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ABSTRACT

Many authors have pointed out that during gravitational

collapse magnetic fields of the order. of 1014 gauss can be

achieved. The quantum theory of an electron gas in such a

field has been developed by the authors and the major results

are redorted and discussed here. We discuss the equation of

state, the spontaneous magnetization, and the spontaneous hair

creation. It is shown that spontaneous pair creation can be

achieved only when the anomalous magnetic moment of the electron

is .included in the Dirac equation. The number g3f created pairs

is explicitly given.
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Recently, great interest has been directed toward problems

of gravitational collapse. As the theory of collapse becomes

more advanced, complications (such as rotation and magnetic field) ,

which were neglected in pioneering work, are being gradually

included. As pointed out by Woltjer (1964) some years ago,

field strengths of the order of 10 14 gauss may bg achieved in

gravitational collapse. The classical theory of electrodynamics

is expected to break down when the spin interaction energy

µBH (where µB is Bohr magneton . A	 , H is the magnetic
2 rn c

field) exceeds mc 2 ; it would therefore be possible, according

to classical concepts of energy conservation, to create a pair

o= electrons spontaneously with proper orientations of spin

when the field strength exceeds H where H	 YA C.

q	 q e

4.414 x 10 13 gauss. Questions have been raised as to whether-

a magnetic field may be destroyed by spontaneous pair creation.

To answer this question and others it is necessary to develop

a quantum theory of matter in intense magnetic fields.

In a series of ,papers (Ca puto and Chiu 1968a, 1968b, 1968c;

Chiu and Canuto 1968d) we have studied the detailed properties

of matter in intense magnetic fields. In this paper we shall

discuss some results of astrophysical interest. We have

considered two cases: a) the magnetic moment of the electron is

the Dirac moment e0 me and b) in addition to the Dirac moment

the electrons also possess a Schwinger anomalous magnetic moment

AA
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•'	 When the field is of the order of 10 16 gauss the
•fin 2 i11 G

anomalous magnetic moment becomes important and must be taken

into account.

a.) According to Dirac's theory the magnetic moment of the

electron is exactly one Bohr magneton e^	 6 Solutions to the
.2 MC.

Dirac equation of an electron in an external magnetic field

were obtained several decades-ago (Rabi 1928) . The energy

eigenvalues are (Canuto and Chiu 1968a)

r s hnc	 + 1i h +S +1 +X'	 (1)

where n, the principal quantum number characterizing the size

of the circular motion of an electron in a magnetic field,

takes values from 0 to w , s = ±1. characterizes the two spin

states where s = -1 corresponds to the parallel and s = -±-1 to

the antiparallel cases. H is the magnetic field in the
z 3

z-direction, (Hq

	

	v 4.414 x 10 13 gauss), x= pz/mc,
i

pz is the z-momentum of the electron and m is electron mass

and the rest of the symbols have their usual meaning. The +

and - signs correspond to electron and positron states

respectively. It is seen that in Equation (1) there is a two-

fold degeneracy between the state n and s = 1, and the state n + 1

and s = -1. The lowest energy states of the electron and

2positron (x = 0, n 0, s = -1) are ±mc. This means that the



m	 r ,

-3-

, 	 separation energy between the positron and electron states is

still 2mc2 , unaltered by the presence of a magnetic field. This

implies that pairs are not created spontaneously at field strengths

greater than 10 14 gauss even when the classical spin interaction

energy µ BH exceed s mc2 .

The equations of state, however, exhibit a strong anisotropy

especially when the electrons are mainly in states of small

quantum numbers (Canuto and Chiu 19CBa, 1968b). The most

important case of interest is that of a degenerate electron gas

in a magnetic field. In this case, states up to some quantum

number m and some Fermi energy EF (EF includes the rest energy

mc2 ) are occupied. The equations of state are:

^	 z	 tin

?KX 
=	 ! -M.N	 Z 

"
C' ( M

-a (H /	 3	 Z s td	 n ^^^"'^
C,	 ha 1	 an

_L ( H	 % [
U	 "C.

3	 3g2 HI	 3	 h: t an )

nz CN^ 3.2 Ĉ ^w^ t	 anC^ µ4(

	

Gn^c 	 hei

(2)

(3)

(4)

(5)
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where pxx' PYY' Pzz are normal stresses in the x, y, and z

directions. U is the total energy density ( including the rest

energy of the electrons), N is the particle number density,

µ EF/mc2 , an . (1 + 2 
N 

n)	 ^ •^ thor, is the Compton wavelength

of the electron. The functions C  W are defined ass

(6)

' r	 ..i	 (8)

d, ( ^- 03 (P) - d. (e)

and the upper l imit of summation m, is determined by the condition

a,+	
t 

^Mti	
(10)

The pressure of the gas is very anisotropic, and for values

of p such that < 0.i r 0+2µW4) the stress perpendicular to the

field (Pxx and 
PYY) 

even vanishes and the gas in this limit is

.	 o

(9)

F
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" 	 exactly a one-dimensional gas! Figure 1 shows the behavior of

the equation of state. In general all thermodynamic variables

have kinks and discontinuous derivatives where a new magnetic

state is excited. At large values of m, the equation of state

approaches that of a degenerate electron gas obtained by

Chandrasekhar ( 1957) •

The total induced magnetic moment M of an electron gas is

given by the following expression (Canuto and Chiu 1968c)

'KGB	nor d	 ah	 (ll )

0	 A

In general the maximum value of induced field due to induced

magnetic moment is only 10 - of that of the impressed field,
'd

as shown in Figure 2. Based on this result we concluded that

feromagnetism will not exist in dense electron gas. The presence

of magnetic fields in collapsed bodies (if any) must therefore

be due to macroscopic currents.

b) The electron possesses an anomalous magnetic moment

of the amount .0	 a s _ --^-	 in addition to its
an a  C.C	 c^	 III )

Dirac moment et+/2MC, ( Schwinger 1948) . Solutions to the Dirac

equation with an anomalous magnetic moment have recently

been obtained by Ternov et al. (1966). They give the following



t
	 1 y

r -6-

energy states:

1/4
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f 1'r1G	 X±	 + N {2h+^ ^s) + 5 a H
N1	 q0 N1	 (12)

where all variables have the same meaning as in Equation (1),

to which it reduces when we put a = 0. The inclusion of the

anomalous magnetic moment removes the twofold degeneracy of

Equation (11) as shown schematically in Figure 3. The

quantization of electron energy and the removal of degeneracy

is very similar to Zeeman splitting of atomic spectrum. Figure 4

shows the energy eigenva] ues as' a function of the Field strength

W 4e re HC = an H, •

According to .Equation ( 12) the lowest energy states of the

electron or positron (with x = 0, and s = -1, and arbitrary n)

are zero when the field strength H satisfies the following con-

ditions:

1+ all 9 
s 4  z

H 	 ( Ill H
(13)

or
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OH M 4,,,n	 h + in ♦	 [^4^^
n 4= a

hw O
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	 (14)

i

If it were possible for the electron to possess a negative energy,

then spontaneous pair creation would be possible, at the

expense of the energy of the magnetic field. However, the sign

before the square root in the expression for the energy,

Equation (12) , is an invariant property of the electron, so that

the energy of wL Qlectron can never become less than zero and

that of the positron can never become greater than zero.

(See Figure 4) This means that the energy of the electron will

never cross that of the positron (non-crossing property) .

We thus conclude that spontaneous pair creation will not

take place at all at the expense of magnetic field energy, even

when the anomalous magnetic moment is taken into account.

Electron pairs can still be created, however, at the

expense of the thermodynamic energy of the system. When the

field strength approximately satisfies Equation (14) , the

rest mass of the electron is small and pair creation can

take place even at temperatures which are small compared to

mc2A = 6 x 109 OK. Expressions for the pair density have been
G

given previously (Chiu, Canuto and Fassio-Canuto 1968) . An
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interesting case occurs when

IM 41 » k  s) hci (I+ J h H .,	 _	 1 J

i.e., when T «6 x 10 9 °K and when the field strength is
sufficiently clone to those given by Equation (14) . In this

case pair creation is negligible in all states except the'one
'S	 1

which satisfies Equation ( 14) . We find

ha No MkT 4 1 t ^ - ^``------p l _)Yoe,kTf me
f	 (16)

where n* , n_ are positronn and electron number densities,
_1 -

N = T{ ^`3 , no is the number density of electrons without
0

pair creation, and q c is the chemical potential of the electron
(in units of mc 2) for the state m includinq the equivalent rest
energy for the state, µm whic^is

+fin N J_ 471 N^ M	 H	 a Hi	 (17)

R	 .
(µm 0 according to our assumption). In vacuum µ c = 0, and
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^1t h	 No kT , M2
ynca	 (18)

independent of the identity of the state which satisfies

Equation (14) .

The pair density thus vanishes when T = 0, in accordance

with our conclusion shown earlier. However, processes such as

e- + e+ -•- V+ v can still take place, dissipating the energy

of the system. This problem is currently under investigation
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FIGURE CAPTIONS

Fiq- I. Functional dependence of Pxx/pzzt P ZZIN, Pxx/N, and

P ZZ/N vs. NIN. (4,1
2 

V , )for the degenerat case with

H/Hq = 1.	 The corresponding functions for a Fermi

qas are also shown for comparison.

)t6Fig.	 26 The relation between M	 Vs. NIN	 for H/H	 1.A-0 	0	 q

F'i,g.	 3. Splitting of the energy eigenvalues of an electrdn

in a magnetic field for the three cases-. a) 	 no

magnetic moment (p = 0)	 b) p = p Dirac	 A /2mc

and	 c)	 ^A	 = P	 (1+ 15).Dirac	 2it

Fig.	 4, Energy Eigenvalues for the cases n = 0, s = -lj

n = 1,	 s = -1 and n = 2 0 s = -1 as a function of

H/H	 (H	 = do
Hc	 c	 q).
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