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CONVECTION ELECTRICCTRIC FIELDS AND THE

DIFFUSIONUSION OF TRAPPED

MAGNETOSPHERIC RADIATION

Thomas J. Birmingham

ABSTRACT

We exl.)lore here the possible importance of time-dependent convection

electric fields as an agent for diffusing; trapped magnetospheri.c radiation in-

ward toward the earth. Using a formalism (Birmingham, Northrop, and

ralthammar, 1967) based on first principles, and adopting a simple model for

the magnetosphere and its electric field, we succeed in deriving a one dimen-

sional diffusion equation to describe statistically the loss free motion of mir-

roring particles with arbitrary but conserved values of the first two adiabatic

invariants M and J. Solution of this equation bears out the fact that reasonable

electric field strengths, correlated in time for no longer than the azimuthal drift

period of an average particle, move particles toward the earth. at a rate at least

an order of magnitude faster than electric fields whose source is a fluctuating

current on the magnetopause.
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CONVECTION ELECTRIC FIELDS AND THE

DIFFUSION OF T13APPED

MAGNETOSDHERIC RADIATION

INTRODUCTION

There has been growing rapidly a body of literature concerned with the

theory of interaction of magneto spheric particles with collective oscillations of

the magnetospheric medium (Wentzel, 1961; Parker, 1961; Dragt, 1961; Dungey,

1963; Cornwall, 1964; Chang and Pearlstein, 1965; Kennel and Petschek, 1966;

Cooke and Cornwall, 1967; Roberts and Schulz, 1968). The thesis of this work

is that at heights where interparticle collisions are infrequent, wave-particle

interactions are an effective agent for depleting the energetic trapped population:

successive wave induced scatters of a particie l s pitch angle cause it to mirror

at altitudes increasingly closer to the earth, until ultimately the particle reaches

the collision dominated level of the ionosphere where its mirror motion is

disrupted. Impressive corroboration of experiment with theory is presented by

Kennel and Petschek (1966) who show that for a range of L-values (>4) equatorial

fluxes of both energetic protons and electrons lie near values expected theoretically

when particles and waves are in quasi-linear equilibrium.

The existence of steady-state particle flees in the presence of such losses

obviously requires a balancing input. We here consider in detail a version of the

theory that particles are injected at the magnetopause and then diffuse in L, the

equatorial crossing distance of a magnetic field line expressed in numbers of

earth radii RE.
1



l^
x

Diffusion in L is likewise a topic which has received extensive attention.

An exhaustively explored (Kellogg, 1959; Barker, 1960; Davis and Chang, 1962;

^T'verskoy, 19619 Dungey, 1965; Naka.da and ]Mead, 1965; Conrath, 1967) idea has

been that L-diffusion is driven by a time varying electric field which arises

from fluctuations in the currents separating the terrestrial, and interplanetary

magnetic fields. The calculated particle diffusion rate is generally sufficient

to balance interparticle scattering losses (Nakada and Mead, 1965; Newkirk

and `Walt, 1968) but appears grossly inadequate when wave particle interaction

los des are taken into account (Kavanagh, 1968).

Cladis (1966) has proposed a slightly different mechanism: at very low

L-values ionospheric current variations produce fluctuating electric fields which

drive the diffusion process. The effectiveness of such a mechanism diminishes,

however, as a.. function of altitude in the magnetosphere

Somewhat in contrast, one of Cornwall's (1968) speculations is that L-diffusion

is a magnetospheres manifestation of Bohm diffusion (1949), an anomalously large

diffusion rate across magnetic field lines observed in many laboratory plasma

experiments (e.g., cf. Bea so of al., 1966). It is thought that this enhancement

above the level of F,,,Iassical, collisional diffusion is the result of particles inter-

acting with turbulence in the plasma. The turbulence in turn is a consequence of

the fact that laboratory plasmas have density and/or temperature gradients and

hence are susceptible to the growth of unstable drift waves (cf. Kadomtsev, 1965).

In the magnetosphere similar gradients exist, and it is possible that Bohm dif-



Our own viewpoint is in line with the thinking of Falthammar, who has con-

tinually stressed the importance of electrostatic fields (V. E = 0), varying in

time and of magnetospheric spatial dimensions, in the dynaiaics of trapped

radiation. Specifically, we consider as the driving force in L--diffusion the

electrostatic field

E.	 Vf : B	

(1)

associated with the ideal hydromagnetic flow o f of low energy ma,gnetospheric

plasma. (Our demarcation between low and high energy particles is roughly

5 keV, an energy at which gradient and curvature drifts become important com-

ponents of the guiding center motion at magnetospheric heights for typical

electric fields. Low energy particles essentially follow the hydromagnetic con-

vection pattern and are of interes,#; to us only as the source of the polarization

electric field.) Falthammar (1965), Brice (private communication), Obayashi

and Nishida (1968), Kavanagh (1968), and Cornwall (1968) have each suggested

the possible importance of the convection electrostatic field to the diffusion of

energetic particles.

In this paper we adapt the diffusion theory developed from first principles

by Birmingham, Northrop, and Falthammar (1967) to a simple model of the mag-

netosphere and its impressed convection electric field. No restriction to equa-

torial particles is made. The one dimensional diffusion equation which statis-

tically describes loss-free particle motion in this model is then solved. Results

3
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are compared with those from a model in which magnetopause currents are the

source of the magnetospheric electric field. We conclude that convection electric

fields move particles radially at a rate an order of magnitude raster than the

electric fields arising from magnetopause currents.

Unless otherwise specified, Gaussian (cgs.) units are used throughout; this

paper.

MODEL

We consider the following elementary model of the earth's magnetosphere.

The magnetic field B, constant in time, is due solely to a magnetic dipole of

moment µ at the origin of an r, 0, -b spherical coordinate system. In the con-

ventional sense, µ is aligned with the south normal to the ecliptic plane, co-

	

iu.titude is Ines SLlred from the	 a.Xis, and azimuth 0 is measured clockwise

from the a.ntisolar meridian (i.e., ( -^ u12 on the dawn meridian) . Modification

of the magnetic field by either the energetic particles or the cold plasma com-

ponent is neglected in this low-/3 model.

The electric field E is irrota.tional, variable in time, and (from Equation 1)

everywhere perpendicular to B. it has the feature, essential fort-diffusion, that

it is asymmetric about an energetic particle's longitudinal drift path in the dipole

field. We describe E by the potential. V

A(t) r

	

V	
sing 

j szc	 (2)



A being a positive, time--dependent amplitude. The form Equation (2) is the

fundamental (m ; 1) asymmetric mode in Va"Ithammar's (1965) Fourier expansion

of a general, longitudinally dependent potential. Since r sin- 2 d and 0are both

constant on dipole field lines, B Lines are equipotentials and C • Q is zero. In

the 0 ^ 7r/2, equatorial plane of the dipole, the electric field derived from Equa.

tion 2 has the magnitude A and is uniformly directed, dawn to dusk.

In this simple model, low energy plasma in the equatorial, plane flows in

straight lines (oriented along ,,,k - ?r) from the night to the day side of the mag-

netosphere. The model thus crudely represents (in a mathematically tractable

manner) the flow pattern as depicted by Levy et al. (1964) for Dungey's (196:1)

field line merging model of the magnetosphere (cf. also Petschek, 1964; Brice,

1967). Except for regions near the magnetopausc; our model flow is also crudely

representative of the pattern envisaged by Alford and Hines (1961) in their elosed

magnetosphere model. (We argue further that by allowing A in Equation 2 to

reverse sign beyond a certain large L = LR , an even better approximation to the

Axford and Dines picture is obtained. The diffusion of energetic particles in our

analysis depends only on the autocorrelation of A. Thus, as long as the statistical

properties of A are the same for all L, our results are valid even for L > LR.)

We treat A as a fluctuating quantity with an average magnitude of 4 x 10-4 V/m.,

a value typical of hydromagnetic models of the magnetosphere. The fluctuaticns

reflect similar variations in the intensity of the solar wind, to which the mag-

netosphInric flow pattern is directly coupled. A one hour time scale seems

F
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(Carpenter and Stone, 1967; Obayashi and Nishida, 1965; Brice, private com-

munication) approprtato for fluctuations in A( t) . We shall find that the moan

square fluctuation amplitude 	 <( 9A) I > and the autocorrelation time °r, of the

fluctuations are quantities which scale the diffusion time of the energetic particles.

Our simple model takes no account of the electric fie" d associated with the

rotation of a finite radius, conducting earth. In hydromagnetic models of the

magnetosphere, the rotation electric field is considered to dominate the dynamics

of low energy plasma at radial distances as far out as the plasmapause. Some

evidence exists (Nishida, 1966; Carpenter and Stone, 1967), however, that the

pattern of outer magnetosphere electric fields persists, though perhaps in a

recessive. role, in the region dominated by rotation. The electric field associated

with the rotation of -the earth is both nearly longitudinally symmetric and nearlyo

constant in time. (.The tilt of the earth's magnetic axis with respect to its spin

axis introduces a 24 hour periodicity into the rotation electric field. Such a time

variation is too slow to be consequential in the diffusion of energetic particles.)

For L-diffusion the rotation field plays no significant rose.

We realize fully that the model of electric aid magnetic fields adopted in

this paper lacks the detail of extant qualitative hydromagnetic models. However,

for our purposes an analytical study of L-diffusion — we feel, that the present

model extracts the salience of its more complicated counterparts and simultan-

eously affords a simplicity necessary for achieving mathematical results.

6
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THE DIFFUSION EQUATION FOR ENERGETIC PARTICLES

For energetic particles its our model, the ratio of particle gyro-radius

to the scale length (typically 1Rr) of electric and magnetic fields is small:

Here W is the energy (in cV) of an energetic particle of mass in (in grams) at a

distance LRE from the earth. Further, the typical one hour time variation of the

electric field lies on the slow time scale of the azimuthal drift; of these particles

in the dipole; magnetic field. Finally we note that the ratio E,/B of the field mag-

nitudkjs, electric to magnetic, is at least 0(e) in smallness.

Northrop's (1963) systematic development of the adiabatic motion of changed

particles asserts that for the conditions stated in the preceding paragraph,

energetic particles move in such a fashion that the first two adiabatic envariants

of their motion -- the magnetic moment M = my 12/2B and the longitudinal in-

variant J = m fv ► ► cis -- are conserved, (Here i and I ► deziz,., s: velocity components

perpendicular and parallel to the dipole magnetic field, and the ^ -Integral is

extended over a complete guiding center bounce path.) The third or flux invariant

tai is not preserved in the present treatment.

Magnetic moment conservation, implies that particles moving inward in the

dipole magnetic field gain Idnetic energy. A rough estimate based on both M and

J conservation

	

M 1/ 2 	 (v^^ ^^ L3 /^
- coast a	 I, ^ Li /2 ctn^.	7 	 v eq	 (4)► i ) eq

(3)

7



also indicates that inward moving particles flatten their equatorial pitch angles

k  q . In doing so, such particles contribute to a pitch-angle anisotropy which can

drive mi.croinstabil ities a nd lead to diffusion into the loss cone of the magnetic:

mirror.

All particles with the same values of the invariants M and J and with guiding

centers lying on the same dipole field line (we here identify a dipole line by thrr

constant values of the Buler potentials, ,6 :-- q5, a = - µ sin' O/r ^ - IVLRE , on it)

have practically the same experience over the course of one bounce, since the

electric field is changing on the much longer drift time scale. In our treatment

we consider a number of (identical) bo"ime-averaged guiding centers with invar-

iants M and J as closely representing the actual M, J particles gyrating about and

bouncing along the line a , ,8 . Equations for such bounce averaged guiding centers

were first obtained by Northrop and Teller (1960), who performed a bounce

average of the ordinary guiding center equations of motion.

Wifihin the framework of bounce--averaged guiding center theory our treat-

ment of the energetic particles is a statistical one; we adapt to the present

model a general theory (Birmingham., Northrop, and Falthammar, 1967, here-

after referred to as BNF) for the diffusion of guiding centers, the diffusion in

the BNF theory being due to small electromagnetic fluctuations which conserve

M and J. Only statistical properties of the fluctuations are assumed to be known.

In the present model, of course, the magnetic field is static and the BNF treatment

simplifies greatly.

8



Yn Appendix A adaptation of the BNF theor; to the present model is carried

out and the egaation

Xi5:( a , M, J , t )	 a[-5— X	
(5)

is derived. Mere <^y is the g-average of the guiding center density <Q>(a ; /3, M,

J, t) defined for a four dimensional -- a,, ,8, M, J -- phase space;

da <Q> (a, 13, M, J, t )
0
	

(6)

<Q> itself is a statistical average, this average (denoted by ( >) being carried

out for the same set of M, J particles over an ensemble of fluctuation systems.

The,a-average is carried out at constant a, M, J, and t. Use of the definition

a - - µ/LRE and the relationship

dL	 L2 
RE	 (7)

<O( a , M ,J , t ) - da n ( L ,M, J, t )	 _ µ n(L , M ,J, t)

leads to the followin r more familiar form of Equation 5,

an	
aatt - aL Cf (L) aL (nL 2 ^^	

(8)

where

R2
F(L) =	 2 L` Daa (L)	 (9)

9
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While Equation 8 is identical in form with the equation generally introduced in

L-diffusion studies, it is here valid without the restriction to J = 0 particles

inherent in most past work.

Were there no electric field, M, J particles would drift longitudinally at

constant a in the dipole field with an angular drift frequency co. (a, M, J) . Be-

cause of the fluctuating electric field, however, such M, J particles drift across

a, changing their kinetic energy 1n the process. Equations 5 and 8 des:;ribe this

diffusion across dipole field drift shells, all gyro-phase, bounce phase, and

longitude dependence having been averaged from the problem at the present level

of description.

Northrop (private communication) has shown the following relationship be-

tween <Q> (a, ,8, M, J, t) and the particle flux j differential in kinetic energy W

and solid arigle n:

<Q> = 2 W
	

(10)

Since <Q> is independent of arc length s along each field line, j/W is similarly

s-independent. At each value cf s along a line a, ,8, however, the flux j is to be

measured for a different solid angle Q and a different energy W, 0 and W being

determined by the conservation of M and J on that field line.

r
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The diffusion coefficient Da a is derived in terms of bV, the fluctuating part

of the potential, in a straightforward manner from BNF results:

' (a, ;1 > M> t)	 c;2 
227r

d^3 	 dT 
a (j')	 â 	

(11}( â v—)

	

D 	 a N
0

	

(fio
	 x,^3 wD r, t^r	 a,/3,t

a 

Subscripts here indicate the functional dependence of the quantities involved; thus

(a bV/a,a) a,Q, t is a function F(a, 8, t) while	 aR -WpT,r- is 11 (a, 6 - &-,D -r , t °T)

Using Equation 2 and the definition of a and A we further obtain

	

C2 µ2	
2n	 OD

D	 _ C2 2 	 d,!3	 dr 5 A( t --7 ) 6A(t) cos (,8 -- w T) Cos %3
a a,	 2n

a 	 0	 0

C 2 U 
2 r CO

-	 2 2	 d•r <5A(t - •r) SA(t)> cos co T	 (12)a ju

Depen^ ence of Daa oil M and j for this case where magnetic field lines are equi-

potentials occurs only through coD

WD (a' M, J)	 ea MB ( a , M, J) 2 - 4MBm T(a, M, J)	 (13)

Equation 13, a form due to Northrop (1966), gives a)D for a particle with invariants

M and J N^ hose guiding center is on dipole line a at any Q, in. terms of M, J, a t Bm,

and Ts Here B M and T are respr,,ctively the mirror magnetic field strength and

the bounce period of such a pa-eticleo

11



,r 2

^exp- T 2
C

<S A(t - -r) S A(t )> (16)

^Y

In order that the longitudinal invariant J exist, E must be at least 0((-,) in

smallness compared with the 0(1) magnetic field; as in BNF, we consider here

the yet more restricted case where E is 0(e a ), a << b << 1. With this ordering

and the form of the coefficient as given by Equation 12, our diffusion equation,

Equation 5, is correct through 0 (C S 2 ) .

In passing we note that

	

('cc) 2 	 µ2	 (1%)2	 _	 µ 2
	(14)naa	

^_	
L4 RF	 rat	

_ 
O RE DLL

so that, using Equation 12,

c 2 L6 RE ar
DLL	 2	

" 

dr < 6A( t - T) SA( t)> cos wD T	 (15)

	

µ	 o

Equation 15 exhibits a familiar dependence (Falthammar, 1965; Cornwall, 1968)

on a) the sixEh power of L (explicitly) and b) the value of the power spectrum of

the fluctuating part of the equatorial electric field at the resonant frequency

w = 0)D.

A reasonable direction to proceed, in view of the paucity of direct experi-

mental evidence of electric fields and their time variations, is to assume that the

autocorrelation <SA(t - r) SA(t )> has the form

12



stationary in time (independent of t) . This choice is similar to one made by

Cornwall (1968) and is here motivated by the idea that the equatorial electric

field A exhibits no periodic amplitude variations, is always directed from dawn

to dusk, and is random on the time scale on which, the solar wind executes time

variations of large spatial extent. (The correlation time rC is thus typically one

hour.)

Substituting Equation 16 into Equation 12 and integrating, we obtain

C 2

il

^ 2	 WD 7 2
D

Daa - 4a2 ^ TC d exn -	 q 
c
	 (17)

Given a value of T C , note that 'Daa for fast particles with short drift periods

T  = 27/T I u)D I to Tc is exponentially small. Such particles experience an es-

sentially time independent ensemble average electric field which drives them

to smaller a for one half of their azimuthal drift period and to larger a for the

other half; over a complete drift period the two effects cancel.

For slower particles, rD >> r c , we can represent Daa approximately as

Daa 4a 
2	 rC ^4
	

(18)

independent of a particle's M and J. In the following section we shall consider

the solution to the diffusion Equation 5 with Equation 18 as the diffusion coef-

ficient. Note from Equation 13 that the approximation rD = 27T/I wD I >> r c restricts

M, J particles which can be effectively diffused to an energy range determined

13
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7w?, - q WJ)

For given W and L, the greatest restriction is on J = 0 particles.

SOLUTION OF THE LOSS-FREE DIFFUSION EQUATION

Pursuant to the discussion in the previous section we now write down the

equation

a <Q> _ a [(C 2 /j2	 a <Q>^	
( )a t	 -	 4a2	 TG	 a	 20

which describes the loss :free diffusion of particles whose conserved M and J

satisfy (19) at all a.

The general solution to Equation 20 regular at a = 0 (L = 00) and a = - 00 (L = 0)

for the initial condition < Q > (a, t ^ 0 ) = tk(a ) can be worked out in a straight-

forward manner. We refer the reader interested in the mathematical steps

leading to this solution to Parker's (1960) paper and here merely quote the result

a ^ 3/ 2 	 Xa 2

Q^	 dx X eXp (_X 2 T) J3/4 2 (0

^	 X 2dy y3/2 J 3/4 :1 Y)0( 

(19)

(21)

14



In Equation 21 J3/4 is the Bessel FuClction of order 3/4 and T "' 7T C 2 µ 2 T C Gt/4

is normalized time. Note that r depends linearly on both the correlation time

T. and'I, seen from Equation 16 to be the (time independent) mean square

fluctuation <18A(t)] 2> of A.

The choice of 0(a) = Nb (I - a 1 ), corresponding to a < Q 7 initially spiked at

L i = ° Alai RV facilitates integration of Equation 21. The time development of

< 0 is then essentially the same as if zP were a Gaussian whose dispersion (7 2 is

much smaller than L 12.

Using the 8-function form of ^, we perform the integrations in. Equation 21

and obtain

a J 3/2 I a 13/2	 a4 + a 4	 a2 2i	 .i	 i

	

N	 4r	 exp	 16'r	 I3J4	 87	 (L2)

13/4, the 3/4 order Bessel function of imaginary argument, has the simple integral

representation (Gradshteyn and Ryzhik, 1965)

3,`4	
1.

I3/4 (z)	
(Z)

2 	 ( a^ 
( 12

x2)1/4 exp ^zX) dx , (23)r,^	 "1

P being the usual gamma function.. With 1 3/4 expressed in integral form and ( a J

identified as µ/ERE, <> has the form

^	 µ4	 1	 1 ^

	32P P 16 L13L3 T7%4 exp	
16RE T L4 + L4)

4	 2)

(24)

f-+,
'dx (1 - x2 )1/4 exp

X

 8 RE L? L 2 T

15



The L, r dependence of < Q > has been investigated numerically for a case in

which the initial position of the 8-function is L i = 8. The results appear in

Figure 1: < Q > is in arbitrary units and T :: 2,4 L ao R^ r /µa = 1.4 x 10 6 
^r C (1) t

[t and rG are in hrs., G in ^V/m) 2 .. 'Values 1-41R2 = .3 gauss, L, -- $, and

c = 3 x 10 10 em/see have been used in relating t and T.1 For -r , = 1 hr.,

a _ (2 x 10 ` 4 V/m) 2, values which we feel appropriate for the present model,

T = 1 unit thus corresponds to approximately 18 hrs. Also, for these values the

diffusion coefficient bLL = 1. 5 x 10" 4 LF RE/day-

Note that the peals value of <Q > moves toward decreasing radius as time

progresses. Asymptotic expressions for Lmax , the position of maximum < Q^ ,

are derived in Appendix B. For Li = 8 and in terms of the parameter T, these

expressions are

LMa x 	 8 [1 ° .42 T + 0 (T2 )'	 T < 1	 (25a)

Lx _ ^
 (5T)1/4  [1 _ T2 + 0 (T .. 2 ^^	 T >> 1	 (25b)

For each value of T in Fi&mre 1, the position of Lmax is accurately predicted by

Equation 25b.

Note further that the drop-off of <Q > with L is more rapid on the low L side

of the maximum than on the high L side. This feature is a consequence of the

fact that the particle E x B drift velocity becomes progressively slower (owing

to its 1/B dependence) as the dipole magnetic field source at L = 0 is approached;

16



particles on the leading inner edge of < Q > have the most difficulty executing

radial. drifts.

On the other hand, our model is quite unrealistic at large L, where the

combination of a rapidly decreasing magnetic field and a radially constant

(though 0, (k dependent) electric field yielde unbounded electric drifts. As a

result of such drifts there is a finite flux of particles to L 4 and the total,

number of M, J particles at all. a, is not conserved; i.e., from Equations 24 and 24

< Q :'	
L4 R

	

da s_	
E 8 Q

	

[,t3	 a 

+1

	

3N	 µ3 1 1	 µ4 	 f

32 t	 hG213 L 3 7/a exp	
16V 

L.4	 dx (ix'- i/4 ^; 0. (26)
^4I "

Aware of, but untroubled by, this fact we feel that proper modification of the

model at large L would result in a particle conserving < Q > essentially the same

as Equation 24 at L-values of interest.

Further feeling for the diffusion rate is gained by calculating the velocity

with whichLmax moves inward. From Equations 25 we obtain

•	 'max
	 3.4 

dT 
1 ^1- ^(T)dt	 clt	 J

(T <:< 1)

R
- 4.8 x 10 6 T C a [1 + 0(t)] hr

l t « 0.7 x 10-6 

hrs , (27a)

17
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(11. 11) a x	 2	 (IT
— ;) spa	 [1 + 0 1T- }

R,

^7C^„^}

(T °,^> 1)

0.7 10°

C 1,
	 ) (27b)

In Equations 27 t and 'T are again to be expressed in Hours and d in (V"m)2.

By way of comparison we have also solved the loss free diffusion equation

for < Q > using the coefficient

1 io (earth radi.i ) 2	 z 	 1° (earth radii.)2
DLL=0,031Lb Lv	

.._..	 ..._...^ ,	 3 G . 10-" L'1) (_L,, 	 sec.
	 .(2 )

calculated by Nakada and Mead (1965) for J = 0 particles diffusing under the

effect of electric fields associated with sudden magnetic commencements. In

this equation L b is the L value of the quiet time boundary at the sub-solar point

in the Mead (1964) model, of the magnetosphere (We take L b = 10.). The Nakada-

Mead diffusion coefficient is used as a value repe-o,,,entative of theories in which

the driving electric fields arise from current variations on the viagrietopause.

For Lb = 10, the ratio of this coefficient to that i5L c, r, ssoc;iated with a typical

convection electric field is 2 x 10 -6 L a .

Relating DLL as given by ^ { ^uation 28 to Da a via Equation 14, and using the

definition L	 we find for this case

_s
D a	 3.6 x 10_ 15 ^ s	 (29)a	 ,,

The diffusion equation in terins of normalized time r 1 is thus
I

a<^> _ a 1 a<V
a r l ^, au a6as	 (30)

18
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r, or the same ^-fanctlon initial condition and in the same notation used proviously,

the solution to Equation 30 is

N	 14	
1

XP -

	

T^	 18 + E8)J9̂. rM1/4	 RF14 L .7 L7	 ^

	

ISM	 [4 . 8(256)(2)	 1

I	
t" 
	

^4 
8	 X

dx 1	 exp( - x2) 3/8	
— ^7(Y2 R p8 T .4 T

f

"
', 	 i

In Figure 2 we display restdts of numerically evaluating Equation 31 with

L i = 8 as previously. <Q > is once more in arbitrary wifts with the same norma-

lization as in Figure 1, so that direct comparison of the figure is possible.

,Note, however, that in this case T' = 190 L .8 R 8 -7-/118 	 .043 t (in hours), so

that T' = I corresponds to approximately 23 hours of real time t. For values

,r 
C = 1 hr., a = ( 2 

X 10 ` 4 V,/M) 2, T' is thus roughly 4/3 times greater than T

which parameterizes Figure 1.

Qualitative features of Figure 2 are similar to those of Figure 1: the peak

in <Q>  move s inward with time; <Q > drops off more sharply on its low L side

than in its high L side; and there is a net Aux of particles to L = 00 . The position

of L,,,,x as determined from 
an 

asymptotic analysis of Equation 31 similar to that

carried out in Appendix B for Equation 24 is

LM DX	 8 (1 1.6 x 
10- 2 T' + 0[( T' ) 2])	 T' << 1	 (32a)

Ltnax	
2	 -2]

.3T') 1/8 ^ I
	
V 

F 0 [(T'	 T' -> I	
(32b)
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The velocity of the < 'Q > pea.k in the two asymptotic regimes is

dLnMX	
,13 -l X+ 0(T'	 T' e< 1

5.6 x 10" 3 [1 + 0( t	 hr	t << 23 hrs,	 (33a)

dLm ax 	 1	 1 dT'	 1 + 0[(T') - ']	 T' >> 1dt	
.3T ) T78 T	 {	 I

1.7 1+0 ( t	 t >> 23 hrs.	 33b	T 	 L^	 (	 )

As a ;final step we compare the velocities dLM../lt for the two mechanisms,

calculating the ratio R of the rates predicted by Equations 27 (where the diffusing

mechanism is the convection electric field) to the Nakada-Mead rate Equations 33.

hi the long and short time asymptotic limits R is respectively

4.8 x 106 TC a

	

R =	 ^; 34	 t « 18 hrs	 (34a)
5.6 x 10-

.0.39	 t9/3 	 1.6

^ T 
C 

a) 1/4 t5/4 1.77	 .t1/a	 t ,> 18 hrs

	

4	

(34b)

In computing R, values ^rC 
= 1. hr., a ( 2 x 10 -4 V/ni ) 2 have been wz: = .

Equations 34 express analytically a significant feature of :figures I an,J 2;

at times when <Q> is sufficiently pealed (at an L value where diffusion is not

inhibited by a strong magnetic field), Lmax in the case of convection electric fields

moves a goad order of magmitu.de faster than Lmax in the situation where surface

20



currents are the t.gent. While Equation 34b does predict that the role of the

current variation mechanism eventually exceeds that of convection electric fields,

it is evident from the figures that this occurs only after LM,X has moved inward

considerably and its velocity bf motion is measurably reduced from the early

fast moving stage of its evolution. Compare also the height of the maxima in,

Figures 1 and 2 for the same -value of L: as time advances the maximum value

of < > in Figure 2 is down from that in' Figure 1 by over an order of magnitude.

The features mentioned in the previous paragraph are the basis for our con-

clusion that convection ele^Aric fields can move radiation trapped in the mag-

netosphere radially inward at a rate at least an order of magnitude more rapidly

than Electric fields of magnetopause origin.

CONCLUDING REMARKS

While our results are encouraging in their prediction that convection electric

fields can possibly be a strong diffusing force on trapped magnetospheric radia-

tion, it would be hazardous to conclude that the mechanism presented here is the

only agent. Suca - conclusion is especially unwarranted in view of the small

amount of evidence for either plasma flow or large scale electric fields in the

magnetosphere. It may well be that a combination of effects are operative:

diffusion by magnetic variations complementing the convection mechanism near

the magnetopause and diffusion due to drift instabilAies and even non-adiabatic

processes playing a prominenc part at plasmapause distances and closer in.
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in view of the scarcitj of electric fl.eld .measurements, an enlightening

experimental, exercise is to analyze statistically plasma flow and magnetic field

in the magneto sheath. The autocorrelati.on time and mean square deviation for

both these quantities is information from which corresponding properties of the

magnetospherie electric field might be inferred.

On the theoretical side, the addidoxn of plausible loss mechanisms and so-

lution of either the ensuing equilibrium or time dependent transport equations

are needed before comparison with experimental, flux"j^rofiles becomes signi--

ficant. Depending upon the L and <Q 1 variation of toe ,diffusion coefficients,

different solutions to the transport equation are expected. Comparison of such

results with experiment may then further enhance the credibility of particular

mechanisms both for inwardly diffusing particles and scattering them into the

loss cone.
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APPENDIX A

DERIVATION OF THE a DIFFUSION EQUATION

A derivation of the one dimensional diffusion Equation 5 is presented

here. Our starting point is the two dimensional diffusion equation

at

a	 a<Q>a<Q"^	 a	
a<Q y^

a^ Daa as	 aaa (1)aA ^ + 3 (D,,3a as

("'

derived by Birmingham, Northrop, and ralthammar (1967). Equation A-1 de-

scribes the evolution of the density ^ Q ) in an a, /, M, j phase space, of particles

acted upon by an ensemble of electric and magnetic forces each realization of

which varies in time in an erratic fashion. The density (Q) has been averaged

over this ensemble of fields. Effects of the dritri n g forces are included in the

ensemble averaged velocities ( a ) and ^ ^ ) as well a{s in the diffusion coefficients

Daa$ Dad , D a , and DpR . Since M and J are conserved during interaction with the

fields, diffusion only occurs in the subspace of the Euler potentials a and 8.

For the dipole magnetic, field we choose a = - µ sin 2 09/r and /3 = 0.
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To obtain the one dimensional a-equation, we first average (A-1) over(°a}

at fixed a, M, and J. Denoting this ,8-average by a bar (-), we thus obtain

a	 )(a, M, J, t)	 a	 a I	 a Q

-^
* Ta Da a

7 
aQ )	 (A-2)a

Here use has been made of 1) the periodicity in ,e of all physical quantities and

2) the canonical nature,

a(a) + aCa) = 00	 A-3

of a and ^ as guiding center coordinates (Northrop, 1963).

Equation A-1 is correct through 0 (582) in the 0(E = m/e) adiabatic ex-

pansion parameter and the 0(e S) (e << S << 1) smallness of the driving fields.

We next assume that ( Q ) deviates from a-homogeneity only by an amount pro-

portional to S, i.e., 6Q = (Q) - (Q ) = 0(8). This situation is satisfied, for

example, if (Q) (t = 0) is,8-independent, since inhomogeneities in ^ then appear

only as a consequence of the 0(e S ) fields acting for a time (tie -1 ) of the order of

a particle drift. As a result of this assumed near homogeneity in ^, Equa-

tion A-2 simplifies to

a s Q) + a C a) ^ Q)	
a as Da a a a 

Q	
(A-4)
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To obtain the desired result, Equation 5, we must now show that

^^ a > CQ))	 as ^a>^Q)©}^Q>	 (A-5)

is of a negligible order of smallness. The canonical nature (Northrop, 1963) of

the a t 6 coordinates is next used to show

^•^	 C Ma, /
1 ,J,M, ) m 0	

(A-6)

For our model in which no magnetic variations occur, the Hamiltonian X is the

total particle energy, kinetic plus potential.

We are thus left with indicating the smallness of a/aa CQ ^a) A>' . If in
.

Equation 2 for the electric potential, (A) = 0, we could straightforwardly argue

that A (a), then at most 0 ( E 2 8 2 ) (no a) arises from the dipole field alone)

coupled with / Q 0(5) leads to a negligibly small OP 63 ) term. The asstimp-

tion that (A) = 0, however, means that the probability of a dawn-dusk directed

equatorial electric field is the same as a dusk-dawn directed one. We feel that

such equal probability is in contradiction with the extant circumstantial evidence

and hence we here attempt to prove the smallness of a/aa [A7	 Q}] without

the benefit of ( A) = 0.

Using Equations A-1 and A-4 it is readily shown that

at	 COD —_____"
	

6(a)  a s * 0168 1	(A-7)
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where (Ab is the longitudinal drift rate in the absence of E. Equation A•-7 has the

solution

A(Q ) 7— tEs` (rx, iP — reD t, M, J

x,w

t 
A' . > CfX ► 	 .1. ([^D t' - t) , M, J ► t /	 a	 (, 1 M, J i t) 1	 (Aw8)J	 V

fl (a, ^, M, J), the initial value of A (Q), being; henceforth taken equal to zero.

Employing the relationship (BNF, 1967)

®(a)	
_ aa(v) (A-9)

and the explicit form Equation 2 for the potential, we find

d [A (a) ©Q]

2 2 2	 tA \
/ 2 c a 2	 dt' 	 cos 	 wD (t' - t) a Q )/ (a, M, J, t ')	 (A-10)

a o

(A) has been assumed to be independent of time.

The presence of the factor cos cvD (t' - t) oe-ci.11at ng over the drift period

together with the slowly varying a (Q )/aa render Oaro (a) / Q]negligible as	 kL

a driving term in Equation A-4. This may be seen formally by averaging
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Equation A-10 over a drift period -rD :

n f^
dt ^ ^ T a AQ

C^> 2 A2
	 T.'	 a 1 a2 

CQ > rD-

where O (,rD/Td) correction terms in (A-11) are small in the ratio of the drift

time TD (an C I time) to the diffusion time r a (an Er `1 b ` 2 time) . The leading

order term in (A-11) is itself of O(TD/ra ) in smallness compared with the dif-

fusion term on the right hand side of Equation 5. Our conclusion is then that

all terms represented by Equation A-11 are of a negligible O (^j b 4) order of

smallness and that (A-4) may be written

AV

a t_ d as	 z « a a
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APPENDIX B

THE ASYMPTOTIC MOTION Or Lm a x

We here calculate asymptotically as a function of time the L value at which

0), as given by Equation 24, maximizes. An analogous procedure has wlso

been applied to Equation 31 but this calculation is not detailed here.

For present considerations normalization of 0 ) is unimportant and Equa-

tion 24 is written

4	 1	 1
L3 T7/4 exp - _16 ^E (T4i

	
L4

2 V 4	
/.1	 X

dx ^1 - x^	 exp
f-+,'

	

 8 R 
4 Lie L 2 T	 (B-1)

Lmax is then determined from the equation

µ4L L (^rY^Q^) -	 - 3 +	 1
4 RE 7 L4

4

4	

_1 

dxx(1-X211/4 exp 
8Ro4 L 2 L2 r

J

/	 J
-	 .2 L2^1	 _ = 0 , (B-2)

4RE4 L µ
1	 dx (I _ X2)1/ 4 exp	

4 x
t	 /	 8RE L 12 L2

We see no way to obtain analytically an exact solution to Equation B-2 However,

progress is possible in the limits 8 = µ4/8 R^ L 12 L2 T >> i, << 1 when the
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third term in (B-2),

+1

I	 2,8 ap ^n 

II

 dx (1 - x 2 ) 1/4 exp e

X]1

- - 2^ 
-p (fin G)	 (B-3)

can be asymptotically evaluated.

Consider first the short time T 0,	 00 limit. In this rase we introduce

the change of variable x = 1 - and write

2

G = exp ( ,8 )	 dy 
y i/4 (2 _ y )1/4 exp - ^y	

(B-4)
0

As 8- co , the only contribution to the y-integral comes from the region about

y = 0, where we expand

(2 _ y) 1/4 = (2 ) 1/411- g +0 (Y2 1^	 (B-5)

Substituting this expansion into Equation B-4, we perform the integrations and

obtain

(2)1/4 exp,i	 5	 1	 9
G	 5/4 	 ^^^' 2^^ - -87 r^4 2a 0(^- 2 )	 (B-s)
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Here y(a, x) is the incomplete gamma function (Gradsliteyn and Ilyzhirt, 1965) .

For large x, y has the asymptotic form

y(a , x)' = F(a) + 0 1,.--."-1 exp - x)	 (x - CO )	 (B-

where F is the ordinary gamma function. In the limit )3- co , G thus becomes

(2)1/4 exp^5 	1(	 2G	 '65/4
	
[r-(4. - 87/ I^g

C4 / 0(/J--)
	(B^8)

and

/^	 5 + 5	
)

^ _	 2 1 "
 V	 32, 2 ^ ^3(^_ 

s 1
	 (B-Ql

Substituting (B-9) into (B-2) and identifying / , we finally write down the equation

4 L^2 L2
3	 ^	 ^ ^ - 

1	
+ 5 +0 	 .4 R 4 T L4	 L 2 L2	 '2	 4	 (B-10)^^E

The asymptotic solution to Equation B-10 is

R 4 L.4 	R 4 L 4 2

	

Lmax	 Li 1- 
E 

41 7 + 0	 4 	 T	 (B-11)
^	 µ

in the limit } ^4 L i 4 rlµ 4 << 10

In the opposite, long time, asymptotic limit, 7^ 00, 13 0, we approximate G by

+1
•	 R2 x2 	 ^3 X3

G	 dx (1- x 2 ) 1/ 4 1,8x+ N 2 +	 5 +0r,84)
. 1	 l

(B-12)
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Contributions arise only from even powers of x in the series. Performing the

	

integrations, we find	 a

- (2)1/2 P \ ! r^ 	 ^2

	

G	 6	 1	 1 7 t 0(/34)^	 -13

so that in this limit

4^2
I = - 7 + 0(84)(B-14)

LM,X is hence determined from the equation

4	 1	 1	 8	 4	 s

+ 4 Re r L4 - ^ RES T 2 L .4 L4 +	 RE F L.2 L2	 - 0	 (B-15)

whose solntiou yields

'l
P4
	

µ4
1`max	 R( 12,r)1/4 1_ 112R 4L.47	

0	
4 L.4T	 (B-16)

E	 E i	 E i



FIGURE CAPTIONS

Figure 1: ( Q) , as given by Equation 24, for a h -function at L i = 8 at T ^ 0.

Diffusion is driven by convection electric fields, and for representa-

tive magnetospheric conditions T = 1 unit corresponds to 18 hrs.

of real time.

Figure 2: ( Q ) from Equation 31 for an L i 8, S -function initial condition. The

diffusion coefficient is in this case taken from the work of Nakada

and Mead (1965). T' = 1 unit corresponds to 23 hrs, of real time.
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