K F(p, q)	 (24)

where K is a complex constant given by

_i etkR(x,y)

	

K	 \(f+d)

Thus within the range of x and y for which eikR(x,y)	 can be assumed constant (i. e. negligible
phase variation) the amplitude distribution in the back focal plane is proportional to the Fourier
transform of the light amplitude distribution in the plane F. This relationship requires tighter re-
strictions on x and y t'rian our previous approximation. In terms of spectrum analysis in the back
focal plane, this relation is not important since only intensity can be measured. However, in cas-
caded lens systems, the Fourier transform relation between amplitudes allows each pair of lenses
to be accounted for by a double Fourier transform operation. The advantages of such a relation will
be demonstrated in a later section.

FOURIER COMPONENTS (p, q) AND FOCAL PLANE COORDINATES. (x, Y)

In our previous discussions we have expressed the amplitude distribution A (x,y) in terms of
the Fourier transform of A' (xv y t ) (refer to equation (22)). However, the Fourier transform co-
ordinates are p and q which we defined by equations (18) as

x	 yP	 X(f2 +X2 +y2)1/2	 and	 q	 X(f2 +x 2 - y2)1/2	 (18)

i

i

(23)

Substituting for p and q in equation (22) we can obtain an expression for A (x,y) in terms of x

15



and y ; however, this result is somewhat complicated by the fact that p and q are each dependent
on both x and y . When the above expressions are substituted for p and t I , the optical Fourier
transform is given by

X	 y
F(p, q)
	

:-- F
\A(f2.j	 2.f. 	 (f2 q 2 .{ y2)1 2

(25)

ffA'

- ^2^^Mx^`(2 +x2+y 2)1 2 +YY	 (f2+X2 +y2 )'"2j(x,, y l )	 dX1 shy
a.

A more desirable relationship would exist if p were directly proportional to x and if q were directly
proportional to y . Then the light amplitude at a particular value of x would be related to a particular
value of p and a similar relation would exist between q and Y . As given by equation (18) p and x
(also q and y ) are not so simply related since p also depends on Y ( q also depends on x ). In a
later discussion the importance of a linear relation between the transform coordinates p ,q and the
spatial coordinates x, Y will be shown.

To obtain a linear relation between p and x let us consider the series expansion of equation (18a).

	

x	 x2 + y 2 	 3 (x2 y2)2

	

Pf	 —	
2f2	

^. 8	
f2

If we restrict our analysis to an area of the focal plane such that

X 2 + y2
1

2f2

we can neglect all but the first term in the brackets to obtain the approximation

P ^I	
f	 (26)

Similarly, we can obtain an approximation of q given by

= Tq 	 (27)
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Thus within a restricted area of the back focal plane the Fourier transform expression call
written as

x	 1	 - 127T(xx ^Af +yyIAf)	
y	

(28)

	

F(p, q)	 F(T.f ' ^,f !	 A (x l ^ y l ) e	 dx 1 d ,

•	 The coordinates x and y in the back focal plane are then scaled representations of the frequencies
p and q respectively. That is, light contributions corresponding to a spatial frequency p in the
X, direction appear at the coordinate x = Afp in the back focal plane (similarly, contributions of
spatial frequency (I in y, direction appear at y Xfq ).

The actual restriction to be imposed on x and y for the above approximation will depend on
how accurate a Fourier frequency value is required in a particular application. The error in the
approximate frequency of equation (26) and (27) as a fraction of the exact value given by equations
(18) is

(^X_f ) 	 1	 ( 1 x 2 + y2	 _ 1

	

f	 x	 \	 f 2	 )

i,2

29( f 2 +x2 +y2)1/2)	 ( )

We can let r 2 = x 2 + y2 (r is the radius of a circle in the x, y plane) and express r in terms of mul-
tiples of the focal length f as given by

r	 of
	

(30)

Substituting r2 = x2 + y2 = a2 0 ;n equation (29) we obtain

E 
	 (1 ta 2 ) 1/2 - 1
	

(31)

The curve of Figure 8 gives the percent error ( 100 Ef ) of the linear approximation of frequency
as a function of a . For a less than 0.14 the error will be less than 1 01b. Thus the linear
approximations

X
P = X 
	

(26)

q -
	

(2?)

are accurate within 1 % for values of x and y satisfying the restriction

(x2 + y 2)1/2	 = r < 0. 14f
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For accuracies better than 1To smaller values of r1 must be imposed as given by equat ion (31) and
Figure 8.

0	 0.02	 0.04	 0.06	 0.08	 0.10	 0.12	 0.14

r
a=f

Figure 8—Percent error in linear frequency approximation.

Since our approximation requires that we limit our consideration to the area within a circle of
radius rmax = 0 .14f (for accuracy within 191b), the maximum value of x 2 + yz is specified by;

( x 2 + y 2 )	 = r 2	 02f 2

	

max	 max

Squaring the approximate expressions for p and q [ equation (26) and (27) ] and adding we obtain

X2 + y2
P 2	 q2	 f I X 2	 (32)
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gmnx

(32)

,y

Applying the restrictions on x2 -1- y' to equation (32) we obtain

pz {
	 2	 .02z

`	 The maximum allowed value of p occurs when n = 0 and the maximum q occurs when p = 0 :

pmnx	
14	 for

.14
	 for

0 (.c', y	 0)

P	 0 (i. e. x	 0)

As an example, consider green light of wavelength X = 546 1 X 10' 8 cm . In this case the simplified
expressions for p and q are accurate within f% for frequencies in the range given by

( p 2 .+ q 2}1 ,2 s	 14	 14 
4610e >^: 2560 cycles/cm,

On the x axis (y = 0, q = 0) the maximum frequency will be

pmnx n 2560 cycles/cm.

On the y axis (x = 0, p = 0) the maximum frequency is likewise

gmax _ 2560 cycle/cm,

In practice the limitation of available techniques for controlling the input light distribution
A'(x,, y i )	 restrict maximum spatial frequencies to values below the 2560 cycles/ centimeter re-
striction iPe have imposed above. Therefore, the linear approximations of the frequency compo-
nents p and a (equation (26) and (27)1 are applicable for practical systems and equation (22) and



The accuracy of p an6 q used in equations (32) and (33) ar given by (18) is determined by equa-
tion (31) as shown in Figure 8 for values of a = ' . Thus for a given focal length f , the restriction
on the maximum value of r determines the accuracy of the linear approximation introduced here.
Of course, these equations also include the approximation assumed earlier in neglecting terms other
tDan the F (p, q) term. In the next section we will consider that approximation and we will determine
if the restriction x 2 + y2 `' 0,021'2 is also a sufficient restriction to assure the validity of neglecting
terms other than F (p,q)

APPROXIMATION LIMITS FOR THE FOU'RIER TRANSFORM REPRESENTATION

We will now return to the focused diffraction formula given by equation (20) as

_ 1e a kR^x,y>ff	 1	
A' x	

e-I2v({)xI +(ayi) dx dy I

 1 x ( x x l) +y ( y - y s^	 X20)

and consider the limitations required to obtain the Fourier transform approximation given by equa-
tion (22). To obtain the form of a Fourier transform of A' (x,, y,) , the bracketed term must be
approximated by o constant. This term can be assumed equal to one if we restrict the range of

X$ y, x 1 , and Y, to satisfy the inequality

-if+ d) _ « 1
1+

	

	 —
17C2 +yz (xxl + YY 1)

Referring hack to equation (21) this approximation corresponds to making the second integral neg-
ligible -,ompared ► o the first integral which has the form of a Fourier transform the complete
term inside the brackets of equation (20) is effectively a weighting factor which vari?s the contri-
bution from each point I (x,, y i ) to the point (x, y) . This factor represents the effect of the
obliquity factor and path length attenuation. It is usually assumed that these effects are negligible
and that the inequality condition is satisfied. In the following analysis we will attempt to present a
more detailed quantitative discussion of this approximation.

Neglecting the variable term when it satisfies the inequality condition given above is an approxi-
mation of the light amplitude contribution from each point (x i , Y 1 ) to a point (x, Y) . That is, the
contribution dA(x, y) at a point (7,., y) from an infinitesimal region dx l dy, about the point (x ,, Y,)
is given exactiy by

dA(x, Y) - K 1-f(f+ )	 A' (xt' YJ e-
i2'T(Pxi+gyl) dxl dy,

1+ 
x(x- X I) + y(y- yl

20



and applying the approximation of neglecting the variable term inside the bracket we obtain

(IA( x, y	 KA' ( xl yl) e- 127, (P' 1+qy 1) dx I dy 1 	 (34)

The total light amplitude A(x, y) at a point (x, y) is obtained by integrating over the range of x,
and y i . The integration of equation (34) will yield an approximation for the total light amplitude
A(x, y)	 at least as accurate as the worse case of equation (34). That is, the greatest possible
error would be given by the maximum value of the neglected term.

Thus to determine the limitations to be imposed, we will consider the maximL , ,, i-.^rror intro-
duced by neglecting the variable term to obtain equation (34). Denoting the error by the fraction
EA given by the ratio of the neglected term to the exact factor within the brackets of equation (20)
we obtain:

^2 + Y 2 - ( XX I "YYI)
EA =	 ( + )

To simplify our discussion we can express x, y, xl and y i in terms of polar coordinates
rl , and 0, , The relations belween these coordinates are given by the equations

(35)

r2 = x2 + y2

	

r 2	 =	 7( 2 +	 2

	

1	 1	 yl

	

r cos%
	 XI = r  COS(kl

	

y = r sin<k
	 y l = r l sin O,

Substicating in equation (35) we obtain

r 2 -r r l (cos0cosO 1 +Sin(kSin0l)
EA =	 f(f +d)	 (36)

Using the identity 	 cos (gip — 0 1 ) = cos o cos o, + sin o sin o,

r 2 - rr l cos (0 -01)
EA -	 f(f+d)

equation (36) can be rewritten as



The cosine term can take values between minus one and plus one. Since we are interested in
the maximum error, we will consider the case for cc-go — 01) = -1 . Equation (37) can be rewritten
for cosine equal to minus one as

1. 2 1, r r 1

EA	 f(f I )	 (38)

Figure 9—Diagram of conditions for maximum EA.

Figure 9 shows the relative positions of points (x 1 , y 1 ) and (x, y) for the case cos(O -- 0 1 ) = — 1 .

As shown by the figure, the maximum error defined by equation (38) applies to the light contribu-
tions from points (x 1 , y,) located on the line of intersection 0 1 T between the planes F and Q . The
plane Q is a plane containing the optical axis and the point (x, y) in the back focal plane F'. The
points (x l , y,) are further restricted to the portion of the line of intersection of F and Qwhich is
on the side of the optical axis opposite from the point (x, y) . From the geometry c f the figure it

22
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is clear that the angle m is equal ton •+• 0 1	 Thus ^ -- ^^ is equal to n and cosine
cosh = ,— I as required for the maximum FA given by equation (38). For any point in the li plane
which does not fall on the line o, T the cosine term will be greater than -1 and the value of F A will
be less than that given by equation (38).

Examination of equation (38) shows that the error EA increases as r and r, increase. There-
fore, to determine the maximum value of E  as a function of r and r, we need only to specify the
maximum values of r and rt . Conversely, if we are interested in restricting the value of EA to
be less than or equal to a specified value the maximum values of r and r, must satisfy equation (38)
for that particular value of E A .

In order to analyze the relation between maximum E A , r, and rj we must consider the inter-
dependence of the maximum values of r and rt due to the limitations of a finite lens aperture. In
our discussion, we will assume that diffraction effects at the _-na of the lens aperture are negligible.

F



Figure 10 shows the extreme rays which can pass through a lens aperture of radius R L to re;tcll the
points at the distance rm., from the optical axis. It should be apparent that any ray parallel to,
but above the upper extreme ray; or parallel to, but below the lower extreme ray will be outside
the lens aperture and will not pass through the lens. Thus any signal point outside the ray defined
by r, rI)ax in Figure 10 cannot contribute to both of the points +r max and --r+„,X . For example, if
the signal area extended upward beyond the rl max limit, the additional signal interval cannot con-
tribute to the spectral point at +r inax 

since the necessary light path will fall outside of the lens aper-
ture. Under these circumstances the amplitude at the spectral point at +r max will not correspond
to the entire signal but only to the interval below the + r 1 max limit. From this example it is ap-
pare ii that the r i max 

limit given by Figure 10 defines the maximum signal interval over which every
point contributes to the spectral points at ± r 	 .

Mix

The dashed lines in Figure 10 represent the extreme rays to a spectral point at a distance r
which is less that r

max . 
It is seen that the extreme rays for such a case define a maximum signal

interval longer than that obtained for r 
max . 

This means that the signal interval defined by r in» aX

increases as the spectral range of interest defined by rmar< decreases. Thus we see that for a
given maximum frequency (i.e. r max ) the maximum value of the signal interval r i max is limited
by the lens aperture.

F	 I FNS	
F'

f iguv a 11—Geometry for relation between r .. x and r ma x
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To derive an expression defining the relation between rmax and ri max	 we will use the geometry
of Figure 11. This figure represents the upper extreme ray and the principal ray contributing to
the spectral point at + r,,,ax . Since the extreme ray must be parallel to the principal ray, the angles
B are equal and we can apply the principles of similar triangles to obtain

	

r max	 rInrax	 RL

f	 -	 a	 V a+ d

From these relations we obtain two equations for a :

a	
Amax	

and a	 RL - d

	

C
rmnx^	 rmax

f	 f

Since the right hand sides of these equations must be equal, we obtain the result

r_	 max

Amax	 RL - d f	 (39)

A lens is usually specified by its F stop which is defined as

f
F	 2RL 	 (40)

Dividing both sides of equation. (39) by f we obtain

	

r imax	 RL	 d rmax

	

f	 - f - f f	 (41)

From equation (40) we find that RL - 1 and substituting into equation (41) we can write
f	 2F

Amax	 1	 d rmax

	

f	 2F - T f	 (42)

{

It is obvious from equation (42) as well as Figure 10 that rl max cannot be greater than the lens
aperture radius RL . Equation (42) defines the maximum allowed signal aperture radius r  max due
to the limitations of the lens aperture. In practice the size of the signal aperture is specified by
physical consideration or a desired size format. We can rearrange terms in equation (42) to define
the maximum spectral term rmax as
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1	 in OX

	

r mnx	 2V — __T_d	
(43)

T

Equation (43) defines the maximum allowable r for a given r max as determined by the restriction
a, of a lens aperture. By rearranging terms in equation (38) we can obtain a second expression speci-

fying the limitations on r„ax required for an allowed error F' A .

d \ 1/2

rmnx Y 1 rlmux	
9CA \ 

1" 
T^	 — 1	 (44)

2	 f	 +	
(( l
\ If1 /

rTo demonstrate the application of equation (43) and (44) we will consider the case for !̂ -VM, = 5
(e. g. for f = 100mm, r l = 20mm ). In Figure 12, we have plotted r wax as a function of f for the
specified input aperture, 	 r 1 max = 5

	 The curves labeled F = 1.4 and F 2 correspond to equa-
tion (43) for the specified values of F	 The curves labeled EA = 0.02, EA = 0.01 , and EA = 0.005
correspond to equation (44) for the specified values of EA . The F curves specify the upper limit
on rdue to the lens aperture and the E A curves specify the upper limit for a given accuracy of the
approximation. For a chosen value of f , the value of r'fax must be below both the F and rA curve
which apply to the particular system being considered.

For example, consider the case in which a lens with F = 2 is to be used and the maximum error
to be allowed is EA = 0.02. The greatest value allowed for f corresponds to the point A which is
the intersection of the F = 2 curve and the E A = 0.02 curve. The value of f = 0.5 wotild be selected
to obtain the value r ax = 0.1	 For any other value of the limit on r fax would be Tess than the
maximum at point A	 For f less than 0.5 the E A = 0.02 curve specifies a tighter limit on r max

f
while for f greater than 0, 5 the F = 2 curve limits r'fax Of course any combination of r Ifax and
corresponding to a pint below the curves is allowed; the curves only define the upper limit on and
for a given value of f .

The specification of a desired value of the maximum error EA is not readily determined in prac-
tice. Since the error in the contribution from (X 1 , y l ) varies from point to point, the total effect
Of the error can not be determined unless the integration of the exact expression given by equation
(20) can be evaluated. To circumvent this difficulty we will consider a more or less logical selec-
tion of parameters and determine the maximum E A specified by these parameters. The va'iue of
EA determined will then specify the maximum error in the approximation we are considering.

In Figure 12, the dashed line corresponding to r fax = 0. 14	 represents the limit determined in
the last sectio , for an accuracy of better than 1% in the linear relation between spectral frequency
and back focal plane coordinates. From our previous discussion of equation (38) we note that the
error EA decreases as f increases. Therefore, if we do not wish to lower the previous limit of
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0.1

I

is

r'"'x = 0.14	 , we can improve ( decrease) the error t' by using the largest possible value of it .f
Referring to Figure 12, we can note that for a lens with F = 2 , the maximum value of tl is 0.3
which is given by the intersection of the dashed line f 0. 14 4, lnd the F = 2 curve. As noted on
Figure 12, the value of EA at this point is 0.037 ( from equation (38) ). If we considered a lens with
F = 1,4 , Figure 12 shows that we can increase f to a value of 1. 1 and reduce the error to F.A

0.023. Thus we obtain the usual result that the lens of lower F provides the better characteristics
( lower F implies larger lens aperture for given focal length). In addition to having the larger error
EA the F = 2 lens restriction of f = 0,3 presents practical problems—the lens mount and input
aperture mount must be designed to allow for a small spacing (d = 3 cm for f = 10 cin) .

Figure 12—Limitation on maximum spectral term rmox/f•



In practice lower values of'"'– " x and T may be satisfactory. In such cases the error EA
would be less than the E A 0.023 determined here and higher F lenses ( smaller lenses) may be
used. Here we have considered an extreme case and determined what amounts to an extreme error
EA 0.023 (or 2.3 (,"h) . This extreme value of the error introduced by the Fourier transfor ►"n Wil-
proximation is quite reasonable and should be sufficient justification for using the transform ap-
proximation in most applications.

In the next sections wa will consider the phase of the light distribution in the back focal plane
F'	 It will be shown that selecting f ; 1 has advantages in reducing the 	 phase factors not as-
sociated with the Fourier transform. In Figure 12 the point corresponding to T 1 and " x.
0, 14 is shown to have an error value EA 0, 024 . Thus it is seen that for the extreme case con-
sidered in the discussion above reducing the value of f by one - tenth increases the error by 0.001.
Such a slight increase in the error E A is quite reasonable in terms of the advantage gained in the
phase approximation treated in the next section. In addition, since the location of a plane at a
value of f can never be completely accurate, the displace:tment from the F 1,4 curve allows a
safety margin of + 10% allowable error in the location specified by f ` 1 without exceeding the
limitations imposed by the lens aperture.

Thus we have shown how equations (38), (43), and (44) can be used to determine and/or specify
the parameter limits and the accuracy of the Fourier transform representation;

A(x, y) w ^(lf-f+ d) 
ff  

A$ (	 y ,
e
- ^n^^x^figvi) dxdy

	 / l 1!	 1 1	
l45)

In particular we have shown that for the maximum values 
rm

f x - 0, 14 and r'r- 5 , and the de-

sirable choice of 
d ^ 1 , the worse possible error in the amplitude values given by this equation is

2.4%. Since the term neglected in equation (20) is negative, the approximate amplitude given by
equation (45) will be higher than the exact values by no more than 2.4%.

FOURIER TRANSFORM REPRESENTATIO19 OF OPTICAL IMAGING

By limiting the area of consideration in the input plane

(Amax	 1

and in the back focal plane

(f—<.14),
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we have shown that the light amplitude distribution A(x, y) in the back focal plane of a Ions is given
with reasonable accuracy by

-i vikHwx,y

A(x, y )	 1'(la, q)	 (46)
where

E	
p	

17	 (l	 ^	 (47)

	

f2+ (if +x'2 { y 2	 f2, (If +r2
R ( x , y)	 (fz..j..x2 ,x,2)1 z	 (f2 } r2 12	 (48)

F ( p, (l)	 f f A' ( x t , y )	 dx, cly,
(4g)

As given by equation (49), F(p, q) is the two - dimensional Fourier transform of the light amplitude
listribution A' (x,, y, ) in a plane perpendicular . to the optical axis and at a distance ci in front of
the lens.

As pointed out in the discussion of equations (22), (23) s.nd (24), the phase term e"(x,y)
is of concern only when a second Yens is introduced to produce an image as shown in Figure 13.

t'

F	 L	 F	 L2	 F

I

9

S(x jo Y I )	 A(x,y)	 0 (X2, Y2)

I- d	 —•I^-- f t	 I.0 — d z— 1. f2 --^

Figure 13—Two lens optical imaging system.

'We are considering only conventional optical systems here. If holographic techniques are considered, the phase factor in equation (46)
would determine the form of the interference pattern produced by A(x, y) and a reference signal.
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To simplify our notation we introduce K defined as

and write equation (46) as

A(x, y) 
A K F(P, q)

in Figure 13, the light amplitude distribution A' (x l , y,) in the input plane F is given as S(xl

Using equation (49), (50), and (51), the light amplitude distribution A(x, y) in the plane F,

focal plane of lens L 1 ) is given as

A( x, y)	 K1 
ff S ( x , - Y1) 

e-12n(pxI+qy1) 
dxl dyI

where

	

x	 y
P	 ),f1	 q

-ie 
ikR 20x,y)

K1	
fl *dl

f 1 2 + 
d 1 f i 

+ r2
R1 (x ' y)	 (f 1

2 + r 2 1/2

Similarly, A(x, y) is the input signal to the lens L 2 , and the light distribution 0(x 2 , y 2 ) i

output plane F" (back focal plane L 2 ) can be written as

0('2'42)	 K 2 ff A(x, y)e_12zr(plx+qly) dxdy

where

I	 _	 x 2	 1 y2
P TT q hF
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-I
ikK 2 ( x ^'Y4'

K2	
(f2 , ^}^	 (58)

f 22 ' f 2 (1 2 4 r22

	

R2 (x2' y2 ) (f^ } 
1, 	

(59)
r

Substituting ( 52) into (56) we obtain an expression for the output image O(x 2 , y 2 ) in terms of
the input image S(x 1 1 YO

 ^ x *Pqy

O ( x 2' y2)	
K_2ff C-i2-Wx*ciO s) dxdy KI ff S(xi, Y1) z-i2 ( 	 I) dxt dyi (60)

We will assume that the function S(x,. Y ,) allows the order of integration to be reversed and
rewrite equation (60) as

O(x 2 , Y 2 )	 K2ff S ( X i , Y i ) dx i dyi 
ff

 K  c±
- i27r(px ^+si y r+plx+Gi'y 

dxdy	
61

F
(	 )

The integral within the brackets is complicated by one presence of the factor K i which contains an
exponential dependent upon x and y . If we limited the values of x and y ( i. e. r,, ,'  f ) so that the
phase variation in lei can be considered negligible, the K  factor can be taken outside the integrals
giving

0(x2, Y 2 ) `° K 2 K, ff s(x i , Yi) dx, dyi fff e i277 ( Px	 dxdy	
(62)

We now consider the integral within the buckets and substitute for p , q, p'and q' from equations
(53) and (57)

ffe-
 i277(px I +qy 1 +P'x+ qly

 ) dx dy -- f 
e- 127T IAf I +x 2Af 2) x dx f e-i277(y 

iA f i +y 2A f 2)y dx

Up to this point we have not mentioned the limits of integration. Due to the presence of aperture in
an optical system the signals exist only over a finite range of the aperture coordinates. However,
since the signals are zero outside this range (e. g. S(x 1 , y i ) = 0 outside the aperture in the F
plane) the contribution to the integral beyond the aperture limits will also be zero. Thus, we can

w	 take the limits of integration to be from -co to +a. These limits are in agreement with the Fourier
transform integrals.

{

i

7
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The Dirac delta function can be defined by the integral equation:

foo
^(X - a) 	 e-i2n{czr' rd ) 4.t

(64)

Comparing each of the integrals on the right side of (63) with the integral in equation (64) we find

-i2m(Px j +qy^+p x+q Oy)	 xl	 x2	 ^I j	

2f e,	 dxdy `° 8(Af l+Xf2)`^( 	+ Xf 2^
	

(65)

X 2 f1 6 X,1 + fI x 2 8 Y 1 + f1 Y 2

In the last step of equation (65) we have used the identity

s(ax) =	
lal 8(x)

Equation (65) is valid ovily if r and y range front - 00 to +co . In optical systems this is not the case
^r4ce the range of the coordinates x and y is limited as demonstrated in our previous discussion.

However, we assume (65) valid to simplify our discussion. Substituting equation (65) into equation
(62) we obtain

0(X,4 Y21	 K2 K 1 X2 
f 12 

ff S(XI,
 yl) 

8(X

^ + fl x2 S Y1 + l Y2 dxI dyl	 (66)

Now, we can make use of the sifting property of the Dirac delta function which is defined by

 8(x + a) dx = F(-a)

Applyi%ig this property of the delta function to equation (66) we obtain

0 (x 2 Y2) - K 2 K1 X2 f 1 2S(- I
 f 2 x 2 , - ii Y2	 (67)

In deriving equation (67) we assumed that K, was approximately constant. The factor K 2 is variable
only in phase as seen by referring to equation (58). Since only intensity is seen or measured, the
phase variations of K2 can be ignored and equation (67) can be interpreted as giving the .output image
0(x 2 , y 2 ) in terms of a proportionality factor (K 2 K, X 2 f i) multiplying the original input signal S
expressed in the new coordinates
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f t 	f1

f2 x2' - f2 y2

To clarify the significance of these new coordinates, let us consider the relation between

S(X,, Y1) - s( c1 x 2 , - f y2
2	 2	 (6$)

Since the two sides of relation (fi g ) correspond point for point, we find that (x 1 , y 1) and ( 'K 2 ' Y 2 )
coordinates are related by

f1	 f1

2 X 2	 .,r 1 	- T2 y 2	
(69)

Equation (69) represents the fact that a point of the signal which was originally at the coordinates
x1 and y 1 will be imaged to the point at

f 2 	f2
x 2	 -- - x 1	 and	 y2 = - ^ 2 y1

The magnification in an optical image is defined as the ratio of the imaged coordinate of a point to
the original coordinate

x2	 f2

Mx	
x1	 - f1

Y 2 	 f2

	

my = y1 = - f1	
(70)

Equations (70) were written separately although it is apparent that here the magnification is the
same in any direction. In some cases it i,s possible to obtain different magnifications in different
directions (e.g. cylindrical lens system). Equations (67) and (70) show that the output ;rage is
proportional to the input image with a change in scale. The minus sign which appears in equation:
(67) and (70) represents an inversion of the image.

In many applications, there is no requirement for a magnified image. In such cases, we could
use lenses of equal focal length f 1 = f 2 and obtain a magnification m = - 1

For the case f 1 = f 2 = f , equation (67) becomes

0 ( x2' Y 2)	 K2 K 1 X2 f2 S (-x2' y 2)	 (71)
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Thus, for equal focal length lenses the output image o(x 2 , Y 2 ) is proportional to an inverted re-
plica of the input signal.

It is for this case (f 1 = f 2 = f) ,';hat the optical imaging process can be described as cor,^
secutive Fourie,^ transforms. This can be shown by replacing f 2 by f in equation (57) and sub-
stituting for p' and q' in equation (56) to obtain

o(x2, Y2)	 K2ffA(x, y) e
i21(x2x/\f+Y2yAf)

dxdy
(72)

by replacing f 1 by f in equation (53) we find

P	 f	 q = f	 dx = X  dp	 dy = Xf dq (73)

Substituting (73) into equation (72) we obtain the result

G'( x 2 , Y 2 ,	 K2 X2 f2 ff A( x, Y) e- 07T(Px2+QV2) dpdq	 74(	 )

Using equations (51), (52), (71) and (74) we can express the two step process of optical imaging as

A( x , Y)	 - K 1 F (p, q)	 K1 ff S(xl, yl) e-i27T (px^+9Y') dx, dyl
(75)

o(x2, Y 2)	
_	 K 2 K 1 X 2 f 2 S('x 2 ,	 y 2 )	 - K 2 K 1 X2 f2 ff F(p, q) e

-i21T (Px 2 +qy 2 ) dpdq (76)

where

uY,
X

p	 ^ f
y

q

ikR l ( x ,Y)
-i a

ikR2(x2,Y2)
-i e

K1	 ^(f + d l K2	 f + d 2/

f2	 +	 fdl + r 2 f 2 + fd 2 + r22

R 1 ( x , Y)	 -	 (f2 {.x2 )1/2
((

R2 \x2' Y2)	 (f2 + x221,1/2

J4*

+g#

k	 :: r 2	 =	 x2 + Y 2 x22	 -	 x2 + Y22

The last expression in equation (76) assumes that the factor K1 can be considered constant in
phase over the range of the values p and q (i.e. x and y ).	 This approximation is the subject

3
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we are about to consider and here we are showing the advantages of the resulting expression. To
appreciate the significance of equations (75) and (76) let us consider the standard Fourier transform
equations using our notation

F(p, q)	
ff S(X,, yt) C-x27T(PXi+(ly1) dxidyi

(77)

ff * 27r ( ' l

y,.,	 PX +	
Y^

	) CJ)

S ( -x i' 4yi)	 ff

	

F(p, q) v_i"(PXi +qy1) (11)dq	 (79)

Equation (77) is usually referred to as the Fourier transform while equation (78) is the inverse
Fourier transform. Note that the exponent of equation (78) is positive and that of equation (79) is
negative. Since the optical transform produced by a lens has a negative exponent, the inverse trans-
form defined by equation (78) never appearo, in optical systems. The second lens in an optical system
such as that of Figure 13 produces a Fourier :transform of a Fourier transform as represented by
equation (79) . Note that the inversion (or change of sign of the coordinate) is introduced by the
second Fourier transform whereas an inverse transform would not invert the signal. Thus, com-
paring equations (75) and (76) with equation (77) and (79), we note that the optical imaging process
of two lenses is described by two successive Fourier transforms relations. Except for determining
the absolute amplitudes involved, the constants in front of the integrals of equations (75) and (76)
do not affect the form of the variations. In most cases only the relative amplitudes are of interest
and the constants are dropped.

The advantage of the Fourier transform representation described by equation (75) and (76) can
be shown by considering the introduction of a filter in the F'4--ne. If we know the transmission
characteristics of the filter, we can determine a function M(p, q) which represents the fraction of
incident light amplitude passed at each coordinate corresponding to the values of p and q. The
filtered output 0 f (x 2 , y 2 ) is then given by equation (76) if we replace F(p, q) by M(p, q) F(p, q)

O f (X2, y2) = I( 2 K 1 X 2 	` f M( p , q ) F(p, q) e-i21
(px2+qy2) dpaq	

(8o)

Thus, the specification of a filter for a particular application can be determined uniquely when the
Fourier transform representation is used.

We might note at this point that the Fourier transform represe,1tation of equations (75) and
y	 (76) require the use of lenses of equal focal length. The specification of a filter for the case of

unequal focal lengths is exactly the same; however, the Fourier tray l form relation of equation (76)
is modified by introducing a factor o f 1/f 2 ; : the exponent to account for the magnification.
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This additional f 1 /f 2 results in a magnified filtered image which contains the same information
as the filtered image of 0 2 , y 2 ) given by equation ( 80). The only difference (neglecting the phase
of K 2 ) is in the scale. Throughout the remaining part of this report we will consider the special
case of equal focal length lenses to simplify our analysis.

ELIMINATION OF UNDESIRABLE PHASE VARIATIONS

Now that we have seen the significance of the Fourier transform representation of optical
imaging, we will consider the approximation involved in the derivation of equation ( 76) . The actual
relation corresponding to equation ( 76) can be written as

o ( X 2 , Y2) = K 2 X2 
f 
2 ffK 1 F(P, q) 

e-i2n(Px2+qY2) dp 
dq

The term K 1 appearing in the integral was defined as

-ie 
ikRI(x,Y)

K1 -	 f + d 1
	

(82)

where

f2 + fd1 + r2

R 1 ( X , Y) -	 (f2 +x2)1/2	
(r2	 x 2 +y2)	

(83)

Comparing equations (81) and (76) it is apparent that equation (76) is valid only if the phase vari-
ation of K, can be neglected over the range of the integration variables p and q ( or x and y) .
We will now proceed to analyze this requirement.

For reasons that will become evident, we would like to express R 1 (x, y) in the form of:

R 1 ( X , Y) = ( f +d 1 ) + P ( f -d1) + Q 	 (84

= f(1+P+Q) + d 1 (1-P)

Equation ( 83) can be rewritten as

f2 + r2	 d1 f	
r	 r2 1/2
	 r2 -1/2

R1 ( X , Y) _ (
f2 + r 2 ) 1/2 + (f2 + r2^1/2 

_ f \1 + f2 1	 + d i (1 + f2)

-

 
 r/ ( 85)

 x
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Equating the coefficients of f and (1 1 in the final forms of equations (84) and (85) we obtain

 -12
P	 ( ^

211`

	

'
	

)1/21.2

1	 P + Q	 1^ fz

Solving for P and Q we obtain

l
-1/2

Py
r 2f22)

r2

r2 1I2 (-1/2	 1 ^-
\2f2

f2 ^	
.^.	 1 -^ 

r2
f2 )

	- 2 _.	 2 --	
z

/f2 

)1/2

Substituting for P and Q, equation (84) can be written

r2
1+	

z
R1 ( X a Y) - ( f + d l ) + (f - d,	 1	 i 	

.1, 2f	 2f

f2)

1/2

	
L( + f 2 ^	 (86)

The K, term given by equation (82) can be rewritten using equation (86)

ik(f+d1)	 2 2 1/2	 2	 2i 2	 1/2- 1]-ie	 ik(f-dl)[1-(1+r /f )-	 ]	 izkf[Ci +r 2 /2f )(i+r,f )-
K1

 Z.
>^(f dl )	 e	 e

(87)

The terms grouped within the first brackets of equation (87) are constant and therefore can be
taken out from under the integral sign in equation (81). The remaining exponentials in equation
(87) are phase factors which depend on the variables of integration. The exponential of the re-
maining terms must be limited so that the phase variations can be considered negligible.

Since we are going to consider restrictions on the value of r so that the phase terms can be
considered negligible, we can simplify the exponentials of equation (67) by expanding in power
series of (f2) and drop all but the first terms of the expansions. Expanding the exponent of the

	

-	 first exponential we obtain

eik(f-d1)[1-(1+r2/f2)-1/2]	 _ eik(f--dl)[1-{1-(r2/2f2)+3/8(r2/f2)2...

ik(f-dl)(r/f)2/2e
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Similarly, we expand the second exponential and obtain

i2kf[(1+r2/2f2)(1+r2/f2)-1/2_1] -
	

i2kf(-1+(1+r2/2f2){1-(r2/2f2)+3/B(r2/f2)2... 1]
e	 e	 1

_ eikf(r/f)4/4

Substituting these approximate terms in equation (87) we obtain

	

K 1 - T f -+dy-+d e	 e
-le	 ik(f-dl)(r/f)2/2	 kf(r/f)4/4

ik(f+d ^ )

(88)

For values of(f )less than our previous limit of 0. 14, td approximations in each of the phase terms
is accurate within 2% of its exact values. It shall be noted that neglecting terms in the exponentials
as we have done here is valid only since we are going to consider phase variations less than Ulle
cycle.

Since we are trying to eliminate the phase variations of K ! , equation (88) indicates that the
optimum choice of the distance d l equal to f eliminates the first phase term. Thus for the case
when d l is chosen equal to f, equation (88) can be reduced to

i 2k fl

Kl = `i2Xf J 
eikf( r/f)4/4	 for d 1

 = f

(89)

If we substitute equation (89) for K1 in equation (81) we obtain

-iK X f e i2kf

-	 2 -^--
 ffeikf(r/f)4/4 F(p, 9) e i2^

(Px2+gy2)dQ dq0(X2,Y2)

	 (90)

When the value of (f) is limited so that the phase factor appearing under the integral of equation (90)
can be neglected, the output image 0(X 2 , Y2 ) is given by the equation

	

ON' Y2 ) = K l K2 X 2 f2	 (PF, q) e i 
21( PX 2 +qy 2) 

cip dq	
(91)

V
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Y,

r

where
i2k I'

K 1	 aj 1.

Equation (91) is identical to equation (76) which we , have shown to be the desired form for the
Fourier transform representation of optical imaging.

To derive a specification for the maximum limit on ,`T) which allows the variable term in K1
to be neglected, we will consider the effect of the phase term for a particular F(p, q)

F( p , q)	 }(q) [A^ c-' (A) -+ B ("i (	 P') 1 S (p ± 
p o) 	 (92

y

I

Figure 14—Location of frequency terms in the spoctrum plane.

The locations of the frequency terms contained in equation (92) are diagrammed in Figure 14.
Since, by definition, the delta function 8(q) is equal to zero for q unequal to zero, equation (92)
represents the spectrum of a signal which varies only in one - dimension. That is, there are no
frequency components in the y direction; therefore, the signal is constant with respect to the y
coordinate. Rather than interpret equation (92) as the spectrum of a particular signal, we can
also assume that we are considering only three sample points of a more general spectrum. Since
there is nothing to single out the X direction in an optical system, our analysis will apply to a set
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of spectral points along any radial axis in the frequency plane as indicated by the r axis in Figuro
14. This is obvious if we consider the fact that we can arbitrarily select any orientation for our
x, y coordinate axes. It can also be shown that the terms which we will use to specify a maximum
limit on (-)also apply to the general case. We will, therefore, simply interpret the results for tht
special case of equation (92) as a general criteria for neglecting the undesired phase factor in
equation (90) .

Substituting for F(p, q) as given by equation (92) and applying the interpretation of our discus-
sion above we can sirnplify equations ( 90) and (91) to the forms:

K1eakf(xf()4/4[A0F(P)
	 fi(p' 

PO)	

(P+Po)^] -svPx dt^O(X2)^.	
J 	 (93)

^^"^^ - Kf [A O
 
^(p) 4 B 

18(p- p o) +8(P ^Po)}] 

a 12'TPx2 
dP

(94)

The new factor K in equation (93) and (94) is defined as

—iK 2 X f ei2kf

K --- 
2

— < —
	 (95)

The integral with respect to q was taken by applying the sifting property of the delta function 6 (q) .
The y 2 dependence has been dropped on the left side of equations (93) and ( 94) since the output
image varies only with respect to the x2 coordinate. The left side of equation (93) is underlined so
that we can identify the ensuing results of equation (93) and ( 94) throughout the remainder of our
discussion.

The first exponential in equation ( 93) can be rewritten using the definition p Tf and the
integration with respect to p is performed simply by applying the sifting property of the delta
function:

O(X2) = Kfeikf(XP)4/4 I A
0 

(P) + B t8(p+ PQ) + 8(p_ Po^JI e -i27rax 2 dp

T K [AO +B eikf(XBo)4/4 fei2nPOx2+e-i27TPpx2^
 2 	1	 11

0(X2) 
_ K[Ao + 

B eikf (XPO)4/4COs 
2 7r po x2 

J
	

(96)
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The result after integrating equation (94) is similar to equation (96) except for the exponential
which appears in equation (96):

O(x 2 )	 K[A,, ^ I3 cos 2 p,i x,
	 (97)

Equations (96) and (97) represent the amplitude distribution of the output image produced by the
frequency plane distribution I{(p, q) given by equation (92). Equation (96 ) represent the output

Y	 0(x2)	 when the phase factor is considered quid equation (97) represent the output 0(x 2 ) when the
phase factor is neglected, Comparing equation (96) and (97), a criteria for neglecting the phase
factor is still' not very apparent since the significance of the exponential is not very clear.

If we consider the observation of the output image, we must deal with the intensity rather than
the amplitude as given by equations (96) and (97). The intensities are given by the relations

T(x2^ !	 0( x 2) °* ( x z) I0('`2)i2
	

(98)

I(x 2 ) 0(x 2 ) o* ( x 2 ) ^0(x2)y z	 (99)

The starred terms in equation (98) and (99) represent the complex conjugate of the unstarred terms.
Using equations (96) and (97) in equations (98) and (99) respectively, we obtain

kf
I ( x 2 ^ 	 jK1 2 [AQ +B2 COS 2 27, p o x 2 + 2A 0 B IOS 4 (,Ap O ) 4 cos 27T po x2^ (100))

T(x 2 ) - JKJ 2 [A2 4B2cos22npoxz+2AoBcos271p0xz1	 (101)

Now comparing equation (100) and (101), we find that the phase factor introduces a cosine factor
which attenuates the cos 217 po x2 component in the observed image. In the general case, the ampli-
tude B of any one component will be considerably less than the component A o . Therefore, the
third term in equations ( 100) and (101) represent the larger of the two x 2 dependent terms in the
image intensity. It is desirable to limit the maximum value of p o to obtain a value of cos _T (Np o )4

as near to one as possible so that the Fourier transform representation used in deriving equation
(101) can be considered a good approximation.
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We can express the cosine term as a function, of x by the definition p ^ and since our
results will apply to the general case we can replace x by the more general notation r. Thus we
can express the cosine term as

kf 	 k f ( r )4
CUs 47 ("P O)

 

 4	 COs 74 T (102)

In equation (102) the frequency po is given the general interpretation of a spatial frequency in the
direction of an r axis ( see Figure 14) and p0 and r are related by pp That is, equation
(102) applies to the general case of a spectrum along any radial axis r in the back focal plane F'
We can express M as a multiple of (V) 

e4 by defining a factor m by the relation

r	 ((q 11'4
T	 mlkf/	 (103)

Substituting for r in equation (102) we obtain

4
cos 4 (T	 ° cos m4	 (104)

1' 4

We can recognize the ultimate limit on m by noting that for m 
= (7T
	 the cosine term as given by

equation (104) is zero 0. e. cos = o ). For this value of m the Fourier transform result of
equation (101) is completely in error with respect to the third term, since the cosine term present
in equation (100) is zero and the third term is eliminated. Thus for in = (7}1f 4 our ideal two step
Fourier transform representation yields a term which does not exist in the actual image given by

f7T 1/4equation (10G , )*. For values of m less than 0)	 the cosine of equation (104) has non - zero
values as shown by the curve of Figure 15. Selecting a liY.it on in is based on specifying how accu-
rately the third term of equations (100) and (101) should agree. A value of m ^ o is necessary to
have complete agreement between equation (100) and (101); however, m = o corresponds to a
frequency p o -- o which corresponds to a do term only. Thus a compromise limit must be estab-
lished between the limits m = o and in = 17T 

11/4 .

To determine the limitation on m , it is necessary to specify the des` ^ id accuracy of the third
term in equation (101) as compared to the third term in equation (100). Again, the accuracy of
our approximation can be given in terms of a fractional error E. defined as

1- cos m 4	 1	 _
E^	

cos m 4	 cos m 4	 1	 (105)

'This accounts for the frequent neglecting of phase terms only when less than 7r/2 which appears in many references dealing with ap-
proximate solutions of diffraction problems.

t^
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Figure 15--Graph of cos m a vs. me

The error in the third term of equation (101) is then } lo0 E ,,/ compared to the exact term in
equation ( 100) . Note that the error E ,,, does not represent a fraction of the " - W image intensity.
The error E0 corresponds only to a particular term in the image intensity. In the general case there
would be a series of such terms and the maximum E , would be determined by equation (106). This

E41 
would represent the maximum error in terms of the form of the third term in equation (101)

and would correspond to the term involving the highest frequency of interest.

Specifying the maximum allowable error is rather arbitrary and will usually depend on the
particular application considered. However, for an example we can consider specifying a limit
of 2% accuracy for our approximation, i. e. E..

:
 0.02 . Substituting in equatic: i (105) we obtain

the condition for the maximum value of in

cos m`	 02 - 0.98	 (106)

From Figure 15 we find that the relation (106) requires values of m less than or equal to 0.67.
Using the maximum value m = 0,67 equation (103) becomes

(-4

kf /1%4

	

(107)
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To obtain a numerical result for comparison with our previous limit ""lax `° 0. 14 , we will again.
consider a wavelength X - 5461 x 10-8 cm and focal length f -' to cm Substituting in equation ( 107 )
w0 find

(r/

	

	
:7:	

(	

\ i, a	 r4x 5461 x 10_'`
)max	 0.67	 f	 U,67 `	 2nx 0—)

GOM 	0.03 X	 (108)

Equation ( 108) specifies the aperture limit in the frequency plane F' to assure an error limit of

less than 2% due to neglecting phase variations. We note that this phase limit restricts die frequency
aperture to approximately one - fifth of the previous value of T max = 0. 14 which was sufficient
for the linearization and amplitude approximations. The corresponding frequency limit is given as

_ 1 (r
P

l	 0.03
max 	 J	 - 550 cycles/cm7 T max 5461 x W" (109)

Thus for spatial frequencies less than 550 cycles/ cm, neg1F : cting the phase term to obtain the Fourier
transform representation of equation (91) introduces an error of no more than 2% in terms (._'the form
of the third term in the image Intensity of equation ( 101). Again we can point out that for most prac-
tical cases the frequency capability of present input techniques restricts the possible frequencies
to a lower value than that specified by equatkm (109).

We have shown how equations ( 103) and (105) are used to determine the error E 0 for any
frequency plane aperture with a radius defined by ( rte, Further we have shown for a particular
case ( X 5461 A and f = 10 cm) that the limit 

M M 2 !1 = 0 , 03 provides an accuracy within 2% for the
terms in which the phase variation appears. It has also been noted that this phase approximation
requires a tighter restriction on the maximum frequency terms. In fact, for examples used the max-
imum frequency is one - fifth of that allowed for an accurate amplitude approximation. Of course,
this further restriction of the frequency range of interest will, also improve the accuracy of the
amplitude approximation.

We can r^-fer back to Figure 12 to consider the amplitude error E A for the values f - 1 and
rm a xr 1—	 i The p^:t corresponding to = 1 and r	 = 0.03 is locatedf	 0.03 assum ing	 5.

below t va curve corresponding to E A = 0..005. Therefore, the furth r restriction on	 required
for the phase approximation reduces the error in the amplitude approximation to a value less than
'0.5%. This result shows that the restriction we have considered in this section not-only provides
a Fourier transform relation which is accurate in phase, but also improves the accuracy of the
amplitude approximations previously considered.
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Within the limits presented in this section, the two -lens optical imaging process can be des gibed
by the two equations:

	

^i(^i2kf	 Fiei2kP^ ^^

A(x, Y)	 ^2^ E	 F(p, q )	 L12 f _	 S ( x
i' Yi) e-i2n(p,zi +yya) rix i dy i 	(110)

	

WR 2 	- ^ei2kP	 -i27r("2+('y2)	 111

	

p(x 2' Y2 )	
2(f 

+d 21 ffF(p , q) e	 dA dq	 (	 )

In practice only the variations in amplitude are of interest and the constant factors within the brac-
kets are dropped

	

A(x, Y)	 F(p, q)	 ffs (X i' YJ 
e -i27r (px +qy1) dxI dy.	 (112)

	

ikR	 ikR 

f
f-i27r(pX2+yy

O(x2,Y21 _.e	 2S(-x2,-Y2 	 _. e	 2F( p , q)	 2) dpdq	 (113)

Equations (112) and (113) represent the form of the optical Fourier transform representation coin-
monly used. These equations describe the relative amplitude and phase variations of spectrum
A(x, y) and image 0(x 2) y 2 ). Note that the phase term e ikR 2 is retained in equation (113). This
factor has no effect on the image intensity since multiplication by the complex conjugate eliminates
t''ds term. However, if the image 0(x 2 , y 2 ) is to be process ,̀  a further by ai,; ,r lens, the effect
01.1 the phase factor,' e ikR 2 must be considered. In such cases, our criteria for neglect i ng the vari-
ation in phase due to the factor ,,,,ikR I must also be re - evaluated since the criteria .developed above
was based on image intensity effects.

OPTICAL CORRELATOR SYSTEMS

We will now consider a three lens optical system as shown in Figure 16. In this system the
signal plane F is ws.-,;iumed to be in the front focal plane of lens L i and each of the other lenses
( L2 and L 3 ) is located so that its front focal plane coincides with the back focal plane of the pre-
ceding lens. With this configuration the amplitude distribution corresponding to the input signal
to each lens is the output signal in the back focal plane of the preceding lens and is a focal length
in front of the lens. This location of the signal planes provides the advantage of eliminating the
phase terms dependent upon the distance fron the lens to the input plane as discussed in relation
to equations (88) and( 89) . The optical system in Figure 16 consists of a two lens imaging system
as discussed in, the preceding section followed by a third lens which produces a Fourier transform
(:;f the light ampii .ude distribution of the image. As pointed out at the end of the last section, the
processing of thF jrr.?.ge 0(x 2) y 2 ) by an additional lens involves its amplitude rather than the in-
tensity; therefore;, the phase effects of each lens will be considered. Throughout this section we
will assume that the aperture limitations are sufficiently restrictive so that the linear frequency
and amplitude approximations developed earlier are valid. The focal lengths of fine three lenses
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Figure 16—Optical correlator system.

are assumed equal to simplify our analysis; in the general case, unequal focal lengths would intro-
duce magnification or demagnification.

In the optical system of Figure 16, ljns L 1 produces a light amplitude distribution, in its back
focal plane F' which is proportional to the Fourier transform of the input slignal S(x,, y,) except for
a multiplicative phase factor. As discussed in reference to equations (112) and (113) we will drop
all constant factors and retain only terms which vary with respect to the coordinates in the four
signal planes of interest (F, F', F", F O ). Using only the variable exponential in equation (89) for
K 1 , the amplitude in the F' plane is given by equation (75) which can be written as

A(x 
y) = eikf(r/f)4/4F(p, q) = e l.Kf(r /f) 4/4

JJ
f f S/x 

1' 
y 
l//e 

i27T( Px 1 + QY 1)d
x1 

d
y1	

(114)
1 

For our development of a correlator it is advantageous to introduce notation for the signal S(x,,yl)
which accounts for displacement of the signal from some reference position. Referring to Figure
17, we can consider the displacement of a signal point A to the new position A'. If A is a point of
the signal S(x,, y,) , the light amplitude at A is S(xA , yA ) . Since A' is the same signal point as
A (it has only been moved), the light amplitude at A' must also be S(xA , yA ) . The coordinates of

= xA + 'rx	 and yl = yA + - . Thus our notation for the signal must be suchthe point A' are xl 

that if we sub:ititute the coordinates xl , yl for the point A' we obtain S(xA , yA )	 The required nota-
tion is S(x, -:_ . y l TY )	 as can be seen by substituting the values of xl and yl for each of the
points A and A' . In either case the signal amplitude i-a S(xA , yA )' . U?ing this new notation for
a signal, equation (114) can be rewritten as

k	 A(^ y) = eikf(r /f)4/4F(p, q) = eikf(r/f )4 ''Ut'4yX^*.' iv y 7Y\ i2ar(Fx1+SY1)dx1dy1
t^. .r.	

I
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Figure 17—Displacement of a signal point in the input plane F.

The displacements T X and TY are positive when the displacement is in the positive X 1 and positive
Y 1 directions.

In equation (115) the function F(p, q) represents,the Fourier transform of the displaced function
S (X 1 - T x , Y 1 - rY). Thus the F( p, q) in equation (115 ) includes all the information regarding the
signal including its displacement. From Fourier transform theory, the transform corresponding to
a displaced signal such as in equation (115) differs from the transform F(p, q) of the undisplaced
signal of equation (114) by an exponential phase term, e`i27r(-rxp +7-Y9 )	 . This principle need not
concern us any further; it is pointed out only to emphasize that the F(p, q) in equation (115) corres-
ponds to the displaced signal S(Xl - T x , Y i - TY)

The amplitude distribution given by equation (115) appears in the plane F' and represents the
input signal to the lens L 2 . Lens L 2 performs a Fourier transform operation on A( x, y) and the
image amplitude in the plane F" is given by

)f fe ikf ( r/f ) 4̂ 4 ^F(P, q) e
-i2 T̂ r(Px 2 4gY 2) dp dq	 (116)o C X 2 , Y 2 ,	 O(X2, y2 
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Equation (116) corresponds to equation (81) except that only the variable terms of K 1 and K 2 have
been retained. The exponential appearing in the integrand corresponds to the variable term in K1
as discussed above. The function ,/;(x 2 , y 2 ) in front of the integral represents the variable part of
K 
2 . 

From the definition of K 2 given under equation (76) the variable part of K 2 is obtained from
the term e'kR 7 where

f2 + fd 1 + r22
R2	 _.	 ..	 L ..	

2 ) 1/2	 and	 c22y22	
(117)V f +r2)

Since R 2 has the same form as R 1 , R 2 can be expanded in the form of equation (86)

r 2

1+ z

/	 1	 (	 1	
2

R2 Cx 2 , y 2 ) -	 i f +d2! + ` f —d 2 / 1	 r 2 1/2 + 2f	 r 2f 1/2 - 1	 (118)

1 + f2	 1+ f2

The first term and the - 1 term in the last bracket of equation (118) are constant and can be dropped
since we are interested only in the variable part. The second term vanishes since d 2 - f in the
system we are considering. Thus the only variable term in equation (118) is the fraction in the brac-
kets of the third term. The function O(x 2 , y 2 ) is therefore given by

O(x2 , y 2 /1 - e 
i2kf [( 1+r2/2f2)('1+r2/f 2)-1/2]	 (119)

The variable part of K 2 given by equation (119) was derived from the complete expansion of R2
rather than from an approximate expansion analogous to equations (88) and (89), since the aperture
restrictions necessary for the validity of (88) or (89) would require a signal and image aperture
much smaller than that normally desired in optical systems. For an image aperture defined by

(r
r

	

)mix - 0.14 , and f = 10 cm, and %^	 ",ai x 10-8 cm , the phase term O(x 2 , y 2 ) can introduce
phase shifts as great as 387r radians ' 19 c-t' xles). It was pointed out that the phase approximation
of equation (89) was accurate within 2 `1r,. For the image aperture considered here this phase inac-
curacy can be of the order of 0.4 cycles. This magnitude of phase error may not be negligible and
therefore the more complete exponential was used in defining O(x 2 , y 2 ) by equation (119).

Returning to the image amplitude distribution O(x 2 , y 2 ) given by equation (116), we will
change the notation to take into account the possibility of image displacement corresponding to the
signal displacement considered previously. In the last two sections it was pointed out that the imaged 	 z

amplitude O(x 2 , y 2 ) corresponds to an inverted replica of the input signal s(x l , y l ). This inverted
x

property of the image applies to the image motion as well. That is, if the signal is displaced in
the positive x i and y, direction, the image is displaced in the negative x 2 and y2 directions. Thus,
if O(x 2 , y 2 ) corresponds to the inverted image of S(x l y,), the displaced image corresponding to
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S(X J - T . ,  y, -T Y  ) is obtained simply by reversing the sign of the displacement to obtain o(x 2 + 
^t X

Y 2 
+'r 

Y )  . Using the displacement notation for the image amplitude distribution, equation (116)
can be rewritten as

•	 O(x2 + 'r Y 2 ^' .I - 	 t (X2, y2)
ff

 eikf(r/f)4/4 F
(A, q)S

,-127T(Px2+yY2) 
dp aq	 (120)

The final lens L 3 in Figure 16 operates on the light amplitude distribution appearing in its
input plane F" . For an optical correlator operation a reference signal R(x 2 , Y2 ) is inserted into
the plane F" in the form of an amplitude transmission function of a photographic transparency. In
this case the light amplitude distribution operated on by lens L 3 is that which appears on the output
side of t' reference transparency. This light amplitude is given by the product of the incident
light amplitude o(x 2 +r x , y 2 +r. ) and the reference transmission function T40 2' Y2 ) . Thus the light
amplitude distribution W in the output plane Fo is given by the equation

W( X 3 , Y 3 , r x , , Y) _ e ikf( r 3 /f ) 4f4 ff,, 
( X 2 Y 2) O ( X 2 +r x' Y 2 

+rY)e-i27r(sx 2+tY2 )dx2
dye (121)

where

_X 3--Y 2s	 Xf	 t	 Xf	 r3	
X3 

+ Y32

Since we are considering a system which terminates at the F o plane, the intensity will be detected,
measured, or recorded in the Fo plane. The intensity in the output plane is given by the product
of equation (11, and its complex conjugate. The complex conjugate product of the exponential in
front of the integral results in the cancellation of the exponential. Thus, we can drop the exponential
in equation (121) since it will not affect the detected intensity output. Equation (121); therefore,
can be simplified to

W(X3, Y 3' rx' T 	 ff  R ( x 2' Y2)0(X2 i-r x , Y2 +-rY) 
e	 2	 2 dx 2 d Y 2 	 122

Finally, if we consider only the point located at the intersection of the optical axis with the plane
Fo (back focal point of L 3 ), S = t = o 0. e. x 3 = Y3 = o) and equation ( 122) reduces to

	

W 
(rx, rY 

) 
= ff R(x2' Y 2 ) O ( X 2 +`rx, Y 2 + rY) dx 2 dY 2 	 (123 )
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where

W(7., Ty	 W( x3 " U, Y3	 0, Tx' TY^

Equation (123) corresponds to a two - dimensional correlation function which implies that the light
amplitude at the back focal point ( x3 = y 3 = 0) of the lens L3 is given by the cross correlation of

f	 the reference R( x 2 , Y2 ) and the image amplitude o(X 2 , Y 2 ) . Thus as the input signal is displaced
the variation of the light amplitude W(T x , T y ) corresponds to the variation of the correlation function
with respect to the displacements T x and T  . Note that the correlation function defined by equation
(123) involves the image amplitude o(X 2 , y 2 ) which is inverted with respect to the input signal
S(x l , y l ) . Therefore, if R( 

X2' 
y 2 ) is not a symmetrical function, it must be oriented correctly

with respect to the image 0(x 2 , Y 2 ) rather than with respect to the input signal S(x,, Y,) .

We shall briefly consider the implication of the steps from equation (122) to equation (123) .
This step in our derivation was accomplished by stating that we, would consider only the single
point in the output plane FJ which lies on the optical axis (i. e. x3 y3 = 0 ). In practice it is
physically impossible to isolate a single point. The best attempt we can make is to restrict our light
measurement or detection to a small area about the selected point. The light amplitude at points
within this area ( except for the one point on the optical axis) is given by equation (122) rather than
(123). The light amplitude distribution will not be uniform over the finite area of measurement due
to the phase variation involved in the integral of equation (122). For example, if we use a pinhole
aperture 10 microns in diameter to define our detection area, the phase term in equation ( 122) can
vary as much as 4n radians (2 cycles) over the range of the image aperture ( assuming r- 2111

0. 14f , f = 10 cm,	 = 5461 x 10-8 cm). The effects of the phase term in equation (122 ) is to reduce
the light amplitude at points off axis since the contributions to the integral are not in phase. There-
fore, the actual light available through a pinhole aperture located in the Fn plane at X3 = Y 3 - 0
will be less than that found by assuming the light amplitude given by equation (123) appears at all
points within the pinhole aperture. We will not consider this problem any further here since the
analysis would depend on the type of photo - detector or measurement technique used. We will assume
that the variations involved are small enough so that any measurement will yield values proportional
to the square of the amplitude given by equation ( 123).

As pointed out above the correlation function defined b^' °quation (123) involves the image
amplitude o(X 2 , y 2 ) rather than the single amplitude S(x l , y l ) . As defined by equation (120)
the image amplitude contains phase terms not present in the signal. A correlation operation can
be performed based on the image as given by equation (123); however, the reference signal R( X 2' Y2)
would have to be selected in terms of the image 0(x 2 , y 2 ) including the phase terms. The cor-
relation function obtained would correspond to a distorted signal rather than the actual, signal
S(x l , y l ) . The presence of distortion due to the phase terms in equation (120), therefore, corn
plicates the analysis and determination of the correlation process. For example, the image amplitude
O(x 2

 , Y2) 
will be complex ( phase variation as well as amplitude) and for complete correlation a

complex reference signal is required. Such reference transparencies are difficult to produce. The
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phase distortions are commonly neglected and a reference signal is selected based on an ideal imk e
(no distortion) of the input signal, We wil y now proceed to analyze such a system to determine tirZ

effects of the undesirable phase terms presen^^ in our equations.

F--

Let us consider a signal which would produce an ideal image amplitude defined by

	

0( x2 } r . x )	 L B ,, cos 2n An 1 x 2 + r 

	

I	 ' (124)

Equation (124) defines a signal image composed of a series of cosine. harmonics in one dimension.
A one - dimensional signal has been chosen to simplify our analysis. Referring to equation (120)
we find that each frequency term in the image has a phase term e ikf ( ,\pn)a`/4 associated with it and
the image also has a phase term t/,,(x y2) associated with it. Thus for the actual image we would

have

\	 ;kr	 4/

	

0 ( x 2
+rx) 	 X2 )L 	

(an)i
4COS 2nPn (x2 +rx/ 	(125)

	

1	
n

We can consider a reference signal without phase given by

R(x 2 	Ran cos 2n p n x 2	 ( 126)

in

T}; ,^ reference signal R(x 2 ) defined by equation (126) has been selected to have the same cosine
harmonics (m : n) as the imaged signal being considered. Note that the reference signal defined
by equation (126) does not contain the phase terms present in equation ( 125 ). The product of ref-
erence and image for the ideal image of equation (124) is given by

R (x2) 0 ( x 2 i r x ) 
= T B  Rm cos 2n pm x 2 cos 27T Pn ( x ^ +rx

	 ( 127)
n,m

The product of reference and image for the actual image of equation (125) is given by

i,kf'kPn)4/4
R(x 2 ) 0(x 2 + i' x ) = (k(x2)L B  Rm e	 Cos 2n pm x 2 .Cos 27r Pn ( x 2 +r -

11, in

ng equation (127) and (128) into equation (123), we obtain for the correlation function of

image:

W(rx	 _	 B  Rm (COS 2rr Pm x 2 cos 2rrpn ( Ig 2 + r x ) dx 2	 (129)
n,m
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and for the correlation functions of the actual image:

	

j 1	 r	 ikf(Xpn)4,,^4	 r	
1 dx2	 ( 130)

	

W ('t x I
	 /	 Bn Rm t'	

f1
(X2) COs 2'1 P- X 2 CAS 7rt Psi \ X 2 +,r x !

n,m

Comparing equations (129) and (130) we find that the term e ikf(Xp " )4/4 affects the phase of each
term in the double summation. From our previous discussion of frequency limitations with respect
to this phase term we can show that applying the limitation developed for imaged intensity limits the
phase variation of this tern., to approximately 7". In summing terms which are not in phase the
result will be less than summing the same terms in amplitude only. Thus the presence of the phase
term e ikf	 )4/4	 has the effect of reducing the value of W(r,,) in equation (130) as compared to
equation (129). However, since the maximum phase will be about 7 0 the difference due to this term
will be small. The phase term P(x 2 ) appears in the integral of each term in the sum and has the
same effect on the integral ( can be considered as summation) as the phase terirn discussed above
had on the summation. However, as diseussed above the phase variations of (k( x 2 ) ranges over 19
cycles and the effect on the value of the integral will be correspondingly greater. The actual magnitude
of the reduction in W(•i x ) due to these phase terms is difficult to evaluate in general since the re-
duction will depend on the fora'., of the signals involved. However, from our discussion here it is
apparent that the actual correlation function observed will be smaller in amplitude than that pre-
dicted using an ideal image. This result is obvious if we consider that the presence of the phase
terms in the actual image produce a mismatch between the signal and reference and therefore the
correlation will be reduced. The effects of these phase terms can be reduced by further restricting
the frequency range P,,, x (or rm o x) and signal and image aperture size which would limit the var-
iation of the phase terms. We will not proceed with an analysis of the required limitations since
the analysis will depend to a large extent on the type of signals involved and the correlation results
desired. Here we have developed the equations necessary for such an evaluation and hopefully have
pointed out the Aignificance of the various effects which appear in an optical system.

PHASE CORRECTIONS

In the last few sections we have discussed the effects of undesirable phase terms in optical
systems, and have demonstrated that these effects can be minimized by restricting the size of signal
apertures and the spectral range of the signals. An alternative approach can be pursued by inserting
phase corrections into the optical system. Such phase corrections can be implemented by inserting
sheets or plates of transparent materials whose thickness or index of refraction has variations which
introduce phase terms opposite in sign to those introduced by the system.

The basic equation representing the Fourier transform operation of a lens was given by equation
(45) as

—ie ikR(x,y')
A( X, y ) _ ^( f +d)	 A ( xj , y,) a	 dxl dyl	 (45)



Rewriting this equation retaining only the variable part of the terms outside the integral we obtain

A(x, y)
	

I(x, Y )	 A' (x i , y 1 ) C	 dxl dy1.	 (131)

where

"(XI Y)
i2kf[(1+r2%202)(1+r2:f2)-1 2

(ti	 assturtn^;	 d	 f

as derived in equation (119). As pointed out in all our discussions the phase term I (x, y) destroys
the simple Fourier , transform representation of lens focussing properties sin.#^e the integral part of
equation (131) corresponds to a Fourier transform by itself. Let us consider inserting a phase cor-
rection plate into the back focal plane of a lens with transmission properties given by

p(x, y)	 A0 V ,c ;!'* (x, Y)	 (132)

where

AO - constant

	

C	 constant

-12kf (I+r2/2f2)(I+r2^,f2)-1121

	

1 k ( X, Y)	 o

The light amplitude distribution appearing at the output side of the plate will be

	

A(x, y)P(x, y)	 I- 
ff A' 

( X I I yl l e-i27r(px,+qy1) dx I dy 1 	(133)

where the constant term A O e i c has been dropped and ^(x, y) (p* (x, y) = 1. Thus by inserting a
phase plate with transmission properties given by equation (132) in the back focal plane of each lens
in an optical system the phase terms are eliminated. From the definition given by equation (132)
we find that the phase c=orrection depends on the focal length f of the lens and the wavelength X (k = 2n 1

of the light. The phase correction is, not dependent on the signal used and therefore a phase plate
can be made for the lens and wavelength to be used in the system. Of course, the correction of phase
by this method requires an accurate technique for producing the phase plate and positioning the plate
in the optical system. In any rase, we have shown that the elimination of undesirable phase terms
is possible at least in theory. Any inaccu); ,,acies in production or location of the phase plate may be
acceptable as long as the phase terms are appreciably less than before the plate was introduced.
Assuming the phase plate is an accurate representation of the transmission function of equation
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(132) , the Fourier transform relation of equation (133) will be valid. With the relationship given
by equation (133) the operation of spectrum analyzer, imaging and optical correlation systems can
be described by the ideal cases used in the respective discussions and no undesirablo phasc tcrins
appear in the equations.

PHASE TERMS WHEN (1 / f

In o,,v consideration of phase terms we considered the special case of an input plano cobici.dont.
with the front focal plane of a lens (d .- f). This special case was chosen to eliminate the phase
effects of a term proportional to (f - (1). From equation (118) we can write a conq)lote expression
for the variable part of the exponential term e" as

i^k(d-f)(1^+r2/(2)-1/2 f2kf(1+r2/2f2)(1+r2/f2)-J/2
40, Y)	 ('	 e	

(134)

Equation (134) reduces to the form of equation (119) when d f . If we can restrict our con.,^idor-
ation to a rather limited range in the back focal plane of a lens, we have shown that equation (134)
can be given to a good approximation in the farm of equation (88)

ik(f-d)(r/f) 2/2 ,.. "'r/f)4/4	 (135)

We can consider equation (135) as a representation of the phase in ^, back focal plane containing a
frequency spectrum while equation (134) is a more accurate represeni,),tion which applies in a back
focal plane containing an image of the input signal. This application of . e quation (134) and (135) is
based on the relatively larger apertures commonly used in the signal am image planes.

In the systems which we have considered here the complete phase variations as given by equation
(134) appear only in the correlator system. This can be seen by noting the presence; of ,l(x2 , Y2)
in equation (120). Since this phase factor is expressed in terms of the coordinates x 2 and Y2 of
the image phase we cannot use a very restrictive .aperture limitation without severely effecting our
signal handling capability. Therefore, the approximation of equation (135) will not be valid and
O(x2 , y2 ) in equation (120) will have the form of equation (134) with d 2 and r2 replacing d and r
respectively

	

(x , Y	
eik(d2-f)(1+r12^f2)w1/2 ei2kf(1+r,12/2f2)(I+r2/f2)-1/2	

(136)2	 2

ti

where r 22 = X 2 + y22 and d 2 is the distance from the spectrum plane V to the lens L 2 ( see Figure
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16 ). In the sample correlation function of equation (130) we can see that the additional phase term
dependent on ( d 2	 f" ) will increase the effect of ' (x 2 ) on the integrals,. Tn practice, a system would
be specified on the basis of locating lens L 2 so that d 2 	f. However, tie exact positioning of the
lenses in an optical system is obviously a practical impossibility. Thus the additional phase term
containing ((12	f) .represents the phase distortion introduced by inaccuracies in the implementation

t	 of the system. Since the quantity (d 2 - f) represents an inaccuracy its value will usually be undeter-
mined. Therefore, the first term in equation (136) represents an undetermined phase error in the
optical correlator system. If a guess or estimate of t he tolerances in the system can be made, this
error term can be used to determine the maximum distortion of the correlation function by analysis
similar to that implied by equation (130),

y

	

	 Since the variation of the phase term containing (d, - f) in equation (136) is not ,known specif-
ically, the elimination of this term by a phase correction plate is not possible. Thus in a system
containing phase correction plates only the second term of equation (136) can be eliminated. In
such systems < t. ( x2' y 2 ) is completely given by the position error term

r;(x 2' Y2	
fk(d2- r)(1+"2 /f2)_V`2	

(137)

The distortion of the correlation function in a phase corrected system is therefore completely depen-
dent upon the positioning errors. Again referring to the sample of equation (130), /(x 2) would be
given in the form of equation (137). The phase term iii front of the integral of equation (130) would
also be replaced by an error term from an expression such as equation (135) as will be discussed

a
below.

The phase term given by equation (135) represents the variable part of equation (88). The ex -
ponential dependent on (f - d l ) represents an error term due to lens positioning. To account for
this error the complete phase approximatiwi of eq__A.tion (135) must be used in place of the K i expo-
nential of equation (89). Thus the error phase term will appear throughout our previous analysis
wherever we have used the K i term.

We considered the effect of the f:, phase term on the image intensity and on the correlation
function in earlier sectioni3. In our correlator discussion the variable phase term of K, appears
in the integral used to define the image ampiitude distribution in equation (120) . To account for
errors in placement of lens L, ( see Figure 16) the exponential eik f (r/f )4/4 in equation ( 120) must be
replaced by a phase term of the form of equation (135) which can be written

f

X	 2

Y) 
_ eik(f-dl)(r/f) /2	 (f,ikf(r/f)4^4 	 138)

Referring to our sample correlation of equation (130) the phase term given by equation (138) will
replace the eik f( r/f ) 4/4 term in front of the integral. The error phase term has the affect of adding
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^b( X , Y) _ e
ik(f^d

i )(r/f)2/2 (141)

an additional variation to the phase of the terms in the summation. For a phase corrected systerrx
the v"^' O / 04,,4 term is eliminated and the undesirable phase difference of terms in the summationon
will be dependent only on the accuracy of the systern implementation.

In our discussion of imaging systems we defined a factor in by equation (103) and developed a
method for determining the accuracy of the image intensity based oil 	 parameter. To extend this
method to include the case for (1, / f we merely redefine m by the equation

nt4
( r)2 [

d

	 (_E)I]
-1 	 -^ f

(139)

which is obtained from the exponents of the terms in equation (138). For (t, less than t' the limits
on m defined in our previous discussion will apply to equation (A9) for the maximum value of r,
It is noted that since ( f - d,) is a, positive quantity when d, is less than f the required limit on

1 "f will be less than that determined for the case d l f . When d l is greater than f
r

is a negative quantity which would imply that the value of	 can be greater than that for the
case d, M f. This is true except for eases in which d, is sufficiently greater than f so tb- t- for
some value of r less than r '" - the value of equation (139) is greater in absolute value than for
rm °" . That is since f - d	 is negative the right side of equation 139f	 ,	 (	 ,)	 g	 g	 q	 (	 ) is zero at r	 U ,t^e^
comes negative as r increases until it reaches a maximum negative value and then increases to
positive values. Depending on the value of d 1 and the limit `` f it is possible that the phase at
the maximum negative value is greater than that at the aperture limit 

r'
"f X . In such cases, the

maximum negative value must be considered rather than the end value at 	 and the aperture may
have to be restricted to values below this maximum. In any case the brackets on the right side of

equation (139) must be considered as an absolute value symbol when the quantity within is negative
so that m will have real values. In other words, we are concerned with the .magnitude of the phase
variations and not the sign.

For systems with phase correction only the first term of equation (138) will remain and (139)
will be simplified to

	

(r)'m4	
2 
	
(f - di)
	

(140)

Equation (140) can then be used with the image intensity criteria developed earlier to consider the
effects of positioning error for lens L, in phase corrected systems.

In most of the literature the phase corrected form of (138)

is used even though phase correction techniques may not be employed. This application of (141)
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requires that the frequency limitation be sufficient so that the ei41(r/O4/4 term can be neglected. This
application also implies that the term (f - d l ) is much greater than the maximum value of 2 (
If this condition does not hold the neglected term will contribute a phase comparable to that of equa-
tion (141) which would then bo in error. Conversely, if (f - d j ) is not greater than 2 (T and
the eikf(r/f)4/4term is considered, negligible, than the term given by equation (141) is also negligible
since it is comparable to the neglected term.

In this section we have outlined the procedure for taking into account the additional p;ia,se term
arising from inaccuracies in the positioning of lenses. It was pointed out that since these terms are
due to inaccuracies they are generaily not specified completely. The worse case, however, can }-le
specified by estimating the maximum error in the position of a lens. From this L:xtreme estimate the
(necessary aperture limitation or the evaluation of errors in the desired optical ou ►,r; uts can be deter-
mined for a worse case analysis. Unforto;;nately, due to the undetermined nature of these terms,
phase correction cannot to used to eliminate their effects.
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SUMMARY

The derivation presented in this report demonstrates that the Fourier trans-
form representation, of a focussed diff raction pattern is a reasonable approximation
for descrijing the ,?peration of coherent optical systems with lenses. Thb basic
assumptions consisted of the ideal focal properties of a lens and the use of perfectly
coherent light. Except for undesirable phase effects, it was demonstrated that
the Fourier transform representation is obtained as a good approximation by im-
posing limitations on the size and frequency content of signals allowed. The Phase
terms can also be eliminated by aperture limitations; however, the rrstrictions
are more severe. Depending on the application, a trade off must be made between
the limitations required for elimination of undesired terms and the desired signal
size and frequency content.

Techniques for evaluating the effects of the various approximations and for
aiialyzing the operation of ideal optical systems have been presented. For speci-
fied signals and applications these expressions can be used to determine the theo-
retical errors in assuming ideal operations as is commonly practiced. The anal-
ysis presented is by no means complete; however, it is hoped that it is sufficiently
detailed to provide a clear insight into the required approximations.

This report represents an initial step in the development of a detailed analy-
sis of the capabilities of optical processing systems. Further studies are required
to formulate complete criteria and analysis techniques for practical optical sys-
tems. Some of the important areas whic'. must be considered include:

1. Lens aberrations
2. Coherence
3. Transmission properties of modulation media
4. Band - limited signal approximations

These areas were not treated in the analysis presented here since the initial study
was restricted to ideal systems. The complexity of the mathematical formulation
of optical patterns can be simplified somewhat by using the notation of communica-
tion theory s Such methods are beco,,ning quite useful in modern optics studies.
The developmentcf these techniques provides a means for avoiding the complicated
mathematical formulations inherent in diffraction problems. However, any new
formulations such as these must be considered in terms of the more rigorous for-
mulation since the various approximations are basically the same in both formu-
lations.
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APPENDIX

DERIVATION OF DIFIF'RACTION FORMULA

1

Figure A-1 Diagram of diffraction configuration.

We will restrict our discussion to the somewhat special case of diffraction at an infinite plane

surface as diagrammed in Figure A - 1. The shaded area in the figure represents a cross - section

of an infinite slab. The basic problem is to determine the electric field at any point P in the dif-
fraction region which includes all points to the right of the plane boundary surface indicated in
Figure A- 1. When the plane slab is not present, the electric field at any point P could be found
simply by substituting the coordinates of P into the mathematical expression describing the light
propagating from whatever light source may be present. In itself, finding a mathematical repre-
sentation for a given light source is not a simple problem. The light radiated by a source is depen-
dent upon the mechanism generating the light as well as the geometry of the source. In many cases
it is assumed that a good approximation is obtained by considering ideal light sources which radiate
spherical waves (point sources) or plane waves (point sources at an infinite distance).

Inserting a plane surface into the path of the light waves as shown in Figure A - 1 complicates
our problem. Since the presence of the plane effects the propagation characteristics in space, the
electric field at any point will now depend on the characteristics of both the light source and the plane.
The characteristics of the plane depend on the type of material of which it is made and these
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characteristics usually vary from point to point in the surface. Thus we are confronted with the
problem of determining the electric field in the presence of a surface which can have widely varying
electrical properties from point to point. As the reader may already know, problems of this nature
are very difficult and, in fact, very few diffraction problems have been solved rigorously. Fortunately,
in many cases of practical interest results within experimental accuracy can be obtained by less
rigorous techniques.

In order to implement a discussion of diffraction problems, we will now proceed to the deriva-
tion of a formula for diffraction at a plane surface. This result was first derived. by Soin erfeld 6

in 1896 and as will be demonstrated is effectively a mathematical representation of Huygen's prin-
ciple for the special case of a plane diffraction surface. The basic assumption we will start with
is that the components of the electric field are known at every point on the right hand boundary sur-
face of the plane slab ( refer to Figure A - 1). The methods for determining these field values are
of _ o importance at this point; 11owever, in many cases of interest assuming a multiplying factor
representing the transmission properties of a thin material provides results in close agreement with
experiment. For our present purpose, we will simply assume that the value of the electric field at
every point on the plane boundary surface is known (i. e. can be found easily).

PLANE BOUNDARY SURFACE
(ELECTRIC FIELD E KNOWN AT EVERY

POINT ON SURFACE)

DIFFRACTION REGION

.P

SOURCE
REGION

Figure A-2—Outline of diffraction problem.

Referring to Figure A - 2, the problem we must solve can be stated as follows:

Givea the electric field at every point on an infinite plane boundary, what is the electric
field at any point P in the diffraction region?

f
4t

5	 ,
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As shown in Figure A - 2, we define our diffraction region to be all space on the right side of
the boundary surface (note that this region does ',ot contain any light sources). In Figure A 2,
it is assumed that all light sources are to the left of the boundary surface and that the diffraction
region includes all points to the right o-?, the boundary. We can assume that our diffraction region
is in free space (v. vity of light is o in all directions) and Specify that there are no electric cur-

.

	

	 rents or charges present in this region. Since the electric field is a vector quantity, its direction
at any point is as important as its magnitude. As in the case of any vector we can consider the
electric field in terms of its components in the x, y and r. directions. To simplify our discussion
we will assume that light waves are monochromatic, or vary in time at a single frequency. When
necessary this discussion can be extended to the general case of non - monochromatic waves by con-
sidering each separate frequency component as described here and summing up all components.

Each component E (in x, y, z components) of the electric field of a monochromatic wave will
satisfy the He.lmhotz equation ( time - independent wave equation) at eve:, y point P in free space which
contains no electrical sources:

( x,72 j lc 2 ) E	 0
	

(1)

where

E : x, y, or z mponent of the electric field

V2	
R x 2 1 C9 y2 +

	

^^

ky^,
	 27T

"0 	 angular frequency

c == speed r'' light

A -7 	 of light

Using the values for E on the plane boundary surface and the fact that E must satisfy equation (1)
at every point P in our diffraction region, we can derive a formula for the electric field at P in
terms of the values given on the surface.

We will introduce an arbitrary function V which also satisfies Helmholtz equation:

( V2 * O )v - 0
	

(2)	
l

There are many functions which will satisfy equation (2); however, we will presently continue to
use the symbol V and reserve the selection of a specific function until we determine a few additional
characteristics of v which will allow us to accomplish our derivation. In terms of E and V , we
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• 1 	 i

can define two vectors F, and F2 as

F1	 E'``V	 C;

where

rrixx { J f1y + }t ^1z

and VV and V E denote the gradient of V and E respectively. We no, introduce Gauss' s r,heorem-

J I
J 

V F (IV	 ff F cis	 ( )

va+taIII e	 suu r face

where the volume integral on the left can be taken over any volume which does not contain discon-
tinuities of tale divergence of F (V • F) and the surface integral on the right is over the surface which
encloses the volume (F must be continuous on the surface so that the surface integral can be found).
From ( 3) and ( 4) we obtain

V	 _r^	 N/	 EVV Y. VE	 VV + EV 2 V	 ( )

	

V • F2 . V VVE = VV VE + VV2E	 (7)

From above we note that (6) and (7) must not have discontinuities within the volume of integration;
therefore, E and V must have continuous first and second derivatives. Since we are Considering 11.
diffraction region free of electrical current and charge, E will meet this requirement for any volume
in the diffraction region. Since we have not yet selected a specific V , we will note this requirement
and be sure to satisfy it when selecting our V. Thus we (,wn write equation (5) substituting (3),
(4), (6) and (7):

V F1 dv	 (VE • VV+EV 2 V )dv `= ff EVV ris	 (^)

	

Ill	 III

V P2 dv -	 '{V V • V E + VV 2 E) dv	 ffVVE ds 	 ,̂111	 ^^IJ(
We can substract (9) from (8 )and noting that VE • Vv - VV • VE = o we obtain:

	

{ EV 2 V - VV 2 E) dv = ff { EVV - VVE } d;a	 (10 )fff
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This is Green's theorem and holds for any function E and V whao.11 have continuous first and sec-
ond derivations in the region of integration. From equations (1) and (2) we know that `.' 2 E - k z E
and `.°' 2 v - ic y v and therefore the bracket on the left hand side of equaU, ..n (10) gives

E' y z `,	 V ;I E	 - k 2 Ev	 ( It 2 L.-V)	 U	
(11)

Since the integrand is zero as given in ( 11 ) the volume integral on the left hand side of (10) is zero
and we can rewrite equation (10) as

ff( E V - V_ ) ^ ds,

00

PLANE BOUNDARY
SURFACE A --+

(ELECTRIC FIELD KNOWN)
DIFFRACTION
REGION

c

f -. O

1
l
I

Figure A -3 —Boundary surface enclosing all points except P.

The surface integral in equation (12) is to be taken over any closed surface which does not
enclose discontinuous points. For our purposes we will choose the surface as indicated in Figure
A- 3. The outer surface consists of the infinite boundary plane (A) on which the electric field is
known and a hemisphere (C) of infinite radius whifih connects the ends of the plane at infinity. We
define an inner surface (Z) as a sphere centered at P with radius e . Ta ping A, C, and Z as our
closed .surface, we have defined the volume between the sphere Z and the outer surface A-C. If
we take the limit as r. goes to zero, the point P will be the only point in the diffraction region out-
side the surface of integration. Thus the sphere Z isolates the point P where we want to find the
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electric field. The surface integral of equation (12) can be written as the sum of the integrals
over A , c, and . .

ff r EVV - V^ rE	 ds ff
	

J J ' 
E V VVE	 c i s

	
0	

(13)
C
	

A

The surface integral over the hemisphere at infinity can be eliminated through a physical
argumeit given by Born and Wolf 4 . In practice a light wave starts at some time and since it prop-
agates at a finite velocity (c' in free space.) musk have an end. We can imagine the infinite hemi-
sphere continually expanding in front of the light waves. In this way, the contribution of the wave
on the hemisphere is zero since the light waves never reach the hemisphere. The integral o1 1 er the
surface c will therefore be zero and equation (13) can be written

' EVV- ti^^ ? c1 s 
ff

s E V ~ VVt	 t! s	 0ff
We will now take advantage of our freedom to select a function V in order to simplify equation (14).
In the integral over the plane surface A we note that the term VVE requires the values of `. on
the boundary surface. Since we do not know VE on A, we will require V to be zero on the boundary
surface to eliminate this term. Equation (14) can then be written

ffEVV , ds i ff {EVV - VVE) ds	 0

A	 >•

To consider the integral over the sphere >,, we will express the surface element ds in polar
coordinates:

ds - - c 2 s in 0 dN drb r"

where r is a unit vector in a radial direction away from the center at P and the minus sign is re-
quired by the convention that a surface normal is directed away from the enclosed volume. The
integral over X can be written as

f

n	 z
- 	sin O dO 

fo 
dry C 2 (EVV - VVE) = r	 (16 )

0 

By vector identity (EVv - VVE) • r - E r - V ^ and (16) can be written

fo(()

7T	 n dVr^E
-sin0dO 

fo^
 LE e 2 ar -^ 2 V 0r(1'7}

(14)

(15)
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Recall that we want to take the limit as ` gees to zero. The term 2 v̀  r in ( 17) can be eliminated
if we require V to satisfy the condition

Iim ,2V
C"O

`	 at any point P in the diffraction region.

Since E has continuous first derivations E will be finite and the conditioning given by (18 )
will give

lim d2V 3E	
0	 (19)

ap

Expression ( 17) is then given as

IT	 2 n

IV
i n (^ do)	 (^zj7 ^.1 i m E (E	 r 	 (2 0)

fo	 fo	
e o

Since E is the value of the field on the surface X and the surface Z reduces to the point P when e

goes to zero, the limit in ( 20) can be written

1 i EE2 r . E(P) lim o2
eC-0	 E-Q	

r	 (21)

where E(P) is the electric field at P. We will require that v satisfy the condition

lim 62 ^	 1	 (22)
F-0

at any point P in the diffraction region. The limit in the bra, ' ets of equation ( 20) is then simply
E(P) and ( 20) gives

 2 7r

—

	

	 sin 0 dB	 c E(P) µ — +7 E(P)	 (23)
fo, fo

Substituting the result of (23) into equation (16) for the surface integral over E we get

ffEVV • ds — 47T E(P) — 0	 (24)
A

Rearranging terms equation (24) can be written

0	
(18)



By vector identity VV . ds d^ ds where r`n represents a partial derivative with respect to a co-
ordinate perpendicular to the plane boundary surface in a direction out from the enclosed region.
Equation (25) can be written without vectors as

N

E(P)	 ' ff E'V cis
	

(26)
A

E: c.opt for the selection of a function V which satisfies all the conditions we have used, equation
(26) has the form we require. The left side is just the field at a point P, and since the integral on
the right side is on the plane boundary surface A the E in the integrand assumes the given 'slues
on the surface. Thus the field at any point P is given in terms of the given values oil 	 surface
A by formula (26).

In deriving equation (26) we have imposed restrictions which must be satisfied by the function V.
3ollecting the requirements to be satisfied by v we have

1. V must have continuous first and second derivations within the region inside the
boundaries shown in Figure A - 3.

2. (V24-k2) v . o
3. V - o on boundary surface
4. vv X G on boundary surface
5. Jim 62V  = o at any point P in diffraction region

E- 0
6. t im e 2 a = 1 at any point P in diffraction region

E-0	 ar

Fortunately there is a !unction which meets all these requirements:

e ikr'	 eikr

V -	
r' - r

where r and r' are defined by Figure A - 4 as

r = distance from P to any point Q

r` = distance from P' to any point Q

P' = mirror image of P

(i.e., PP' is perpendicular to the boundary A and d = d')

m	 2rr
k = c -
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Figure A-4—Geometry for definition of V.

That our function V given by (22) does in fact satisfy all requirements can be proved by direct
substitution into the expressions listed above. Here we will only discuss the continuity requirements
( item 1 above). As defined by equation (27) V has discontinuities at r = o and at r' = o. These
discontinuities appear at the points P and P' respectively and P' lies outside the diffraction region
and P was separated out of the integration region by our sphere 2. Thus the only points at which
discontinuities appear are outside the region specified in the continuity requirement and V given by
(27) does satisfy this requirement.

Returning to equation (26) we note that a on the surface A is required rather than v itself.
We can select coordinates so that the Z axis is perpendicular to surface A as shown in Figure A - 5
so that ^ becomes - a ( minus sign appears since the positive z direction is opposite to the pos-
itive 'n direction). From the geometry of Figure A - 5, r and r' are given as

	

r - (x 2 +y 2 + (d - Z)211/2	

(28)

	r' = f x 2 +y 2 + (d + Z)211/2	

(29)



#,
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01 A kie nr%i :win A nv A
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1 Figure A-5—Geometry for definition of terms in V.

Substituting ( 28) and ( 29) into (27) we can find

aV	 a 	 a eik[x 2 +y 2+(dtz)'1 1/2 	eik[x2+y2+(d -z)2] 1/2

- - 7	 T 
azz x2+V2+(d+z)2,'/2 - [X2+y2+(d_z)211/2

-ik(d^+z)	 + —d + z	 eik[x2 +y2+(d+,)211/2
X2 +y2 +(d+ z)2,	 (X2 + y2 +(d+z)213/2

+ J
-
	 -ik(d -- z)	 +	 d-z	 eikLx2+y2+(d-z)'11/2

Ux2 +y2 +(d-2) 2 1 	 [x2 + y2 +(d-2)213/2
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Now in equation (26) we are integrating over the surface A so that we want the value of . z on
A which is obtained by setting z - o in equation (30)

aV	 -	 aV	 _ -2G ik l I +y 2 #t1 2 a 1/2	 d	 l
X2	 31Jnn A	 a z z=0	 r X 2 } y'! d2 J V 2 rx2 + y2 {., 

d2J 1/2 Ik _ r	 .1. ,r2 d2 1/

	

, 2	 (	 )
l	 ll	 J	 ll

Equation (31) can be simplified by noting from equation (28) and the geometry of Figure A - 5*

r = ( x2 + y2 + d2] 1/2	 when	 z	 U	 (32)

d
cos 0 rx2 } y2 +d211/2	 (33)

Substituting (32) and (33) into the equations (31) we obtain

aV	 aVl 	-le ikr
	 [ikan A a z	 0	

r cos 8 	- r	 (34)z=

Now we can substitute (34) into (26) and complete our diffraction formula

1 tikel
E(P) _	 ffEA r cos B [ik - r] ds 	 (35)

A

where ( refer to Figure A - 5 )

E(P) = Electric field at a point P in the diffraction region.

EA = electric field on the plane boundary A.

r = distance from P to a point on A.

B = angle between r and normal to plane A.

cv	 27T
k =	 _

•Note that in Figure A-S, P and P ° were chosen as point on the z axis to obtain equation (32) and (33). In gene;tal x would be replaced
by (x x0) and y would be replaced by (y - yo ) where x 0 , yo define the x, y cootdinatcs of the points P and P'. In the derivation
the z coordinate of the point P was represented by d to avoid confusion with the coodinates of the point Q. In general the d in equa-
tions (32) and (33) is replaced by z. Otherwise the general results have the same form as found above.
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Given the electric field E at every point on the surface A, equation (35) can be used to determine
the electric field E(P) at any point P in the diffraction region. This statement dept ids, of course,
on whether the integration indicated in equation ( 35) can be performed. If the integration cannot
be performed analytically, it can be assumed that a numerical solution to any desired accuracy can
be obtained using a computer. In many problems of interest, satisfactory results can be obtained
by approximating equation (35) using the geometry of the specific problem. For example, for
small angles 9 such that cos H 1 and at great distances r such that 1/ r'<< k , we can approximate
equation (35) as

ikr

E(P) - i^	 E^ 
a	

ds

A

Equation (36) represents Huygens' principle since the contribution from each point on the boundary

surface is given by EA e i k r/r which describes the spatial variation of a spherical wave. Thus the
diffracted field as given by equation (36) can be interpreted as the summation (integral) of spherical
waves radiating from each point on the diffraction boundary.

(36)
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