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ABSTRACT

As part of a continuing effort under Contract NAS T-h58, an analytical
study of catalyzed hydrazine decomposition reaction chambers was performed to
assess the effects on the steady-state behavior of the system of nonuniform
radial injection and of catalyst bed configurations exhibiting both radial
and axial nonuniformities. Radial variations in mass flow rate or bed packing
cause radial temperature and concentration gradients which lead to turbulent
diffusion of heat and mass in the reactor system. A computer program was
developed to calculate temperature and reactant concentration distributions
as functions of axial and radial position in typical hydrazine reaction cham-
bers. The program is based upon a model of the reactor system which includes
treatment of the turbulent diffusion of heat and mass in the free-gas phase
along with heat and mass diffusion within the catalyst particles and between
the particles and the free-gas phase. Both thermal and catalytic decomposi-
tion of the reactants are considered. Included in this report are descrip-
tions of the turbulent diffusion phenomena, the reactor model which treats
these phenomena and typical results calculated on the basis of this model.




FOREWORD

This work was performed by United Aircraft Research Laboratories for the
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SUMMARY

The Research Laboratories of United Aireraft Corporation under Contract
NAS 7-458 with the National Aeronautics and Space Administration are performing
an analytical study of catalytic reactors for hydrazine decomposition. This
second annual technical report summarizes work performed under this continuing
contract from April 15, 1967 to April 1L, 1968. Work during this period has
included the development of a computer program representing a two-dimensional
steady-state model of a distributed-feed catalyzed hydrazine decomposition
reaction chamber. This program was developed to assess the effects on the
steady-state behavior of the system of nonuniform radial injection and of cata-
lyst bed configurations exhibiting both radial and axial nonuniformities. The
program is based upon a model of the reactor system which includes a treatment
of the turbulent diffusion of heat and mass in the free~gas phase along with
heat and mass diffusion within the catalyst particles and between the particles
and the free-gas phase. Both thermal snd catalytic decomposition of the reac~
tants are considered. Calculations have been made of temperature and reactant
concentration distributions as functions of axial and radial position in typi-
cal hydrazine reaction chambers for a number of injection profiles and catalyst
bed configurations.

The integral equation method, developed during the first year of contract
effort to describe the diffusional processes within the pores of the catalyst
particles, has been modified to include the effects of heat and mass transfer
from the bulk fluid, through a stagnant film surrounding the catalyst particles,
and to the outside surface of the particles. An iterative procedure has been
developed to solve the implicit integral equations describing reactant concen-
tration and temperature profiles in the porous catalyst particles. A computer
program representing this iterative procedure has been used as a subroutine in
the two-dimensional steady-state program. This subroutine has also been used
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in the one-dimensional program to define more precisely the kinetics of ammonia
dissociation by comparing temperature and concentration profiles calculated using
this progrem with available experimental informstion.

Empirical predictions have been developed of one-dimensional steady-state
temperature and fractional ammonia dissociation profiles in hydrazine reactors
packed with Shell 405 catalyst particles. The empirical correlations were
developed on the basis of many runs made with the steady-state computer program
developed during the first year of effort on the present contract. It was found
that fractional ammonia dissociation and bulk fluid temperature are easily pre-~
dicted for a broad range of operating conditions for cases in which most of the
hydrazine decomposition occurs in the first few tenths of an inch of the reactor;
this rapid hydrazine decomposition rate is associated with reactors packed with
particles 25 mesh or smaller for approximately 0.2 inch of reactor bed length.
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INTRODUCTION

Under Contract NAS T-458, the Research Laboratories of United Aircraft
Corporation are performing analytical studies to characterize the behavior of
distributed-feed catalytic reactors for hydrazine decomposition. The specific
objectives of this program are (a) to develop computer programs for predicting
the temperature and concentration distributions in monopropellant hydrazine
catalytic reactors in which hydrazine can be injected at arbitrary axial and
radial locations in the reaction chamber and (b) to perform calculations using
these computer programs to demonstrate the effects of various system parameters
on the performance of the reactor.

Progress previously reported in the first annual report (Ref. 1) has
included the development of computer programs which describe the steady-state
and transient behavior of a reactor system in which complete radial mixing in
the free-gas (or liquid) phase was assumed. These programs had been used to
calculate temperature and reactant concentration distributions as functions of
initial bed temperature, feed temperature, chamber pressure, mass flow rate,
catalyst size distribution, and axial injector locations.

During the present reporting period attention has been focused on extending
the steady-state model to include radial as well as axial variations in temper-
ature and concentrations in order to permit an analysis of various injection
schemes and catalyst bed configurations which exhibit radial nonuniformities.

In addition, a refinement has been made of the method used in the one- and two-
dimensional steady-state models to describe the effects of diffusional processes
on reaction rates in porous catalyst particles and sample calculations using
this modified film and pore diffusion model have been made. Effort during the
second annual reporting period is described in detail in.succeeding sections

of this report.
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DISCUSSION

The analysis of & hydrazine engine reaction system carried out to date
pertains to a reaction chamber of arbitrary cross section packed with catalyst
particles into which liquid hydrazine is injected at arbitrarily selected loca-
tions. Catalyst particles are represented as "equivalent" spheres with a dia-
meter taken as a function of the particle size and shape. Both thermal and
catalytic vapor phase decompositlon of hydrazine and ammonia are considered in
developing equations describing the concentration distributions of these reac-
tants. Diffusion of reactants from the free-gas phase to the outside surface
of the catalyst pellets is taken into account. Since the catalyst material is
impregnated on the interior and exterior surfaces of porous particles, the
diffusion of reactants into the porous structure must also be considered. In
addition, the conduction of heat within the porous particles must be taken into
account since the decomposition reactions are accompanied by the evolution or
absorption of heat,

Included in succeeding sections of this report are detailed descriptions
of (a) the development of an integral equation method describing the effects of
film and pore diffusion of heat and mass on reaction rates in porous catalyst
particles, (b) the use of a computer program representing this integral equation
method as a subroutine in the one-dimensional steady-state model of the reactor
system to define more precisely the kinetics of ammonia dissoclation by comparing
temperature and concentration profiles calculated using this program with avail-
able experimental information, (c) the use of the one-dimensional steady-state
program to develop empirical correlations to predict axial temperature and frac-
tional ammonia dissociation profiles in hydrazine reactors packed with Shell
405 catalyst particles, (d) the development of computer program representing
the two-dimensional steady-state model of the reactor system, and (e) the use
of the two~dimensional program to calculate the effects on steady-state temper-
ature and reactant concentration distributions of nonuniform radial injection
and of catalyst bed configurations exhibiting both radial and axial nonuniformities.

Integral Analysis of Processes Occurring within Catalyst Particles

Catalytic reaction of hydrazine on Shell 405 catalyst particles is so fast
(Ref. 1) that, even at low temperatures, the rate of decomposition of hydrazine
vapor is controlled by the rate of diffusion of hydrazine from the bulk vapor
through a stagnant gas film surrounding the catalyst particles to the outside
surface of the particles. 1In the case of ammonia, however, film diffusion is
rapid relative to the rate of dissociation of ammonia within the particles. The
concentration of ammonia at the surface of the catalyst particles, (cp)sNH3,.
is therefore fairly close to the ammonia concentrations in the bulk vapor phase,
ci NHB. The surface concentration can be calculated, along with the concentration



91046124 |

profile in the porous particles, at any axial location in the reaction chamber
by solving simultaneously the equations representing film and pore diffusion of
heat and mass. In describing the diffusion of mass within a porous pellet, it

is assumed that changes in the mass density of fluid within the particle are
negligible relative to changes in concentration of the reacting species. In
addition, pressure changes within the particle resulting from nonequimolar dif-
fusion are neglected, as is heat transported by pore diffusion of mass. Assuming
constant diffusion coefficients, Dy, and thermal conductivities, K the equa~

tions describing heat and mass transfer within a catalyst partlcle may be written
as

NH3

v - ‘ot . = © .. (1)
2 NH; NH '
Kp v Tp - H 3( hef 3 = O (2)

The boundary conditions which consider diffusion of heat and mass through a
film surrounding a spherical particle are

dc NHs NH | '

NH3 P R 3 NH3 NH,

Op ( ax )s = ke [Cn - (Cp)g ] (3)
and

NH
NpH NH, NH, {dC 3
(H k<:Ci> '+ M CDp 3<7>(E>s = h, [Ti - (Tp)s] (&)

where (k c. )N2 L represents the rate of diffusion of hydrazine to the particle
surface. It should be noted here that (c ) NoH) s approximately zero, reflec-
ting the fact that the catalytic decomp081tlon of hydrazine vapor is quite rapid.

As in the particle diffusion model developed. in Ref. 1 which neglected
film diffusion (assuming equal surface and interstitial temperatures and ammonia
concentrations), the temperature and ammonia concentration within a catalyst
particle are related by (Ref. 2)
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C e s s [t et )

The use of this relationship enables the reaction rate, rhetNH3’ to be written
as a function of concentration alone instead of concentration and temperature.
In this case, however, the reaction rate is a function of two parameters, (Ib)s
and (c,)g 3, which are yet to be determined. Equation(1)can be solved for the
concen%ration at any point in the porous particle in terms of the reaction rate,
rhetNH3, and the interstitial concentration, CiNH3. The solution is derived in
Appendix I as an implicit integral equation given by

- NHz _NH X NH
NH3 NH3 I akg =Dp 3 Thet (Cp)
= ¢ o |4 _ het \°p
Cp(x) C; [X W g2 _‘gp—NW o
°
NH NH ()
a NH
- _L — OKC - Dp i ¢ 2 rhe13(CP) as
AR o? ks Dp s

In order to determine the particle ammonia concentration profile directly in
terms of the interstitial temperature and reactant concentrations it is neces-
sary to solve Egs.(3), ), and (6) simultaneously. Numerical methods to accomplish
this have been developed and programmed for machine computation.¥

In the special case of negligible film resistance to heat and mass trans-

fer (i.e., (T,)g = T; and (cp)s = c;), Eq. (6) can be written, for any reacting

species, as .CP(X) . ¢ - [T‘( _ _(i_l__}fgz thg(cp) o
P
A ,
. ' (7)
_ oo 2 Thet (G
f {E 0]6 Dp X

It is Eg. (7) which is used to describe the hydrazine concentration prbfiles
within the catalyst particles located in the liguid region of the reaction
chamber. In this liquid region it is assumed that liquid hydrazine wets the
outside surface of the catalyst particles so that (cp)s NoH) - ciNEHh, where
cy T2HL i the vapor concentration in equilibrium with liquid hydrazine at
temperature Tj.

*Thege methods are described in detail in a computer manual describing to
potential users the operation of the computer programs representing the one-
and two-dimensional steady-state models of the reactor system. This manual
is being prepared as part of the third year of effort under the present con-
tract.
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Sample calculations of ammonia concentration and temperature profiles within
a porous catalyst particle have been made with and without hydrazine in the inter-
gtitial fluid. An illustrative example was considered for the case without hydra-
zine for which the parameters are

iy = 202k deg R
P = 100 psia
NHs = 0.19
Mole Fractions
in H = 0.51
Bulk Fluid 2 ’
o = 0,30
D3 = 0.35 x 107 4£t2/sec
HH3 = 1405 Btu/1b
kW3 = 5.0 ft/sec
A, = 0.29 Btu/ft2-sec-deg R
Ky - 0.40 x 107 Btu/ft-sec-deg R
a = 10-3 £t

The temperature and ammonia concentration profiles within the catalyst particle
were calculated by simultaneous solution of Egs. (3), (4), and (6) using the
expression for rype+ cited in Ref. 1. These profiles are plotted for this case
in Fig. 1. The flux at the particle surface, Dy(de,/dx), or k, [c4 - (cp)s],
is easily calculated once the concentration profile is known. For the ammonia
dissociation case discussed above, the mass flux of ammonia into the catalyst
particle, normalized by dividing by (k. ci)NH3, is plotted as a function of
bulk fluid temperature in Fig. 2. The reactant concentration profile and then
the mass flux at the particle surface were obtained for temperatures between
1700 and 2700 deg R; all other parameters were fixed at the same values used

in computing the profiles shown in Fig. 1. The normalizing factor, (k, ci)NH3,
is the ammonia mass flux which would be obtained if the reaction were controlled
by the film diffusion of heat and mass. For comparison purposes, normalized
fluxes are also plotted in Fig. 2 for the case in which film resistance to heat
and mass transfer is negligible (i.e., (Cp)s =cj and (T ) ;= T;) and for the
cagse where film and pore diffusion are sufficiently rapid so that the system .
is controlled by the rate of chemical reaction on the catalytic surfaces (i.e.,
cp(x) = c; and Tp(x) = T;). For the case of negligible film resistance to heat
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and mass transfer, Eq. (7) was used to determine the ammonia concentration dis-
tribution within the particle and then the flux at the particle surface. %&¥

the chemical reaction-controlled system, the flux was computed as «]/3)rhet 3(Ci:Ti)-
As shown in Fig. 2, these two cases represent low-temperature asymptotes for

the general case where the effects of film and pore diffusion on catalytic

reaction rates are considered. At high temperature this flux asymptotically
approaches the flux which would be obtained if the reaction were controlled by

the film diffusion of heat and mass.

Equations (3), (4), and (6) have also been solved simultaneously for the
temperature and ammonia concentration profiles in a porous catalyst particle

for a case in which hydrazine is present in the bulk fluid and the parameters
are

Ti = 2000 deg R
P = 100 psia
( NoH), = 0.43

Mble Fractions NH3 = 0.11

BMK"}hﬂd ; Hy = 0.23

K No = 0.23
D, 3 = 0.34 x 107%rt2/sec
3 = 1Lok Btu/1b
F2th = -1928 Btu/1b
chH3 = L.k £t/sec
i, N2H = 3.0 £t/sec
)% = 0.29 Btu/ft°-sec-deg R
K, = 0.40 x 10" Btu/ft-sec-deg R
a = 10-3 £t

Both the temperature and the ammonia concentration distributions are plotted
for this case in Fig. 3. Similar concentration profiles were calculated for-
bulk fluid temperatures between 1700 and 2700 deg R; all other parameters were
fixed at the same values used. in computing the profiles shown in Fig. 3. The
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flux of ammonia at the particle surface was then calculated, normalized by
dividing by (k. ci)NH3, and plotted as a function of bulk fluid temperature in
Fig. 4, Here again, at high temperature, the flux asymptotically approaches

the values which would be obtained if the reaction were controlled by the film
diffusion of heat and mass. At low temperature, in this case, film resistance

to heat transfer remains important because of the heat generated at the particle
surface by the decomposition of hydrazine.

Use of Integral Analysis in One-Dimensional Steady-State Model

A computer program representing the integral analysis was used as & sub-
routine in the one-dimensional steady-state program to define more precisely
the kinetics of ammonis dissociation by comparing temperature and concentration
profiles calculated using this program with available experimental information.
The rate of catalytic dissociation of ammonia can be expressed as (Ref. 1)

' NH
NHz  NHz Cp 3 -50,000/T, 3
Mhet = q m e P b/ ft°-sec (8)
)

where the concentrations are expressed in lb/ft3 and TP is in deg R. A wvalue
of 0.3 x 10+t for o3 was obtained in Ref. 1 by comparing experimental data
with calculated steady-state temperature and concentration profiles. However,
in the model used to calculate these profiles it was assumed that the temper-
ature at the surface of the catalyst pellet is equal to the interstitial (bulk
fluid) temperature at the same axial location. Using the more sophisticated
integral method described above, the same cases were rerun with the one-
dimensional steady-state program. The use of this method changes the predicted
steady-state behavior of the reactor most significantly in regions of the
reactor system where the bulk vapor temperature is low and the heat generated
at the catalyst particle surfaces by the decomposition of hydrazine results

in large differences between the bulk vapor temperature and the particle sur-
face temperature. High temperatures at the particle surface result in rapid
ammonia decomposition which leads to low peak temperatures in the bulk vapor
phase. Apart from lowering the predicted peak temperatures and ammonia con-
centrations, the use of the modified film and pore diffusion model did not
result in any appreciable difference between the recalculated temperature and
mole~fraction profiles and those presented in Ref. 1. The value of aNH3 which
yielded closest agreement with experimental data was 1 x 10 (1p/£43) L (sec)'l.
The results of calculations using this value are shown in PFigs. 5 through 1k *
For each of these cases the catalyst bed packing was taken to consist of 25-30
mesh catalyst particles for the first 0.2 in. and 1/8 x 1/8 in. cylindrical

*The sensitivity of these results to changes in a3 is very similar to the
sensitivity to this rate constant of the results reported in Ref. 1.
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pellets for the remainder of the bed. This configuration is referred to in
the figures as the "standard bed configuration.' The reactor operating con-
ditions of chamber pressure and mass flow rate were varied, as was the feed
temperature, Tp, although, in each of these cases, Ty was between approx-
imately 510 and 530 deg R. '

Temperature distributions are plotted in Fig. 5 for a case in which the

reactor operating conditions were taken as G = 3.12 lb/ftz—sec and

= 479.5 psia. Also shown in Fig. 5 are temperature measurements obtained
by Rocket Research Corporation (Ref. 3) during the course of engine firings
under the same operating conditions. The calculated mole~-fraction profiles
for this case, together with experimental values of mole fractions, are shown
in Fig. 6. The results of similar calculations made for G = 2.43 lb/ftg-sec
and P = 1042 psia are shown in Figs. 7 and 8; those made for G = 6.29 lb/ftg-sec
and P = 974 psia are shown in Figs. 9 and 10; those made for G = 1.52 lb/ft -gsec
and P 217.9 psia are shown in Figs. 11 and 12, and those made for G = 1.51
lb/ftg—sec and P = 111.h psia are shown in Figs. 13 and 1k.

Il

As noted in Ref. 1, the heat transfer coefficients used in this model
were estimated using correlations developed for nonreacting systems. In regions
where significant chemical reaction takes place, such as the zones in which
both hydrazine and ammonia are decomposing, actual heat transfer rates are con-
siderably higher than those calculated in this model. Precise accounting of
this increase in rate would lead to a value of(INHS somewhat less than 1 x 1011,

The effects of various reactor operating conditions on steady-state tem-
perature profiles are illustrated more specifically in Figs. 15 through 18.
A reference case was chosen in which the operating conditions were G = 3.0
lb/ft -sec, P = 100 psia, and Tp = 530 R, and the catalyst bed configuration
was the "standard bed configuration." Chamber pressure, mass flow rate,
catalyst bed configuration and axial injection profile were then varied in
turn and the resulting temperature distributions were plotted. In Fig. 15
temperature distributions are plotted for chamber pressures of 100, 500 and
1000 psia with all other conditions taken as those of the reference case.
Increasing pressure causes the peak temperature to rise and shift slightly
toward the inlet of the reactor. This is due to the inhibiting action of
hydrogen on the rate of ammonia dissociation. Temperature profiles are shown
in Fig. 16 for mass flow rates of 1.5, 3.0 and 6.0 lb/ft -sec. Increasing .
flow rate causes the peak temperature to rise and shift slightly away from the
reactor inlet. The effect of changing the catalyst bed configuration on the
temperature distribution is shown in Fig. 17. Temperature profiles are plotted
for beds packed with all 25-30 mesh particles, all 1/8 in. x 1/8 in. cylin-
drical pellets, and the standard nonuniform particle size distribution. It
is apparent that the larger particles slow down the rates of the catalytic
decomposition reactions. The effects of distributed injectors on temperature
profiles are illustrated in Fig. 18. Temperature distributions are plotted

10

e
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for the reference case, for the case in which 2/3 of the hydrazine is injected
at the inlet and the remaining 1/3 is injected uniformly over the first 1/2 in.
of the reactor, and for the case in which 1/3 of the hydrazine is injected at
the inlet and the remaining 2/3 ig injected uniformly over the first 1/2 in.

of the reactor. In these cases the bed was taken to be packed with all 25-30
mesh particles.

One-Dimensional Steady-State Program

A geries of runs was made with the one-dimensional steady-state computer
program in order to develop empirical correlations to predict axial temperature
and fractional ammonia dissociation profiles in hydrazine reactors packed with
Shell 405 catalyst particles. FEmpirical correlations were developed on the
basis of about 65 runs representing different combinations of mass flow rates,
pressures and catalyst bed configurations. It was found that fractional ammonisa
dissociation and bulk fluid temperature could be predicted using the equations

| - Fractional Ammonia Dissociation = & (9)

and

T = 1020 {® + [0.075 (P/1000) ]} + 1535 (10)
where

® =(056)(6/2)028{[@15500*7— 0.17) UOOO/P)QZZJ + oy7} (11)

and z and 0 are expressed in £t, G in lb/ftg-sec, P in psia, and T; in deg R.
Here, as in Ref. 1, fractional ammonia dissociation is determined on the basis
that, with no ammonia dissociation, one mole each of hydrogen and nitrogen are
formed for every two moles of hydrazine decomposed. Results obtained using fthese
equations are illustrated in Figs. 19 and 20, respectively, for cases in which
most of the hydrazine decomposition occurs in the first few tenths of an inch

of the reactor; this rapid hydrazine decomposition rate is associated with
reactors packed with particles 25 mesh or smaller for approximately 0.2 in.

of bed length. For these cases the correlations depicted in Figs. 19 and 20
work well for axial distances greater than one inch and for values of pressure,
P, between 10 and 1000 psia, mass flow rate, G, between 1.4l and 1.k 1b/ft2-sec
(0.01 and 0.1 lb/in.z-sec, respectively) and equivalent spherical radius, a,
‘between 0.001 and 0.0l ft. For a reactor packed with small (<25 mesh) par-
ticles for the first few tenths of an inch and larger particles thereafter,

the particle radius, 0, refers to the larger particles.

1l
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In Figs. 19 and 20, Rocket Research experimental data (Ref. 3) are plotted
along with the empirical predictions and the results of sample cases run using
the one-dimensional steady-state program. Values of fractional ammonia dis-
sociation obtained from the éteady—state program are plotted for axial locations
between 1 and 6 inches while values of bulk fluid temperature obtained from the
program are plotted only for axial locations between 3 and 6 inches. Calcu-
lated values of temperature for axial locations between 1 and 3 inches scatter
slightly about the predicted line in Fig. 20 in the same manner as the corres-
ponding values of fractional ammonia dissociation scatter about the predicted
line in Fig. 19.

It should be emphasized that these empirical correlations do not correctly
predict the behavior of reactors in which hydrazine decomposition is slow, for
example, reactors which are uniformly packed with large catalyst particles, such
as 1/8 in. x 1/8 in. cylinders. The correlations work quite well though for
catalyst bed configurations consisting of 25-30 mesh particles for the first
0.2 in. and 1/8 in. x 1/8 in. cylindrical pellets for the remainder of the bed.

Two-DimensionalvSteady~State Model

In developing the two-dimensional model of a hydrazine reactor system the
temperature and reactant concentrations in the bulk fluid phase are permitted
to vary with radial and axial position in the reaction chamber. In the entrance
region of the reactor, where the temperature is low enough to permit the exis-
tence of liquid hydrazine, radial mixing between adjacent layers of liquid is
neglected. The equations representing the change in liquid enthalpy and tem-
perature with axial distance at any radial position are the same as those devel-
oped for the one-dimensional model described in Ref., 1. As in the one-dimensional
model, catalybic reaction is assumed to be fast enough to keep liquid hydrazine
from wetting the pores of the particles; the hydrazine concentration at the sur-
face of the catalyst particles at any location in the entrance region is then
computed from the vapor pressure of liguid hydrazine in the interstitial phase
at the same location.

In the vapor regions of the reaction chamber, turbulent diffusion of heat
and mass 1ls considered as a mechanism for radial mixing. Radial heat and mass
fluxes are computed as functions of temperature and reactant concentration gra-
dients. Heat is being supplied to the system by homogeneous as well as hetero-
geneous decomposition of hydrazine, and is being removed from the system by the
catalytic decomposition of ammonia. The change in enthalpy with axial distance
at any radial location is related to the reactant concentrations in the inter-
stitial phase and at the surface of the porous catalyst particles by

12
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N .
_q._l 2 - —-—‘G— {F (hj'hF) + Aphg [Ti - (Tp)s] + HN2H4 Th:;\HQS

4z (12)°

+ %%}-8 + 8 + -— 8 NS ¢ }

The changes in reactant weight fractions in the interstitial phase with axial
distance at any radial location are related to the reactant concentrations in
the interstitial phase and at the surface of the porous catalyst particles by

3 NaHg
wi N,H, Ny H,
az = E {F - rhom 8 - Ap (kC Ci ) (13)
NoH NoH
_ aNrE ‘8 - Nr ? 48 _ /C >N2H4
ar r \pl
NH3 NH NH '

ow; © I NoH Mo NHg M 0 NH3
% TS {’hoin‘s e, Aelkee )T = ae (ke [oi - (] )

: (1k4)

1N Pk (L™

ar r Pi
N2 N2 N2

ow; o ‘ N2H48 M + Ap (k )NzH".iA_..._. :
37 3% 12 "hom mNeHa ¢ w NaHa (15)

Ap NH3 pmNe ON, 2 N2 Ci \Nz

+ —£ c - — - L - =L

2 (kc [C' (pSD MNH3 or 8 2 ] (Pi>
R T A
az G 2 hom MN2 Ha 2 c™) M NaHg (16 )

H
3Ap NHy mH2 ANy 2 Ny ~ ci \Me
-..é— (kC [Ci - (Cp)s]> m BT 3 - 0 3 F (—’:«>

*Equations of this type are presented in somewhat different form in Ref. L.
The last term on the right-hand side of the equation reflects the heat
transferred by the radial diffusion of mass.

13
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where

qr = -X(&Ti/ar; (17)
NS = -e (dciY/or), ‘(18)
b = 0.74 [z%]_w [%c_s_} (19)

TR e
~ Lei J LeiOY App

The eddy conductivity and diffusivity may be estimated from (Ref. 5)

a Cf G . a6
= and € = — (21)
A 58 Sp

The changes in reactant concentrations with axial distance are then given by

ac’ ow;’ . ¢’ 0p; (2
— = p =L 22
0z e Pi 0z )
where
ap; I oM I OT; | dP
L s g | e - = e b T 23
9z p‘[M 9z T, 9z Po’z] (3)
i af—\ﬂ- _ | | 'awid
M dz 5 (w; /M) 2 MY oz (ak)
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and the pressure drop may be estimated from the Ergun equation (Ref. 4) as

ar - (:_8) (175 N |50(|—8)> ( G2 > (25)
dz WARN 206/ / \2apge/

The mass flow rate, G, is computed as a function of the rate of feed of liquid
hydrazine from the distributed injectors into the system. Radial pressure
gradients, caused by particle-fluid viscous interaction, are neglected. Such
pressure gradients would lead to recirculating flow patterns in the reaction
chamber. This bulk radial flow is neglected in this analysis. It is assumed,
therefore, that downstream of the injectors the mass flow rate profile remains
unchanged. ‘

The equations representing the two-dimensional model have been programmed
for digital computation. A computer manual containing a detailed description
of the operating characteristics of the program is currently being prepared as
part of the third year of effort under the present contract.

Results of Calculations Using the Two-Dimensional Steady-State Program

A series of calculations was made using the two-dimensional steady-state
computer program in order to examine the effectiveness of the two-dimensional
model and to evaluate the effects on system performance of nonuniform radial
injection and of catalyst bed configurations exhibiting both radial and axial
nonuniformities. The calculated results illustrated in Figs. 21 through 54
refer to a reactor 3 in. in diameter into which liquid hydrazine is injected
at a temperature of 530 deg R. :

Axial temperature profiles at various radial locations are plotted in
Fig. 21 for a case in which a radial nonuniformity in mass flow rate, G, is
represented as a step function (see Fig. 21). In this case the upstream
chamber pressure was taken as 100 psia and the catalyst bed packing was taken
to consist of 25-30 mesh catalyst particles for the first 0.2 in. and 1/8 x
1/8 in. cylindrical pellets for the remainder of the bed. This configuration
is referred to in the figures as the "standard bed configuration”. Turbulent
diffusion of heat, which tends to reduce radial temperature gradients, is more
pronounced in the downstream end of the reactor. Here the catalyst particle
size is larger, and both eddy conductivity and eddy diffusivity are directly
proportional to particle size. The consequences of radial heat conduction
are complicated somewhat by the simultaneous turbulent diffusion of mass.
Higher temperatures are associated with more hydrazine decomposition; thus
high temperature regions may lose heat by radial conduction, but may gain
hydrazine from adjoining low temperature regions by radial diffusion of mass.
Subsequent decomposition of this hydrazine may lead to even higher temper-
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atures. In these same regions the ammonia produced by the decomposition of
hydrazine may exist at higher concentration than in adjacent low temperature
regions. In the absence of radial diffusion the ammonia in these high-
temperature regions would decompose and lower the temperature. With radial
diffusion, however, the concentration of ammonie available for decomposition
mey be lowered considerably. For the case considered here, these combined
effects lead to the temperature distribution shown in Fig. 21%. For comparison
purposes, the axial temperature profile corresponding to a radially uniform
mass flow rate of 3.0 1b/ft2-sec is also plotted in Fig. 21. This is the aver-
age mass ‘flow rate calculated by averaging the actual mass flow rate profile
over the cross-~sectional area of the reactor. The mole-fraction distributions
of hydrazine and ammonia associated with the temperature distribution shown in
Fig. 21 are illustrated in Figs. 22 and 23 respectively.

The results of similar calculations made for two different upstream chamber
pressures are shown in Figs. 24 through 29. The calculated temperature, mole
fraction of hydrazine, and mole fraction of ammonia distributions are plotted
in Figs. 24 through 26 respectively for a pressure of 200 psia and the same
mass flow rate profile and bed configuration used in the calculations presented
in Figs. 21 through 23. These calculations were repeated for a chamber pres-
sure of 1000 psia; the results are shown in Figs. 27 through 29.

Retaining the catalyst bed configuration and step function injection pro-
file discussed above, and taking the upstream chamber pressure ag 200 psia,
similar calculations were made for two other average mass flow rates. The
calculated temperature, mole fraction of hydrazine, and mole fraction of ammo-
nia profiles are plotted in Figs. 30 through 32 respectively for an average
mass flow rate of 1.0 lb/ftz-sec and in Figs. 33 through 35 respectively for
an average mass flow rate of 6.0 1b/ft“-sec.

The results of calculations made for two other injection profiles are
shown in Figs. 36 through 41. These calculations were made for the "standard
bed configuration," an upstream chamber pressure of 100 psia, and an average
mass flow rate of 3.0 lb/fte-sec. The temperature and mole~fraction distri-
butions associated with the injection profile illustrated in Fig. 36 are
plotted in Figs. 36 through 38 and those associated with the continuously
varying injection profile illustrated in Fig. 39 are shown in Figs. 39 through

L.

*The effects of radial diffusion can be more clearly illustrated with cross-
plots showing radial temperature profiles at various axial locations in the
reactor. While radial profiles were not plotted for this case, they were
plotted for another case discussed later in this section.
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The effects on temperature and reactant concentration distributions of
two catalyst bed configurations exhibiting both radial and axial nonuniformities
are illustrated in Figs. 42 through 47. For both of these configurations the
mass flow rate was taken as uniform at 3.0 Ib/fte-sec and the upstream chamber
pressure was taken as 100 psia. The calculated temperature, mole fraction of
hydrazine, and mole fraction of ammonia distributions corresponding to the bed
configuration shown in Fig. 42 are plotted in Figs. 42 through 4l respectively.
Similar calculations corresponding to the bed configuration shown in Fig. 45
are plotted in Figs. 45 through A4T.

The effects of the simultaneous turbulent diffusion of heat and mass on
temperature and reactant concentration profiles are more clearly indicated for

a case in which hydrazine injection is uniform across the inlet face of the
reactor but additional hydrazine is introduced into the reactor through injec-

tors imbedded in the catalyst bed. Calculations were made for an injection
profile of this type, illustrated in Fig. 48, where the chamber pressure was
taken as 100 psia and the bed configuration as "standard". 1In this case the
buried injectors were taken to distribute hydrazine uniformly for OSr/RfEO.T,
over the first 1/2 in. of the reactor. The calculated temperatures are plotted
as a function of axial position at various radial positions in Fig. 48. Hydra-
zine diffusion from low to high temperature regions results in unusually high
temperatures at the interface between the high and low flow rate regions. This
results in the formation of a "thermal sheath" which is more clearly illustrated
in Fig. 49 which is a cross-plot of the results presented in Fig. 48. Here
temperature is plotted as a function of radial position at various axial loca-
tions in the reactor. For comparison purposes, the radial temperature profile
at the exit of a 3 in. bed with a step function (all inlet) injection profile
is also plotted in Fig. 49. The mole fraction of hydrazine and ammonia distri-
butions associated with the temperature profiles shown in Figs. 48 and 49 are
plotted in Figs. 50 and 51 respectively.

The effects of various reactor operating conditions on radial temperature
profiles at the exit of a 3 in. bed are illustrated in Figs. 52 through 54 for
the standard bed configuration and for hydrazine injection at the reactor inlet
only. The effect of upstream chamber pressure on exit radial temperature pro-
file is shown in Fig. 52 for a step function injection profile with an average
mass flow rate of 3.0 lb/ft2-sec. Very little effect is noted over a ten-fold
pressure range. A marked effect of average mass flow rate on radial temper-
ature profile is shown in Fig. 53 for the same step function injection profile
and an upstream chamber pressure of 200 psia. The effect of inlet injection
profile on radial temperature distribution is illustrated in Fig. 54 for an
average mass flow rate of 3.0 lb/ft2-sec and an upstream chamber pressure of
100 psia.
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It should be noted here that the injection profiles and catalyst bed
configurations discussed in this section were chosen simply to illustrate the
two-dimensional effects which can occur in the hydrazine reactor. No attempt
was made to perform an exhaustive study of the effects of radial variations
in reactor operating and design parameters on the steady-state behavior of the
reactor system. It is apparent, however, that a one-dimensional model of the
system, based on parameters averaged over the reactor cross-section, is not
adequate to describe the behavior of a reactor which exhibits significant
radial variations in injection profile or bed configuration. For these systems,
it is necessary to use the two-dimensional model to effectively predict, for

example, the locations of very high temperature regions such as "thermal
sheaths".
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p

" LIST OF SYMBOLS

Radius of spherical particle, £t

Total external surface of catalyst particle per unit volume of bed, ft'l
Reactant concentration in interstitial fluid, 1b/ft3

‘Reactant concentration in gas phase within the porous particle, l'b/ft3
Equals Cp - (Cp)g, 1b/ft3

Specific heat of fluid in the interstitial phase, Btu/1b - deg R

Average specific heat of fluid in the interstitial phase, Btu/lb - deg R
Specific heat of ca?alyst particle, Btu/lb - deg R

Diffusion coefficient of reactant gas in the interstitial fluid, ft2/sec
Diffusion coefficient of reactant gas in the porous particle, ftg/sec

Rate of feed of hydrazine from distributed injectors into the system,
1b/fi3-sec

Conversion factor, (lbp/lbs) £t/sec®

Mass flow rate, 1b/ft°-sec

Enthalpy, Btu/lb

Heat transfer coefficient, Btu/ft2-sec-deg R

Heat of reaction (negative for exothermic reaction), Btu/lb

Mass transfer coefficient, ft/sec

Thermal conductivity of the porous catalyst particle, Btu/ft-sec-deg ﬁ
Molecular weight, 1b/1b mole

Average molecular weight, 1b/1b mole

Redial mass flux, lb/fte-sec

Chamber pressure, psia
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Ar

rhet

hom

Pi
Ps

<

Radial heat flux, Btu/ft°-sec
Radial distance, ft

Rate of (heterogeneous) chemical reaction on the catalyst. surfaces,
1b/ft3-sec o

Rate of (homogeneous) chemical reaction in the interstitial phase,
1b/ft3-sec

Gas constant, equals 10.73 psia - ft3/lb mole - deg R, or,
Radius of reactor

Time, sec

Actual time minus time required, under steady-state conditions, for
liquid hydrazine to flow from the reactor inlet to the interface between
the liguid-vapor and vapor regions, sec

Temperature, deg R

Wéight fraction of reactan£ in interstitial phase

Radiél distance from the center of the spherical catalyst particle, ft
Axial distance, ft

Preexponential factor in rate equation

Interparticle void fraction

Eddy diffusivity, £t°/sec

Eddy conductivity, Btu/ft-sec-deg R

Viscosity of interstitial fluid, 1b/ft - sec

Density of interstitial fluid, lb/ft3

Bulk density of catalyst particle, 1b/ft3

Defined by Egq. (11)

Subscripts

F

[

Refers to feed

Refers to interstitial phase
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P Refers

S Refers
Superscripts

J Refers

L Refers

v Refers

to

to

to

to

to

gas within the porous catalyst particle

surface of catalyst particle
chemical species

liguid at wvaporization temperature

vapor at vaporization temperature
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APPENDIX T

DERIVATION OF INTEGRAL EQUATIONS REPRESENTING THE CONCENTRATION
PROFILE OF A REACTANT WITHIN A POROUS CATALYST PARTICLE
SURROUNDED BY A STAGNANT GAS FILM

In this section equations are developed to describe the steady-state concen-
tration profile of a reactant within a porous catalyst particle which is surrounded
by a stagnant gas film. The reactant concentration profile in the porous particle
at any location can be found as a solution to:

D, V2 ¢y - Mot Cp! = 0 (1-1)

If the catalyst particles are taken to be "equivalent" spheres of radii a, and if
concentration Cp* is defined such that Cp = Cp - Ci , Eq. (I-1) can be written as

a2 Eﬂﬁf) i} -
Dp { 3 7 (x 7 fhet = © (1-2)

where X is the radial distance from the center of a sphere. The boundary conditions
associated with Eq. (I-2) are

* * .
dcp dc k .
= 0 AT x=0 Ny = -
ax ax D, P AT x=o0 (1-3)
Equation (I-2) can be rearranged to get
9 (2 9% L T x
o X T = bp = _¢(x, Cp ) (I-4)

The solution to Eq. (I-4) is most easily obtained by converting it into a Fredholm
integral equation (see Ref. 6) of the form

e Xix) - ' [feix,60- 8¢ 0¢ (1-5)
P x2 [u(x) vix) - UI(X)V(X)] 0 ’ TP .
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where u{x) is a solution of

g (42 _czu_> . :
ax (X ax 0 (1-6)
subject to the condition that
def du *
_-_.D. - — C = -
[“ dx  dx P ] © (z-7)
Xz 0
and v{x)is a solution of
g (2 ﬂ) : ‘
ax (x ax © ' (1-8)
subject to the condition that
*
dac dv *
—k _ == z
{V dx | ax P Lo 0 (1-9)

The Green's function, G (x,&) is given by

Sx £ utg) vix) FOR 0< & < x
&)= ) U vig) FOR x <€ < (1-10)
The function u(x) can be determined by first integrating Eq. (I-6) to get

A

us= - —x' + B, (1-11)

Applying Eq. (I-7) together with the first of boundary conditions (1-3) to
Eq. (I-11), it is found that A, =0 and

u = B, (1-12)
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The function v{(x)can be determined in a similar manner by first integrating

Eq. (I-8) to get

A
- 2
V--—x—+82

(I-13)

and then applying Eq. (I-9) and the second of boundary conditions (I-3) to Eq.

(I-13) to get

- ch"'Dp |
o | T <]

Equations (I-10), (I-12), and (I-14) can now be combined to get

a,p, |SKe=Op _ FOR 0 <€< x
G E) 2=l Ozkc X
X, =
Okc‘Dp '
AZB'—EE_k—C— '—'E— FOR x< &< a
In addition,
xz[u(x) v'(x) - u'(_x)v(x)] = A,B,

Equations (I-15)and (I-16) can now be substituted into Eq. (I-5) to get-

X
- |
Co(X) = [—q-k%?ii ~ *x—]f ¢ (£,cp) €
0
!

d ak D
¢~ Dp *
+ f [—W - —f—] ¢ (g,Cp)df

or X

- X
cplx) = ¢i - {L _ ke Dp} gzlﬁﬁﬂfe dé

X Ozkc Dp

a o}
N o ake - Dp 2 Thet (CP)
lj [E a?ke } ¢ Dp %

(T-14)

(1-15)

(1-16)

(I-17)

(1-18)

Equation (I-18) is an implicit integral equation which can be solved numerically

to determine the concentration at any point in a porous particle in terms of C;

the concentration in the bulk fluid.
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FIG. 1

TEMPERATURE AND AMMONIA CONCENTRATION PROFILES WITHIN CATALYST PARTICLE

~DEGR

TEMPERATURE WITHIN CATALYST
PARTICLE, T, (x)

3

AMMONIA CONCENTRATION WITHIN
CATALYST PARTICLE, cp(x) - LB/FT

NO HYDRAZINE PRESENT IN BULK FLUID

SEE TEXT FOR VALUES OF PARAMETERS REQUIRED FOR NUMERICAL SOLUTION
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FIG. 2
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G910461-24 FIG. 3
TEMPERATURE AND AMMONIA CONCENTRATION PROFILES WITHIN CATALYST PARTICLE

HYDRAZINE PRESENT IN BULK FLUID

SEE TEXT FOR VALUES OF PARAMETERS REQUIRED FOR NUMERICAL SOLUTION
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G910461-24 FIG. 5

STEADY-STATE AXIAL TEMPERATURE PROFILE
USING MODIFIED FILM AND PORE DIFFUSION MODEL
P = 479.5 PSIA
G =3.12LB/FTZ - SEC
_ STANDARD BED CONFIGURATION (SEE TEXT)
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G910461-24. FIG. 6

STEADY-STATE AXIAL PROFILES
‘OF MOLE-FRACTIONS OF REACTANTS
USING MODIFIED FILM AND PORE DIFFUSION MODEL

P =479.5 PSIA
G =3.12 LB/FT 2~ SEC
STANDARD BED CONFIGURATION (SEE TEXT)

007

ROCKET RESEARCH DATA @

0.6 |—

MOLE-FRACTIONS OF REACTANTS IN INTERSTITIAL PHASE
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3

0 | | | o 24
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TEMPERATURE IN INTERSTITIAL PHASE, T, - DEGR

STEADY-STATE AXIAL TEMPERATURE PROFILE
USING MODIFIED FILM AND PORE DIFFUSION MODEL

P = 1042 PSIA
G = 2,43 LB/FT?~ SEC
STANDARD BED CONFIGURATION (SEE TEXT)
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FIG. 7



G910461-24 ‘ : FIG. 8

STEADY-STATE AXIAL PROFILES
'OF MOLE-FRACTIONS OF REACTANTS
USING MODIFIED FILM AND PORE DIFFUSION MODEL

P = 1042 PSIA .
G =243 LB/FT2- SEC
STANDARD BED CONFIGURATION (SEE TEXT)

0.7

@ ROCKET RESEARCH DATA

006 [ H

MOLE-FRACTIONS OF REACTANTS IN INTERSTITIAL PHASE
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NH,
0.1
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TEMPERATURE IN INTERSTITIAL PHASE, T, - DEGR

STEADY-STATE AXIAL TEMPERATURE PROFILE OFILE

USING MODIFIED FILM AND PORE DIFFUSION MODELMODEL

STANDARD BED CONFIGURATION (SEE TEXT)

P =974 PSIA
G =6.29 LB/FT 2. SEC
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FIG. 9



G910461-24 . FIG. 10

STEADY-STATE AXIAL PROFILES
OF MOLE-FRACTIONS OF REACTANTS

USING MODIFIED FILM AND PORE DIFFUSION MODEL

P =974 PSIA"
G =6.29 LB/FT?2- SEC

STANDARD BED CONFIGURATION (5EE TEXT)

0.7

IROCKET RESEARCH DATA, '

0.6 -

MOLE-FRACTIONS OF REACTANTS IN INTERSTiTIiAL PHASE

0 | | |

0 0.05 6.10 0.15 0.2 0.25
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TEMPERATURE IN INTERSTITIAL PHASE, T. - DEGR

AXIAL DISTANCE, Z - FT

‘FIG. 11
STEADY-STATE AXIAL TEMPERATURE PROFILE
USING MODIFIED FILM AND PORE DIFFUSION MODEL
P =217.9 PSIA A
G =1.52 LB/FT2 - SEC SEC
STANDARD BED CONFIGURATION (SEE TEXT) TEXT)
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MOLE—FRACTIONS OF REACTANTS IN INTERSTITIAL PHASE

+ STEADY-STATE AXIAL PROFILES
OF MOLE-FRACTIONS OF REACTANTS
USING MODIFIED FILM.AND PORE DIFFUSION MODEL

P =217.9 PSIA
G =1.52 LB/FT2 - SEC
STANDARD BED CONFIGURATION (SEE TEXT)

0.
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N, 4
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G910461-24 FIG 13

STEADY-STATE AXIAL TEMPERATURE PROFILE
USING MODIFIED FILM AND PORE DIFFUSION MODEL

P = 1114 PSIA
G=1.51 LB/FT2 = SEC
STANDARD BED CONFIGURATION (SEE TEXT)
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G910461-24 FIG. 14

STEADY-STATE AXIAL PROFILES
OF MOLE—FRACTIONS OF REACTANTS
USING MODIFIED FILM AND PORE DIFFUSION MODEL

P=11L4 PSIA
G=1.51 LB/FT 2- SEC
STANDARD BED CONFIGURATION (SEE TEXT)

0.7
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NH,
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G910461-24 FIG. 15

STEADY ~ STATE AXIAL TEMPERATURE PROFILES
FOR VARIOUS CHAMBER PRESSURES
USING MODIFIED FILM AND PORE DIFFUSION MODEL

G=3.0 LB/FT?- SEC
STANDARD BED CONFIGURATION (SEE TEXT)

2300
-—— P = 1000 PSIA
—— 500 PSIA
2100 +—
100 PSIA 100 & 500 PSIA
1900 1000 PSIA
24
O
|31
[
' 1700 |

1500 |7

1300 M

1100 -

TEMPERATURE IN INTERSTITIAL PHASE, T

900

700

500 | | : |
0 0.05 0.10 0.15 0.20 0.25

AXIAL DISTANCE, z - FT




G910461-24 FIG. 16
STEADY - STATE AXIAL TEMPERATURE PROFILES
FOR VARIOUS MASS FLOW RATES
USING MODIFIED FILM AND PORE DIFFUSION MODEL

P =100 PSIA
STANDARD BED CONFIGURATION (SEE TEXT)
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T, - DEGR

TEMPERATURE IN INTERSTITIAL PHASE,
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STEADY — STATE AXIAL TEMPERATURE PROFILES
FOR VARIOUS CATALYTIC BED CONFIGURATIONS
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STEADY - STATE AXIAL TEMPERATURE PROFILES
FOR VARIOUS HYDRAZINE AXIAL INJECTION PROFILES
USING MODIFIED FILM AND PORE DIFFUSION MODEL
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G910461-24

EMPIRICAL PREDICATION OF FRACTIONAL

AMMONIA DISSOCIATION
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G910461- 24

EMPIRICAL PREDICTION OF INTERSTITIAL

GAS TEMPERATURE
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P = 100 PSIA
R=0.125FT

TEMPERATURE IN INTERSTITIAL PHASE, T; - DEGR
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FIG. 21
STEADY — STATE AXIAL TEMPERATURE PROFILES
AT VARIOUS RADIAL POSITIONS
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P = 100 PSIA
R=0.125FT

MOLE — FRACTION OF HYDRAZINE
IN INTERSTITIAL PHASE

FIG. 22

STEADY ~ STATE AXIAL PROFILES OF MOLE - FRACTION OF

HYDRAZINE AT VARIOUS AXIAL POSITIONS
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FIG. 23
STEADY - STATE AXIAL PROFILES OF MOLE - FRACTION OF
AMMONIA AT VARIOUS RADIAL POSITIONS
5
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STEADY - STATE AXIAL TEMPERATURE PROFILES
AT VARIOUS RADIAL POSITIONS
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STEADY - STATE AXIAL PROFILES OF MOLE - FRACTION

OF HYDRAZINE AT VARIOUS RADIAL POSITIONS
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FIG. 25
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MOLE - FRACTION OF AMMONIA

FIG. 26

STEADY -STATE AXIAL PROFILES OF MOLE - FRACTION OF
AMMONIA AT VARIOUS RADIAL POSITIONS
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STEADY - STATE AXIAL TEMPERATURE PROFILES

AT VARIOUS RADIAL POSITIONS
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STEADY - STATE AXIAL PROFILES OF MOLE — FRACTION OF
HYDRAZINE AT VARIOUS RADIAL POSITIONS
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STEADY - STATE AXIAL PROFILES OF MOLE - FRACTION
OF AMMONIA AT VARIOUS RADIAL
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STEADY - STATE AXIAL TEMPERATURE PROFILES
AT VARIOUS RADIAL POSITIONS
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691046124 FIG. 31

STEADY — STATE AXIAL PROFILES OF MOLE - FRACTION
OF HYDRAZINE AT VARIOUS RADIAL'POSITIONS
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MOLE - FRACTION OF AMMONIA

STEADY - STATE AXIAL PROFILES OF MOLE - FRACTION
OF AMMONIA AT VARIOUS RADIAL POSITIONS

P = 200 PSIA 1.5 STANDARD BED
R=0.125FT 2] ity bl B CONFIGURATION
¢ 1 I— (SEE TEXT)
0 i 1 1 1 1 A " 2 1 J
0 0.5 1.0
/R
0.6
0.5 o
wl 004 -
4]
<
T ONE ~ DIMENSIONAL
PROFILE OF MOLE-
= FRACTION OF AMMONIA
= 0.3 CORRESPONDING TO AVERAGE G
=
“ \
- \
- /R =
4 \ v 0.05
Zz 0.2 F '
= \ 0.65
\ 0.75
- 0.95
——T
0.1} o= —
0 L ) | |
0 0.05 0.10 0.15 0.20 0.25

AXIAL DISTANCE , z - FT

FIG. 32



G910461-24

P= 200

STEADY -STATE AXIAL TEMPERATURE PROFILES
AT VARIOUS RADIAL POSITIONS
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FIG. 33
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FIG. 34

STEADY - STATE AXIAL PROFILES OF MOLE - FRACTION
OF HYDRAZINE AT VARIOUS AXIAL POSITIONS
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P =200 PSIA
R=0.125 FT"

MOLE — FRACTION OF AMMONIA IN INTERSTITIAL PHASE

FIG. 35
STEADY — STATE AXIAL PROFILES OF MOLE - FRACTION OF
" AMMONIA AT VARIOUS RADIAL POSITIONS
10 - STANDARD BED
¢ 6 :""TvE'RI'eE'G‘""'"“' CONFIGURATION
' I (SEE TEXT)
0 PR U ST SRS VR WY SN WY WO |
0 0.5 1.0

0.5

0.4

0.2

0.1

/R

ONE — DIMENSIONAL PROFILE OF
MOLE - FRACTION OF AMMONIA
CORRESPONDING TO AVERAGE G

0.05 0.10 0.15 0.20 0.25
AXIAL DISTANCE , z - FT



G910461-24 FIG. 36
 STEADY - STATE AXIAL TEMPERATURE PROFILES
AT VARIOUS RADIAL POSITIONS
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STEADY — STATE AXIAL PROFILES OF MOLE - FRACTION
OF HYDRAZINE AT VARIOUS RADIAL POSITIONS
7 -
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FIG. 38

STEADY - STATE AXIAL PROFILES OF MOLE - FRACTION
OF AMMONIA AT VARIOUS RADIAL POSITIONS
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STEADY — STATE AXIAL TEMPERATURE PROFILES
AT VARIOUS RADIAL POSITION
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P = 100 PSIA
R=0.125 FT

MOLE — FRACTION OF HYDRAZINE IN INTERSTITIAL PHASE
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OF HYDRAZINE AT VARIOUS RADIAL POSITIONS
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STEADY - STATE AXIAL PROFILES OF MOLE - FRACTION
OF AMMONIA AT VARIOUS RADIAL POSITIONS
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G910461-24 , FIG. 42
STEADY - STATE AXIAL TEMPERATURE PROFILES AT VARIOUS RADIAL POSITIONS
P-100PSIA G=3.0 LB/FT2 - SEC
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STEADY - STATE AXIAL PROFILES OF MOLE - FRACTION
. ‘ OF HYDRAZINE AT VARIOUS RADIAL POSITIONS

P - 100 PSIA R =0.125 FT. G-3.0LB/FT? - SEC
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STEADY - STATE AXIAL PROFILES OF MOLE - FRACTION OF
AMMONIA AT VARIOUS RADIAL POSITIONS

P = 100 PSIA R=0.125 FT G=3.0LB/FT? -SEC
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FIG. 44
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STEADY - STATE AXIAL TEMPERATURE PROFILES AT VARIOUS RADIAL POSITIONS

TEMPERATURE IN INTERSTITIAL PHASE, T; - DEG R
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STEADY - STATE AXIAL PROFILES OF MOLE - FRACTION
OF HYDRAZINE AT VARIOUS RADIAL POSITIONS

P - 100 PSIA R=0.125 FT G = 3.0 LB/FT* - SEC
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STEADY — STATE AXIAL PROFILES OF MOLE - FRACTION
OF AMMONIA AT VARIOUS RADIAL POSITIONS
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P = 100 PSIA
R=0.125 FT
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FIG. 49

STEADY — STATE RADIAL TEMPERATURE PROFILES AT VARIOUS AXIAL POSITIONS
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- STEADY - STATE AXIAL PROFILES OF MOLE - FRACTION OF HYDRAZINE AT VARIOUS
RADIAL POSITIONS FOR BURIED INJECTORS )
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FIG. 51

STEADY - STATE AXIAL PROFILES OF MOLE - FRACTION OF AMMONIA
AT VARIOUS RADIAL POSITIONS FOR BURIED INJECTORS
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EFFECT OF PRESSURE ON STEADY - STATE RADIAL TEMPERATURE
PROFILE AT EXIT OF 3 INCH BED
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FIG. 53

EFFECT OF MASS FLOW RATE ON STEADY - STATE RADIAL TEMPERATURE PROFILE

AT EXIT OF 3-INCH BED FOR A GIVEN INLET INJECTION PROFILE
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FiG. 54

EFFECT OF INLET INJECTION PROFILE ON STEADY - STATE RADIAL TEMPERATURE
- PROFILE AT EXIT OF 3 - INCH BED

P =100 PSIA

R=0.125 FT
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