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A COMPARISON OF HUMAN RESPONSE MODELING

IN THE TIME AND VREQUE'NCY DOMAINS

By Lawrence W. Taylor, Jr.
NASA. Flight Research Center

Edwards, Calif.

SUMMARY

Frequency and time domain methods of analyzing human control response while
performing compensatory tracking tasks are reviewed. Sample linear model results
using these methods are compared and discussed. The inherent requirement of con-
straining the freedom of the form of the pilot models is also discussed. The constraint
in the frequency domain consists of smoothing w4'th respect to frequency; whereas, the
constraint for the time: domain model is more natural and meaningful in that it consists
simply of Limiting the memory of the pilot model. **. he linear models determined by
both methods were almost identical.

The time domain method of analysis enables the determination of a nonlinear pilot
model, The inclusion of a cubic as well as a linear term accounted for only a small
additional part of the pilot's remnant and indicated that only a small portion of the total
power of the pilot's output is caused by nonlinearities. The power-spectral density of
an ensemble average of the pilot's output is used to determine the upper limit of the
amount of power associated with a deterministic response. The indication is that more
than half the remnant is stochastic when a linear model is used.

INTRODUCTION

Since the MIT-NASA Working Conference on Manual Control at Cambridge, Mass.,
February 28-March 2, 1966, additional work in human response analysis, both theoreti-
cal and experimental, has been performed at the NASA flight Research Center. Much
of this work has been part of a continuation of a NASA-USAF-Cornell Aeronautical
Laboratory program to obtain pilot describing functions from both flight and simulator
tests. In addition to this program, the Flight Research Center has initiated a study,
under the guidance of Dr. A. V. Balakrishnan of UCLA., of nonlinear time domain
methods as applied to the problem of modeling the pilot in a compensatory tracking task.

It is the purpose of this paper to assess first the frequency domain method of
analysis and then the time domain analysis. A comparison of the results of the two
forms of analysis applied to a linear model is made, and their advantages and disadvan-
tages are discussed. Next, the time domain method of analysis is applied to the identi-
fication of a nonlinear pilot model. This is the first time that the nonlinear time domain
method has been applied to human response data. The power-spectral density of an
ensemble average of the pilot's output is used to estimate the amounts of power that
correspond to linear, deterministic, and stochastic control response.



DESCRIPTION OF EXPERIMENT

The classical experiment for obtaining data from which pilot models can be identi-
fied is illustrated in figure 1. The pilot is asked to minimize the error, e, displayed
to him by an osf:-illoseope, television screen, or meter by manipulating a controller.
The controller deflection, c, is sent to an analog computer which computes the response
of the controlled cleniont and adds to it the input disturbance function, i, forming an
error which., iii turn, is sent to the display. The signals are either processed during
the experiment or recordings are made of the signals which are later processed to obtain
the model of the pilot (ref, l). Similar experiments have been performed in flight in
which the pilot maneuvers the airplane (refs. 2 and 3). Most of the data analyzed in this
paper were collected as part of the joint NASA-USAF-Cornell Aeronautical Laboratory
human response studies (ref. 3) involving the T-33 variable-stability airplane and ground
simulators,

DISCUSSION AND RESULTS

Frequency Domain Methods

Classically, the model of the pilot is considered to be a linear-describing function
with output, o, plus a remnant signal, r, as shown in figure 2. The describing func-
tion, Yl,(jw), can be obtained by first computing the cross-spectral density functions
^ic(jw) and &(jw). The estimate of Yp(j w) is then given by the ratio (from ref. 4)

Cc(jw)
Yp(j w

) = ^ie(jw)

Cross-,spectral density functions have generally been used instead of Fourier
transforms (ref. 5) as a means of removing the bias in the estimate of Yp(jw) intro-
duced by the remnant. The use of cross-spectral density functions, however, was
shown in reference 6 to have no effect on the bias. The same estimate of Ypo w),
therefore, can be expressed as the ratio of Fourier transforms 	 a

,?p(j (k
') = F 

[^ ]
[ ()]

and the bias in both cases is

o w) - .Y (jw) = 
Cr(j w) _ F[r t ]

p	 p	 ^ie(jw)	 F[e(t)]

These conclusions, which were developed in reference 6, depend on the ability to
express the cross-spectral density in terms of Fourier transforms. Appendix A con-
tains a detailed mathematical proof of the expression, and appendix B presents experi-
mental. -results which further substantiate these conclusions
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The frequency domain method of analysis was used in the human control response
study of reference 3 in which compensatory tracking experiments were performed in
flight and on simulators, Figure 3 shows some simulator results in which the values
presented for Yp(jw) are the means of 10 runs for pilot A and three runs each for
pilots B and C. The vertical lines indicate the range of plus or minus one sigma for
each of the points. The lack of a vertical line indicates the range to be less than the
height of the symbol. The input disturbance function consisted of the sum of 10 sinusoids.
Values of Yp(jw) were determined at the input frequencies. The use of sinusoids for
the input disturbance function has the advantage of concentrating the power at several

u	 frequencies, thereby enhancing the accuracy of the estimate of the pilot describing func-
tion at the input frequencies.

If, on the other hand, a random input is used, mathematical difficulties may be
encountered when using frequency domain methods. For example, if no constraint is
placed on the form of Yp(jw), the resulting estimate will account for the entire pilot
output, c, erroneously indicating the remnant, r, to be zero, This result comes from
applying the relationship

Y (j 
)^ CA W ) F[ct]

p w &(jw) ^ - F[e(t)]

at all frequencies. Figure 4 shows an example of the erratic function (dashed lines)
that results from such a procedure. A constraint on Yp(jw) is usually provided by
smoothing the values of the cross-spectral density functions or Fourier transforms, or
by fairing a curve through the raw estimates of the pilot's describing function, Yp(jw),
or both. Nevertheless, the required constraint on Yp(jw) compromises one of the
claims made for the analyses in the frequency domain, narnely, that of unlimited free-
dom in model representation. Also indicated in figure 4 is the effect of smoothing on
the average linear coherence, p a. The value is seen to change from 1. 0, for the raw
estimates, to 0.91 for the faired case. The value of pa or any other measure of the
remnant has meaning only when nonnected to some particular pilot-constrained model,

If the raw cross spectral densities are smoothed, the estimate of Yp becomes

Wk&Ow + JkAW)
k=-K

YO W ) = K

k=- JkLOw  + jkAw)

This estimate can also be expressed in terms of Fourier transforms as

Wkrk*[i(t)j Fk[c(t)]
IL-'p(j w) = k K K

k=-KWkFk* [i(t)] Fk [e(t)j

0
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It should be noted that although the smoothing is indicated to be in the frequency
domain the same result can be obtained by averaging or truncation in the time domain.

Another point made in reference G is that the correlation coefficient, as it is
usually defined, always has the value of unity

I ^icow )	 x^	 t1^ ^^'	 ^ Cî t)^ *[cst)l	 1pl O 	 cc(w)	 ^*[ i (t)] I'^[i(t)) 1^ *(c(t)] h[c(t}]

This result is now recognized to be true in the absence of smoothing. It is now sug-
gested that the power-spectral density be smoothed over a finite frequency bandwidth. 	 a

The modified definition of p then tapes the form

I	
2

I , +
	

i (i w + jkAW)
P2 2(w) III ^K + I k--K

2K + 1 k^ ^ii(w + kAw) 2K + I 1-K
^ec(w * kAw)

2

k=^K
rk* [i(t)) FOO(t))

	

L^,K ^' k* NO) rk[i(t)l	
Fle [

C (t)] Fklc(t)l

/1

The linear correlation coefficient so defined is not, in general, equal to unity even for a
linear system, contrary to popular belief. The coefficient does equal unity if the rela-
tionship between i and c is constant over the bandwidth, whether or not the system is
linear. It is apparent, therefore, that a further improvement is needed. It is suggested
that the linear correlation coefficient be expressed as

2

p 3 2 ( w ) =
	 n_ 

r* [in(t)] (F[c.(t)])

r* NMI r [i(t)]	 r* [cn(t)] r [cn(t)]	 SF

n=

In this expression, an ensemble average is used instead of an average over a range in
frequency. The result is that now only linear systems free of any stochastic signals
will produce a value of unity, provided the input is not the same for each ensemble. In
the event the input is the same, nonlinear systems will appear to be linear, with p 3 = 1.

Linear Time Domain Method

Let us now consider a linear analysis in the time domain in which the output of a
linear pilot model is expressed in the form (see ref. 7)

TM

c(t) =f  hp(T)e(t - r) d7,

0

4
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Because the time histories c(t) and e(t) must be sampled for analysis, it is more
appropriate to write

c(n) =

	

	 hp(m)e(n - m + 1)
M=

or in matrix form

c = E h p

where
e(M)	 e(M - 1) . . . e(3) e(2) e(1)

e(4) e(3) e(2)
e(4) e(3)

N- e(4)

e(N - 1)	 e(N M)
e(N')	 e(N - 1) . , . e(N - M+ 1)

hp(1)
hp= hp(2),

hp(M)

C(M)
C (M + 1)

C=

c(N)

The sampled impulse response of the pilot model, hp(m), can be obtained by using
least squared

hp = [E TEI -1 ETC

Inherent in the time domain representation of the pilot model is the assumption that
the output at any one time is a function of only a finite time of the history of the error.
The finite time period (or maximum memory) is denoted by T M (TM = MA-r) in the
integral expression or M iii she summation expression for the pilot model output. For
the pilot model, TM was varied (by changing AT and keeping M constant) until it
was determined that the value of hp(T) was essentially zero beyond about 1 second.
The value of TM selected is somewhat larger than 1 second. Figure 5 shows an
example result of such an analysis. It can be seen that the model impulse response
first peaks at about 0. ,25 second, then reverses at about 0.45 second to peak in the
opposite direction at about 0.6 second, then subsides to zero. The first sample
(T = 0. 05 sec) is typically negative but has been faired to correspond to a pure time
delay of 0. 05 second. One indication of the degree to which a model represents an
actual pilot is the ratio of the output of the power of the model in relation to the total
power of the pilot's output. Linear pilot models will typically account for 65 to 90 per-
cent of the total power of the output for a 4-minute run, The percentage is somewhat
higher for shorter runs.
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The time domain results can be transformed to the frequency domain for compari-
son with the frequency domain results through the use of the Fourier transform

Qp(j w) = r0od

Figure 6 shows such a comparison. The agreement between the two methods is good,
One advantage of the time domain method is that '^p(j W) can be determined as a con-
tinuous function of frequency even when the input consists of sinusoids as it do s for the
example shown. The time domain results by their nature will always yield G^p(jW) = 01

or -180" as co -•^ 0 and d ^p(JW)
	

0 as co--►- 0. Had the pilot describing function
dW	

^	 p	 g

exhibited gain fluctuations or a phase lag at the lowest frequencies shown, these charac-
teristics would not have been identified by the time domain model unless the value of
'I`M were increased considerably. This does not mean that the time domain model
causes a restriction, but, rather, that TM should not be unduly limited. Just as it is
necessary to constrain the frequency domain model by smoothing, it is also necessary
to constrain the time domain model by limiting TM to a value considerably less than
the record length. For pilot models, this represents a very natural and meaningful
constraint in the time domain, compared with smoothing in the frequency domain. Still
another advantage of analysis in the time domain is the capability of constructing non-
linear pilot models.

Nonlinear Time Domain Method

Nonlinear behavior on the part of the pilot accounts for at least part of the remnant
of a linear pilot model. It is, therefore, of interest to investigate nonlinear pilot
models. The output of nonlinear time domain pilot model can be expressed by using
a Volterra integral series

TM

c(t) = f	 hp, (T)e(t - T)dT
0

(linear)

+f T
M 

M 	 T,? et - T et -T dTdT

	

 p2( l 2) (	 1) (	 2) 1 20 0	 (quadratic)
+ TM M M  

(T , r2 , T )e(t - T)e(t - ,' )e(t - T )dT dT 7„
0 0 0

p3 l z 3	 1	 2	 3	 1 2
d 

,^

(cubic)
+ . . .. . . *

or
. . .

(higher der)
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or in the discrete case

	

c(n) =	 hl(m) o (n - M 4,

m=l	 (linear)

	

+	

-11, 
m2Mn - ml + I)e(n - m 2 +

m1=1 m0=1 (quadratic)

	

+	

h3(ml, m2, m3)c(n - ml + 1)e(n - m 2 + I)c(n - m 3 + 1)

(cubic)ml= m2= 113=

+ 0 # 0 0 0 0 v - 0 0 0 • 0

(higher order)

It was reasoned that the pilot's control response would be symmetrical so that only the
first (linear) and third (cubic) terms were used, The algorithm used to perform the
analysisalysis was again based on a least-squares solution (ref, 7).

if

c = El, 3h 
pl, 3

where

C(M)

c=
C(M + 1)

C(N)

hPl, 3 -

hl(l)

hl(2)

0

hl (M)

h3(1 , 1,1)

h3(11112)

h3(1,1, M)

h3 (1, 2 ^ 2)

^h3(M, M, M)
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1 t 3 f

C(M) .. .
o('M	 1) ,
e(M g, )
0(M + 8)

e(1) (e(141)^{^i}o(l^t))
^(2)

(e(M)e(M)e(1)) (e(M)e(M - 1)0(M - 1))
(e(MMM - 1)0 (1)}. .(e(1}o(1) e {1))

(e(N - 141 +

c(N) . . . . o(N - M + 1) (c(N)e(N)e(N - 1)) . .. . . . .	 .
1)2o(N - M))

e(N - M + 1)3

Then

lii^l^ 3 -^rl^ 3 T1^^ 1 ^ 3^ ^l r1^ 3xc

It is difficult to present the results of such an analysis in a meaningful form, ^ *,{t it
is instructive to loot: at an example step response. Figure 7 shows the response to (1) a
step of very small amplitude so that only the linear term contributes significantly to the
response, and (2) a large step, The responses have been normalized to the amplitude
of the step inputs to facilitate comparison. The response of the pilot model to the
larger step is slightly faster, has more overshoot, and has a lower steady-state gain.
The inclusion of the cubic term increased the ratio of the power of the model output to
the tool power of the pilot output by only a few percent. This result would indicate the
remnant to be largely stochastic as opposed to nonlinear and determinists ,_

If the nonlinear model is expanded to include more samples of the cubic term and
higher order terms, dimensionality will become a problem. :one means of reducing the
total dimension is offered by Balakrishnan (ref, 7) and Hsieh (ref. 8). Through the
employment of the adjoint system of equations, a cubic weighting function of the form

LhpPri, 7. 2 , T3) =f f3(t - T)f3 (t - 'r2)f3(t - 'r ) dT1d1'2d7 3
0

is obtained. This equation reduces the weighting function of three variables to a single
function of one variable. This technique has not yet been applied to the problem of
identifying pilot models, and it is not known if the reduction in dimensionality justifies
the added conputation required,

Analysis of the Pilot's Output

It would be of interest to know what portion of the pilot's response is deterministic,
but not linear, in order to assess the potential of a nonlinear pilot model in describing
the pilot's output. It is known that at least part of the pilot's output is stochastic, since
results of repeated experiments are never identical. It is possible to estimate the pro-
portioning of the power of the pilot's output by examining the power-spectral density
functions of both the pilot's output and its ensemble average. Both functions are shown
in figure S. The cross-hatched peaks in the graph show the amount of power associated
with a linear response at the frequencies of the input. The shaded areas show the change

8



in the power as a result of ensemble av+ ragin , Since the deterministic response would
be unchanged by averaging, the shaded areas are an indication of the power associated
with the stochastic portion of the pilot's output, which will not be accounted for by a
deterministic model, The Luishaded areas, then, are upper limits on the potential
increase in power accounted for by ruing a nonlinear rather than linear pilot model,

The liar graph at the right of figure 8 shows the proportioning of the power of the
pilot's output to be 91,7 percent linear (and time invariant), 4, 5 percent stochastic, and
3.8 percent nonlinear and other types of responses, These results should not be gener-
alized, since changes in the controlled element and input can cause a marked change in
the proportioning of the power, It should also be notctl that a small amount of power
may lace attributed to a nonlinearity that is significant iii (:)ther aspects, such as limit
cycles,

CONCLUDING REMARXS

A review of frequency and time domain methods of analysis shows that both methods
require constraints on the freedom of the pilot models. The constraint in the time
domain is more natural and straightforward than that of smoothing in the frequency
domain, The two methods show good agreement for the linear model when the input
disturbance; function consists of sinusoids.

The inclusion of a cubic term in the time domain pilot model represents the first
time the analysis has been applied to human response data.. For the example discussed,
only a Few additional percent of the power of the remnant was accounted for by the addi-
tion of the cubic term= An investigation of the power -spectra:L density of an ensemble
average of pilot output indicates the reason to be the largely stochastic nature of the
remnant. The proportioning of the power of the pilot's output appears to be about
92 percent due to linear response, 4 percent due to stochastic r:;cponse, and 4 percent
due to nonlinear and other types of responses.

With this step toward the application of time domain methods of analyzing human
control response, the work ahead Bolds much promise for the determinv4ta,on of more
meaningful and useful pilot models.

9



APPENDIX A

COMPARISONBISON OF TWO ESTIMATES OF CROSS-SPECTRAL DENSITY

APPLIED TO RANDOM SIGNALS

Two samples of a random. signal were used to test the equivalence of two estimates
of cross-spectral density. Figure 0 shows time histories of the two samples for 250 of
the 400 time points used. The cross-correlation function given by

T
	1{xy(T) = 2T f x (t)Y(t + r)dt	 xnyn+^n

	

-T	 n-

where

T=mh

h = time interval

was computed and is plotted in figure 10. The random r^atare of the signals is borne out
by the erratic nature of the cross-correlation fi:tn^st4oak

Figures 11(a) and 11(b) show the real and imaginary parts of the cross -spectral
density as estimated by two different expressions, as follows:

F r 	 ti	 h `'
(j ^') = FIR(T)^ N N+1

	

	 xnyn+k
^. e "^cvl^li

	

kyl	 xY 

and

	

(j a') = F*	
"'l N h	 2 xnejwz^ll	 Yme-jml)

XY2	 2T	 N+1 n=- ^2	 m ^2

The values obtained by using the preceding expressions were identical except for an
occasional difference in the fourth significant- figure.

One possible explanation why calculations made by other investigators resulted in
a difference for the two estimates is the effect of using a limited number of values (lags)
of the cross-correlation function, Figures 12(a) and 12(b) show the effect of using fewer
lags than the maximum number possible (in this case, 400). As fewer lags are used,
the estimate departs from the example for 400 lags, nullifying the equivalence of the
two estimates.

Another possible explanation for an apparent difference in the two estimates could
be the effect of ;moothin_g shown in figures 13(a) and x3(b). If smoothing were used for

r
^xyl( jw) = F[Rxy(T)] and not for oxy2	 r*[A

	

(jw) _ -	 EU, the difference could

T11
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APPENDIX A

erroneously be interpreted as being caused by the form of the estimates of cross-
spectral density.

in conclusion, the two forms of cross-spectral density estimates yield identical
results if (1) the number of "lags 11 is not limited, and (2) if identical smoothing is used
in both bases,

.a
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APPENDIX B

EQUIVALENCE CAS' TWO ESTIMATES OF CROSS-SPECTRAL DENSITY

Consider the following sample time histories:

x(t)

7A_ I -	 t
-T

	

	
T

y(t)

T
-T

x(t) = 0 for t > T and t < -T

y(t) = 0 for t > T and t < -T

An estimate of 'Vae cross-correlation function can be expressed as

T
tRxy(T) = 2T f x(t)y(t + T) dt

-T

and the Fourier transforms by

F'[x] = I T e-i wt x(t)dt
-T

T
F[y] _ f e-jwty(t)dt

tA.nother estimate of Rxy(T) involves division by 2T - T instead of 2T, but the
expression shown is usually more desirable.
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Original limits of integration

Integrand is zero outside this area
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^E

APPENDIX B

The most popular estimate of the cross-spectral density function is the Fourier
transform of the cross-correlation function

^xyl(a w) = Fftzxy(T)] 1
2Te-jwT1, T

2-2Z	 -^T
x(t) y(t + T) dtdT

An alternate and equivalent estimate is the product of two Fourier transforms

/'
xy2 (jw) = F

*[
rrr = T 

T	 T
J x(t)ejwtdt I^ y(a)e-jwada
-T	 -T

in which F* [ ] denotes the complex conjugate of F[ J.

It is now desired to show that the two estimates are equal. This is done by sub-
stituting a change in variables and rearranging terms. Let; a = T + t and substitute

a - t in the expression of the first estimate

^xyl(jw) ^ -,(2 T+t
	

e-i w ( a-t) x(t)y(a)dtda
2T+t fT T

Examination of the values for which x(t) and y(T) and y(a) are zero enables the
limits of integration to be simplified as illustrated in the following figure. Before the
change of variable, the combinations of t and T for which the integrand is not
necessarily zero are represented by the shaded area. Because x(t) and y(T) are zero
for t, T > T J or > -T, the integrand is necessarily zero outside the shaded area.

13



APPENDIX B

After the change in variable, the same area is transformed to that shown in the following
figure:

cu _ T+ t

2T

Original limits of integration-
after change of variable

T

Simplified limits of integration
I
I

-T!

Integrand is zero outside,
this area

t

i

-2T

Superimposed on the same plot are the simplified limits of integration. These limits
have no effect on the integral, since both sets of limits completely cover the area for
which the integrand is not zero. Therefore

1 T /T
^xy1(jW) _ 2T J J-T -T

e-iw(c'-t) x(t)y(a)dtda

It is now possible to rearrange the expression to get

/^T
	 T _

^xyl(i w) = 2T J ei Wtx(t) f— e ^ W ^y(a)d(Y
-T	 -T

This expression is recognized to be the second (postulated) estimate. Thus

^^xy w T F* [x] r[y] ^ ^xy21

14



APPENDM B

The two estimates of 
cross- (or power) spectral density are-) therefore, equal.

ro
A similar proof of the, equivalence of the

 two estimates of css- and power-

spectral densities is offered for the sampled time histories where

frr x(t)ejwtdt;:z;	
xllc j wnh

-T	
2

T

	

t	

e-jwmh

	

[Y] M f 
y(a)c-iw0duS	 Yz^	 m

T	 M=_z

The second estimate of the cross -spectral density is then

2

	

h	
V	 II]

	

F* [x] F [y ] N+l	
2 'jwnh]	 112&Y2	2T	 [n=t-Z xn	

yme-jwm

e

The first estimate may be written in the form

-h h

	

e-iwl . —	 XnYn+k

	

N+l	 2nT-^xyl(jw) = F[Rxy (7')l

Then, letting ni = k + 
n, and substituting k = m - n

h 
N n	

'h 
V4

e-jw(m-n)	
xkyl(jw) = N+l = I	 --;-/2 1lymm %-+ n

Rearranging

h %2 /2

	 M

ej conh x	 e-i wmh YM

	

^Xyloco) = N+I n_

	

n	
+ n

Since x and ym equal zero for m
2 n > N/2, and < _N/2, 

the limits can be changed

n 
to ±N/2. Therefore

^Xyl(j W ) = 
h 

N^2 
ejwnhxn 

NL2 
e- i 

wmh 
YM = §xY2

	

NJI 
ir_^/2	

m=-1/2

0
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SYMBOLS

c	 pilot output (control deflection), inches

e"	 mean square or total power of c, inches2

F	 error matrix

e	 error, radians

F[ ]	 Fourier transform

h	 time interval., seconds

lip	 impulse response of pilot, inches/radian

i	 input (external disturbance function), radians

K	 maximum value of k

k	 index for frequency

L	 total record length, seconds

T
M	 maximum value of m, M = AT

m	 -ivadex for the argument of hp

N	 maximum value of n

n	 index for time

o	 linear output of pilot model (control deflection), inches

Rxy(T)	 cross-correlation function

r	 remnant signal of pilot model (control deflection), inches

s	 Laplace variable

T	 one-half total record length, seconds

TM	 maximum memory time of the pilot model, seconds

t
	

time, seconds

16



IP

Wig	 weighting function

x, y	 sample signals

YC O OI)	 controlled element transfer function, radians/inch

Yp(jw)	 pilot describing function, inches/radian

a	 time variable, seconds

P	 linear correlation coefficient

Pa	 average linear coherence

T	 argument of hp, seconds

AT 	incremental value of T, seconds

ky(jw)	 cross-spectral density of x(t) and y(t)

^(w)	 power-spectral density of x(t)

W	 frequency, radians/second

Aw	 incremental value of w, radians/second

estimate

Matrix notation:

(x), x	 column matrix

[X]	 rectang dar or square matrix

XT	 transpose

X-1	inverse

complex conjugate

Numbers used as subscripts denote the pertinent term or terms of the Volterra integral
series or summation.
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