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ABSTRACT

A theoretical method for determining equilibrium interface
configurations in axisymmetric containers of arbitrary shape was
investigated., A single differential equation was derived from the
principle of minimum surface and potential energy using the calculus
of variations. This equation, in conjunction with boundary conditions
dependent on container shape and contact angle, can be numerically
solved for the desired surface profile using the Runge-Kutta iteration
technique. The method imposes no significant limitations on contact
angle or Bond number and is eé,sily programmed for computer solutions,
Representative theoretical results are presented concerning the influ-
ences of contact angle, Bond number, and container fill level on sur-
face shapes. Also, theoretical results are compared with experimental

data.
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LOW GRAVITY LIQUID-VAPOR INTERFACE
SHAPES IN AXISYMMETRIC CONTAINERS
AND A COMPUTER SOLUTION

By

Leon J. Hastings and Reginald Rutherford,III

SUMMARY

The purpose of this study was to derive a convenient method for
determining equilibrium liquid-vapor interface shapes in axisymmetric
containers of arbitrary shape. Several legitimate methods for deter-
mining interface shapes were previously proposed by other investiga-
tors. In fact, the basic differential equation for computing intérface

profiles was presented by Bashforth and Adams in 1883. However,

' these solutions are either inconvenient to apply or are restricted to

a certain range of boundary conditions.

A convenient form of the basic interface differential equation was
derived from the familiar principle of minimum surface and potential
energy using the calculus of variations, The use of a polar coordinate
system eliminated the convergence difficulties encountered in the previ-
ous solutions. Also, the derivation enabled the incorporation of a Bond
number based on a characteristic container dimension into the basic
differential equation as opposed to a Bond number based on interface
radius of curvature.

The basic differential equation and boundary conditions dependent
on container shape were programmed for a GE235 computer so that sur-
face shapes for any particular combination of Bond number, vapor
volume, and contact angle can be determined. The computer solution
utilizes the Runge-Kutta numerical technique and imposes no significant

limitations on contact angle or Bond number.



Representative surface shapes were computed to determine the
influence of contact angle, Bond number, and container fill level for
three container shapes: cylindrical, spherical, and spheroidal. It was
determined that, in a cylinder, the inﬂuence of Bond number on inter-
face deformation is maximum between Bond numbers of two and twenty
and becomes negligible for Band numbers greater than approximately
200. In spherical or spheroidal containers, the empty fraction has a
significant effect on the interface profile. Also, unlike the cylinder,

a contact angle of 90 degrees does not assure negligible interface
distortion in spherical or spheroidal containers. The limiting contact
angle is that angle measured in the 1iqui;1 between a horizontal plane
corresponding to the infinite Bond number liquid level and the tangent

to the container boundary.

The theoretical profiles were compared with experimental data,
and exceptional agreement was obtained. In fact, if the actual contact
angle is known, it is believed that the static equilibrium interface pro-
files can be computed with greater accuracy than they can be measured
due to the distortion and reflection problems inherent in such experi-

mental measurements.
I. INTRODUCTION

In environments devoid of any disturbances except that of a low
acceleration or gravity, surface tension forces become comparable to
those of gravity, and equilibrium liquid-vapor interface shapes may
radically depart from the near flatness observed in normal gravity.
This is especislly true of the many liquids that exhibit wall contact
angles at or near zero degrees. The problem of low gravity interface
descriptions for various container shapes, liquids and acceleration
levels is of especial interest to engineers respoﬁsible for the design of
propellant control schemes for space vehicles and storage tankers that
must operate for long periods of time in orbital environments, that is,

under low gravity conditions.

]
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The purpose of this study was to provide a general method that
can be used to determine low gravity interface shapes for liquids in
axisymmetric containers subjected to axial accelerations less than that
of normal gravity. As demonstrated herein, a single differential equa-
tion, which is applicable to all containers that are symmetric about an
axis parallel to the acceleration direction, can be derived from the
principle of minimum potential and surface energy using the calculus of
variations. This differential equation in conjunction with boundary con-
ditions dependent on container shape and contact angle can be solved
numerically for the desired interface shape using the Runge-Kutta
iteration technique. Although the basic differential equation and its solu-
tion is applicable to all containers symmetric about the vertical axis, the
following geometrical shapes were selected for analysis based on their
practical significance in space vehicle applications: (a) cylindriéal,
(b) spherical, and (c) prolate and oblate spheroids. This theoretical
method for interface determination was programmed for a GE 235 com-
puter, and theoretical interface shapes were computed for a wide range
of conditions. .Since practically all known liquid propellants considered
for space vehicle propulsion exhibit contact angles at or near zero
degrees, interface configurations for fluids of zero contact angle are

emphasized.

Also presented are experimental data concerning low gravity
interface shapes that were obtained from a Lockheed Missiles and
Space Company experimental program. Although the data are not
extensive in scope, it is sufficient to substantiate the proposed theoreti-

cal techniques of interface shape determination.



II. BASICS OF LIQUID-SOLID-VAPOR SYSTEMS

A fundamental property of liquid surfaces is their tendency to
contract to the smallest possible surface area for a given volume, i.e.,
a spherical surface. This property has been proven by thorough
theoretical and experimental investigations which have been performed
ever since the phenomena of capillarity was first noted by Leonardo da
Vinci (Ref. 1)%, The properties of molecules in liquids can easily be
used to account for this minimization of surface area. On the interior
of the liquid, each molecule is surrounded by others on every side and
is, therefore, subject to attraction in all directions. This, however,
is not the case in the surface. Molecules in the surface are attracted
inwards and to each side by neighboring molecules, but there is no out-
ward attraction to balance the inward pull since the molecular density
of the vapor is much less than that of the liquid. Hence, every surface
molecule is subject to a strong inward attraction perpendicular to the
surface. This inward attraction causes the surface molecules to move
inwards more rapidly than others move outwards to replace them. The
diminishing of molecules in the surface continues until the maximum
number of molecules are in the interior, that is, until the surface is
spherically shaped, subject to external conditions or .forces acting on

the liquid.

When external forces, such as gravity and those created by the

presence of other materials, must be considered, the resulting liquid-
vapor interface shapes are more complicated. Gravity forces always

tend to minimize the potential energy associated with the mass of

* This reference contains an excellent summaxry of early works per-
formed on capillary phenomena.



liquid affected by the liQuid—vapor interface shape and, therefore, is an
important factor in determining equilibrium interface shapes. In addi-
tion, another influencing factor that must be considered is the presencé
of a solid material and the molecular attraction between it and the
liquid. If the molecules in the liquid are attracted by the solid (adhesive
forces) more than by neighboring molecules in the liquid (cohesive
forces), the liquid is said to "wet'' the solid, that is, the liquid tends to
spread on the solid surface. If the cohesive forces are greater than

the adhesive forces, the liquid does not wet the solid surface.

Since surface energy is associated with a liquid-vapor interface
and work must be done against the internal liquid molecules to extend
the surface, a vast number of problems relating to the equilibrium
position of surfaces can be solved if the magnitude of surface energy is
known. To sirhplify the calculations, however, a hypothetical tension,
which acts in all directions parallel to the surface, is substituted for the
surface energy. This hypothetical tension is generally termed ''surface
tension.! Surface tension has the same dimensions as surface energy
per unit surface area and it rmust have the same numerical magnitude.
Proof of this is relatively simple and is readily available in literature
on physics of surfaces (a thermodynamic proof is contained in Ref. 2).
Several references (see References 3 and 4) emphasize that the concept
of liquid surfaces behaving like a stretched membrane must not be
misconstrued, since surface energy is the fundamental liquid pro-
perty and surface tension is merely its mathematical equivalent.

At any rate, the proper utilization of surface tension is very con-
venient. In systems involving liquid surfaces the equilibrium position
can be acquired by totaling up the changes in surface energy of the
various interfaces (liquid-solid, liquid-vapor, and solid-vapor) whose
areas are altered by a displacement. However, if the surfaces are

considered at the boundaries where each i.s pulling with the appropriate



"surface tension' on their boundaries, then the changes in liquid-solid
and solid-vapor surface areas do not have to be calculated. Such an
approach is taken in this report, which considers the effects of low
gravity environments, container shapes, liquid "wettability''*, and

liquid surface tension, on the equilibrium interface shape.

* The term "wettability'' refers to the degree of solid-liquid attrac-
tion. The degree of wetting is usually measured in terms of ""con-
tact angle, " which is explained in Appendix A, ’



III. REVIEW OF PREVIOUS ANALYSES

Several investigators have devoted considerable time to the
evaluation of static equilibrium configurations of liquid-vapor systems
in zero and low gravity environments. Most of their evaluations, how-
ever, apply only to containers of cylindrical shape (see for example
References 5, 6, and 7). Only the works of Bashforth and Adams
(Ref. 8); Reynolds, Saad, and Satterlee (Ref. 9); and Li (Ref, 10) can
be applied to axisymmetric containers of arbitrary shape.

Undoubtedly, the most important early exploration of the subject
was performed by Bashforth and Adams and is recorded in their book
which was published in 1883, Bashforth and Adams were primarily
concerned with the shape of liquid droplets on or suspended from a
horizontal surface. Their results apply reasonably well to the
present problem as demonstrated by Yeh and Hutton (Ref. 11) and
Jurney (Ref. 12).

Bashforth and Adams derived the governing differential equation
beginning with the generally accepted relation for pressure difference

across any curved liquid-vapor interface at a particular point

1
T

P, - P, =%G:+ (1)
where P, and Py are the pressures on the vapor and liquid side of the
surface respectively, r; and r, are the principal radii of curvature of
the surface at the point of interest, and oy, is the surface tension of
 the interface.

As shown in Figure 1, if Py, is the interior pressure of the sur-

face at its origin, then due to hydrostatic pressure variation



Acceleration
Direction

" h
\ / Note: r, is in the XZ plane and

\ dX / r, is in a plane perpendicular
N S to the XZ plane.

FIGURE 1. REFERENCE COORDINATE SYSTEM



Pﬂ =P1°-p£a.z (2)

where p, is the liquid density and a is the local acceleration.

Also, at the origin

20
P, - Pyo = <X (3)
o)
where r; =r, =r, in equation (1).

Using equation (3) and substituting for Pj , from equation (2),
2 Ly 1 1

Py- Py = +Pzaz=°'£v(;"+'— (4)
To 1 Tz

Let X be the horizontal and Z be the vertical coordinates of any
point in a meridional section of the surface, r; the radius of
curvature of the meridional section at that point, and ¢ the angle which
the normal to the surface makes with the axis of revolution. Then, the

length of the normal terminated by the axis (r,) is -s-l-}s—

n o’

and equation
(4) becomes

E.Q_,_Si_ni:z.,.H(-E—) (5)
o

Ty X/ro

P z . . .
where H = —‘Z:A is a dimensionless number often termed the Bond
v
number.

Another form of equation (5) can be easily derived. Since the
expression for the radius of curvature of a line in the XZ plane is
27 3/2
1+ (42
dx

d“Z
dx?

ry =

and from Figure 1



az

, ax
Slnd)’-: dz 2711/2
1+ (B

then equation (5) is equivalent to

27 [y (@) 2 o (), (2] (6o
axz ax) | Xax T \ry T2 ax 2
or
x 42
14 ax 2 BZ (6n)
X dX [ (dZ ZT/Z T r rs
1+ (5% o
ax

These equations will be recognized in sub§equent paragraphs as forms
of the differential equation derived by other investigators using other
approaches to the problem.

Equation (5) was solved by Bashforth and Adams using either the
arc length L. or ¢ as the independent variable. For example, if
¢ is taken as the independent variable, then upon integration of the
equations

dX

E—(; =r; cos ¢, %:rl sin ¢ (7)

with use of the initial conditions at the origin

equation (5) will yield r; as a function of the coordinates X and Z.
First, the form of the curve in the neighborhood of the origin can
be found by developing r; and the coordinates X and Z in series of

ascending powers of ¢. Next, the coordina;tes for larger values of ¢

10

e



can be obtained by step by step numerical integrations. Extensive
numerical tables are preée'nted in Reference 8 that give coordinates
of surfaces for various values of H.

In present day space vehicle applications, it is desirable to base
the interface shape on a Bond number in which a container dimension,
such as tank radius, is the characteristic dimension. Bashforth and
Adams' system can be converted to the desired Bond number system,
but extensive interpolations are often required between tables in order
to locate the proper liquid volume, contact angle (@), and Bond number
combination. In addition, according to Yeh and Hutton's studies,
Bashforth and Adam's tables contain a maximum Bond number (based
on container radius) of about ten, so that for many applications their
tables must be considerably extended.

Reynolds, et al obtained a modified but equivalent form of
Bashforth and Adams' differential equation by performing a force
balance on an infinitesimal annular ring cut from the meniscus. Using
the coordinate system shown in Figure 1, a vertical force balance on

an annular ring yields

Capillary Force, Fc = Pressure Force, Fp

or

a (2nX oy %IZ—) = (P, - P,)(2n XdX) (8)

Substituting equation (2) for Py,

d dZ XdX
O'EVEE(X—&E =_<_i-i,— (PV-P10+ paZ) (9)

Introducing the dimensionless quantities

X Z L
X = —— g m ——— f = —
rc rc rc

11



2
par oy
H' = = where r¢ =

Ogv (Py - Pyy)

the final differential equation becomes

4 (,4z\ _,4dx '
T, (Xdl —Xdl (1 +H'=z) (10)

A second differential equation was obtained from the geometric condition
ds dae/ T
which when differentiated, gives

2

dz d?z dx d%x
as a2z Yag qiz =9 (11)

Equations (10) and (11) form a pair that can be solved numerically.

The problem is treated as an initial value problem in which

x (0) = z(0) = z'(0) =0
and

x! (0) = 1

Calculations of this type were performed for various values of H!'
(from O to 10) and contact angles. The calculations are similar to those
of Bashforth and Adams and are subject to similar limitations.

In fact, it can be shown that equation (11) is a modified form of

Bashforth and Adams' equation. Beginning with equation (9) and recall-

ing that
P, - P, =2y

12



and

271/2
dL=[l+(%D% ] ax

then equation (9) becomes

dz
L d ). dX .2  HZ
X dX 1+(£1521/2 Try o ryl
_ dx

which is identical to equation (6b).

Using a still different approach, that is, the principle of minimum
surface and potential energies and the calculus of variations, Ta Li%
derived the interface differential equation

1 d az azn2 T Y2 mz
XdX{XdX[1+(dX } “rgr T

with

where A is a Lagrange multiplier; andat Z =0

d?z 1 dz
E}—{T-—ro, dX—O, and Z =Z,=0

Then Li's final equation can be written

14 | az H(«_i__z_z"’z _HZ 2
X d&X | “ X ax Tl t1,

which is identical to equation (6b).

* Li's derivation is not presented here since a similar procedure is
used in the subsequent section of this report.

13



However, Li solved the differential equation through a transfor-

mation of variables and the introduction of a power series to give

';%‘ = f (X)
o

Li obtained the first four terms of the expansion, and later Yeh and
Hutton derived and used three additional terms of the expansion. How-
ever, the minimum contact angle for which Yeh and Hutton obtained
satisfactory convergence was about 53 degrees. Yeh and Hutton con-
cluded that Li's solution could not be used for contact angles at or near
zero degrees, since the number of coefficients required for the series
solution was a function of the cotangent of the contact angle, and there-
fore, an infinite number of coefficients was required as the contact
angle approached zero.

In conclusion, it is noted that several approaches can be used to
derive the basic differential equation for low gravity surface profiles.
However, the independent variables chosen, the method of solution, and
the coordinate system are important factors in obtaining numerical

results for a wide range of conditions.

14



IV. THEORETICAL ANALYSIS

As related previously, Ta Li has proposed a general method of
calculating low gravity liquid-vapor intérface shapes in axisymmetric
containers. His method appears to be legitimate but is unsuccessful in
the many cases when the interface slope reaches or passes the vertical,
i.e., curves back on itself. To avoid this difficulty, a polar coordinate
- system is proposed in the following sections. An integral equation is
derived from energy considerations, and the calculus of variations is

used to obtain a differential equation that can be solved nurnerically.
A. Total Energy of a Capillary System

Consider & container that is cylindrically symmetric and is partly
filled with liquid. The total enérgy of this arrangement is the sum of

surface and potential energies.
Total Energy = Surface Energy + Potential Energy
E=S.E. +P.E.

The surface energy is the sum of surface energy of three interfaces:

liquid-vapor (ILv), soli&-Vapor (sv), and solid-liquid (sf). Therefore,
S.E. =0y, Mgy + 05y Agy + 059 Agy
where ¢ is the surface tension and A is the area of the respective inter-

faces. Using the fact that the total area of the solid surface Ai ¢, is

constant and the relation*
U'IV cosa = O'S'V— 0'51

where o is the wall/liquid-vapor interface contact angle, then

* Refer to the Appendix A for a discussion of this relation.
15



S.E. =0yy (Ayy - Agp cos @) + 05y Agotal (12a)

or

S.E. =0y, (Agy - Agy cos a) + Constant (12b)

Consider the coordinate system indicated in Figure 2. The independent
variable is Z, the liquid-vapor surface is described by X = X(Z); and
the container boundary, which is axisymmetric about the Z axis, is

described by X = X(Z).

Z
A
Acceleration
Direction
Interface
X, = Z
Container w = XwlZ)
Boundary

FIGURE 2. REFERENCE COORDINATE SYSTEM

The liquid-vapor interface surface area is

dAgy = 27X (dZ% + dX?)V/? (13)
and the liquid volume (Vy), which is constant, is

dVy =n(Xy? - X%) dz (14)
2

16



Also, the potential energy of the liquid referenced to an arbitrary point
on the liquid surface is
d(P.E.) =alpy - py) Z dVy

or

d(P.E.) =walp (sz - X%) z4z (15}

where: a =local acceleration of gravity
Ap =liquid density - vapor density = py - py (usually
Ap =p, for all practical purposes)

Now, consider a change to the coordinate system indicated in Figure 3.

= X/Ro

Acceleration
Direction

ontainer Boundary

FIGURE 3. REFERENCE POLAR COORDINATE SYSTEM

The parameter y describes the liquid-vapor interface shape, and the
angle 6, measured from the vertical to y, is the independent‘variable.

The coordinate transformation is

Z =-RgycosH (16a)
X=R,ysin® (16b)

where R, is any convenient length parameter of the container. The

17



container boundary is now given by
Y =1£(y, 6) (17)

where Y is the dimensionless radius of the container wall in a horizontal
plane with the point (y, 0).

In the new coordinate system, if relations (16) and (17) are
substituted into equations (13), '(lf_4.:), and (15)

dy 2-1/2
d Agy =27 Ry% y sin® [yz + ('C.Té*) ] de (18)

d Vy =wRy,? (Y% - y? sin®6)(y sin® -~ dy/d® cos 6)de (19)
d(P.E.)=-malp Ro4 y cos 8 (Y% - y? sin® 8)(y sin®

- dy/de cos 0)de (20)

Note that the total liquid volume must remain constant and from equa-
tion (19) is
8,
Vy =R’ SI (Y% - y% sin® 0)(y sin®@
0
- y' cos8)de + £ (Z) (21)

wheref(Z,) is the volume of liquid below the horizontal plane at 6 =0
and is, therefore, independent of the detailed form of interface shape.
Using relations (12) and (18), anew relation can be derived for surface
energy. Referring to Figure 3 and letting 0; be the final 6, i.e., 0
measured at the interface/container wall intersection,
0,
Apy = ZTTR.OZ § ysin® (y2 + Y,z)l/z de (22)
0

dy
. | J—
Note: vy 36

18
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Substituting equation (22) into (12)

03
A
S.E. =2rR,? qv[ 5 ysin® (y* + y'?)de - ——-——-—-—;j;?“]
o
0

+ Constant

However, Agy is independent of the detailed form of y(0), the interface

shape, and is dependent only on 6, and the container boundary.

Therefore,

Agg

T RQz £(6.)
and

0,
S.E. =2n'a£VROZ[ S ysin6 (y? + y'2)!/? de-f(el)'i;cosa:l (23)
; _

+ Constant

From equation (20), the total potential energy is represented by
P.E,. =-malA p’Ro‘* S' 'y cos 0 (Y2 - y2 sin?0)(y sin0 - y' cos 6) dO
4

(24)

If a dimensionless parameter termed '"Bond number,' which is a ratio

of "body forces' to "surface tension forces,"

By = ApaR g?
Tiv

is incorporated, then equation (24) becomes
9,
P.E. =-woy, By RS y y cos 0 (Y2 - y2 sin?0)(y sin

0 - y' cos0)de (25)

19



By combining equations (23) and (25), the total energy is represented by

9,
E =woy R 2 [2 S‘ ysin0 (y? +y'2)/2 40 - 2£(8,) cosa
-
0
9, (26)
- BN‘Y ycos 0 (Y% . yz sin? 0)(y sin® - y' cos G)de} + Constant )
0 L3

In subsequent sections the expressions derived for total liquid
volume, equation (21), and total energy, equation (26), will be used in
conjunction with certain physical considerations to provide a basic
eciuation for the equilibrium liquid-vapor interface profile. The physi-
cal considerations are that the total liquid volume must remain constant

and that the principle of minimum energy must be satisfied.

B. Principle of Minimum Energy

Numerous investigators have observed through experimentation
that the total energy, E, of a liquid-vapor-solid system such as
the one under consideration, tends toward a minimum. The thermo-
dynamics of such a capillary system can be used to explain this
principle of minimum energy. Using equation (12b) the work required

to extend the liquid-vapor interface is given by

d We =d(S.E.) = 0yydAg

where Ao = Agy - Agg cos a,

The work performed against gravity when the capillary system's

center of mass is moved upward a distance of dZ, is
d Wy = MadZ .
Then the total reversible work done on a capillary system is

d W =0y, dA; + MadZ (27)
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In a reversible or irreversible change of state, the entropy
change, dS, is related to the energy transferred to the capillary sys-
tem by

T dS = dU - AW (28)

where U is the internal energy and T is the temperature.

Substituting equation (27) in equation (28)
T dS = dU - oyydAc - MadZ . (29)

The general criteria for neutral equilibrium of a system for all

possible variations is
AS)g = AE)g = 0

and for stable equilibrium is
AS)E <0 or AE)g>0

where E is the stored system energy. Thus, in general, for all possible

variations in the system for which
AS)E £0 or AE)gz 0

a stable or neutral equilibrium state exists.
In this case, equation (29) represents the infinitesimal change
between two equilibrium states. Consider changes at constant internal

energy (£ = U in this analysis)

_opydAc  MadZ

dSly = - T

(30)

Then, if the initial state is in neutral or stable ,equilibriium and

since T is always positive
dS)y=0 or oy, dA.+MadZz 0
and

dE =0
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Since the capillary system energy can only increase, the equilibrium

state must be one of minimum energy, E.

Thus, the energy described by equation (26) must yield a mini-
mum in order to satisfy the principle of minimum energy. As illu-
strated in the next section, this principle of minimum energy enables

a convenient application of the calculus of variations.

C. Application of Variational Principle

In view of the aforementioned factors concerning the total energy
and liquid volume of the system, it is necessary to minimize the total
energy while keeping the liquid volume constant. Such a condition is
known as an ""isoperimetric problem'" with a mobile upper limit (6,)
in the calculus of variations. As shown by Li, it is convenient to use
the calculus of variations to construct a function from Euler's relation
(Ref. 13) .

8(F + N\G) d [6(}? + xc):] -0 (31)

oy de ay!

where "F'" and "G" are integrands of integrals to be minimized and
held constant, respectively, and "\' is a lL.agrange multiplier.

Therefore,

F

F(y, 0)*

2y sin@(y? + y‘z)l/z

i

- By v cos 8(Y?% - y® sin®0)(y sin® - y' cos8)

and

G

G(y, 6)

3*

The term £(6,) is not included as a part of F because, as proven by
Li, this only effect of the term is to assure the proper contact
angle at the container boundary. Thus, this terminal condition

is not satisfied for the time being.
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G = (Y? - y? sin?0)(y sin6 - y' cos 6)

Performing the indicated operations in equation (31),

9
3y (F + AG) = 2 sin8 (y? + y'2)Y2 4 2y% sin0(y? +y'2)- /2

- By cos e(Y? - 'yz sir’0)(y sin @ - y' cos 6)

2
+ a;; - 2y sin® e)(x -BNYcos6)(ysin® -y' cos )
+ 8in@ (A - By y cos e)(y? - yz sin?0) (32)

and

d |[8(F+AG) | d ' s 2 12 -1/2]

+ a% [(BNY cos 0 - A\)(Y? - y2 sin% 0) cos 9:]

= 2y y" sin 0{y? +y'2) 12 12y sinBly? +y'2)"1/?

- 2yy'sin6lyy' +y'y" ) y? +y'2)"3/2

+2yy'cosOly? +y'?) /2 - (ByycosO - \)(Y? - y? sin?0)sin @
.-!- {(BNycos®- )\)[a%(YZ) - 2yy'sin?0 - 2y® sin @ cos e]cos 6

+ By (y'cos 8 - y sin8){Y? - y% sin®0)cos 6 | (33)

On combining relations (32) and (33) according to equation (31) and with

considerable algebraic manipulation, it can be shown that:

y! C” 1/2 cot0

0 =(2y* +3y'2 -yy") CT¥/2.

¥
1 (9Y2 3Y?cot@
+(L-BNycos9)[2Y By + %0 y )- 1:’ (34)
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where C = (y? + y'?) for simplification.

.. 9Y? cot6 9Y?
On examining 3y+ Y where Y =1{(Z) and

Z =£(y,0) =~ Ryycos®

Note that
oY? _dy*dz o 9@.‘!_2
8y dz 8y 0 °c°® Y%7
9Y? dv?o0z . .dy?
96 ~az 08 -~ T Ro vy sin84m
Hence,

9Y2 cot 9 av?
+
dy y 20

=0 (35)

This relation is very significant, for it means that container shape
drops out of the differential equation (34). Incorporating equation (35)

in equation (34) and solving for y"

2 2
1 -_-sz +3Y'2_Y' COtegy +v'e)
y y

+ -:; (By y cos @ - A)(y? +y'2)3/2 (36)

The undetermined multiplier A\ can be solved for by treating the
problem as an initial value problem in which the following "initial

conditions' are prescribed

y{(0) = v,
y'(0) = 0 (interface symmetry)
y'"(0) = Yo (1 - Kp)

The initial value for y''(0) can be derived using the equation for

curvature of an arc at any particular point
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L Xt 2y -yt
- (YZ + Y|2)3/Z

Substituting the conditions specified for y(0) and y'(0) and solving for
Y” (O)

¥1(0) =y, ( - Yok,)
or
¥1(0) =y, (1 - ¥,

where Ky =y oo and may be considered a parameter related to inter-
face curvature at the point of symmetry. Therefore, by substituting

the prescribed 'initial conditions' in equation (36) and solving for A

2K
A ===2 + By Y,

Using this value for A\, the final form of the differential equation is

obtained
2 2 12 1
y" =_L_j'_3.L_ - 12— Cote(yz + le)
y Yy
1 2K '
+; [BN(Y cos 9 - Yo) - —;r-QJ(Vz + Y,z)s/z (37)
o

The validity of equation (37) can be checked at the two limiting condi-
tions, namely, BN =0 and as BN approaches infinity. At BN =0 (zero
gravity), it has been experimentally verified by numerous investigators*
that the surface of a totally wetting liquid will tend toward a shape of
minimum surface area, that is, a sphere. Therefore, at By =0 equa-

tion (37) must be satisfied by the equation for a circle, y =y, cos®.

* See, for example, Reference 14,
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Substitution of

y =y, cos
y' = - yo 8in0

1
K,=1-210 .47

Yo

in equation (37) gives

y"' = - yo cosO

which verifies that y =y, cos® at By =0.

As By approaches infinity the equation should become that for a
horizontal line. That this occurs is easily verified by dividing equa-
tion (37) by By and taking the limit as Byy approaches inifinity. In such

a case, equation (37) becomes

0 == (y cos® - yg)

<

or

_.Jo__
Y = coso

which is the equation for a horizontal line.

For values of Byy between the two end points, numerical solution
of equation (37) is easily accomplished using the Runge-Kutta iteration
technique (Ref. 15), which yields a dimensionless plot of the liquid-
vapor interface for a given y,, Ky, and By. However, the additional
boundary conditions of contact angle, constant vapor (or liquid) volume,
and container shape must be satisfied in order to obtain the desired
interface shape. The equations for calculating these boundary condi-
tions are all functions of container geometry and, therefore, constitute
the only changes that must be considered when the container shape is
modified. To illustrate the modifications that are required by a change

in tank configuration, the equations for boundary conditions dependent
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on tank shape are described in Appendix B for four shapes: spherical,
prolate spheroid, oblate spheroid, and cylindrical.

Equation (37) and the boundary conditions described in Appendix
B are programmed for a GE 235 computer so that the surface shape
for any particular combination of Bond number, vapor volume, contact
angle, and container shape can be determined. Basically, the calcula-
tion of a surface shape using the computer program consists of initiat-
ing the computation procedure with an initié,l set of conditions at the
interface centerpoint and using the Runge-Kutta procedure until the
calculated surface intersects the container wall. Whenever the surface
reaches the container boundary, the boundary conditions of contact
angle and vapor volume are checked. If these boundary conditions are
not satisfied, appropriate changes in the initial set of conditions are
selected by the computer and used to initiate the Runge-Kutta procedure
again, Thus, the iteration procedure continues until all conditions are
satisfied and the desired interface is yielded.

The computer program is described briefly in engineering terms
in Appendix C. This information provides a better visualization of the
relationships of the various parameters involved in the determination
of an interface shape.

Thus, a differential equation (equation (37)) which enables the
elimination of difficulties incurred in the application of previously
derived interface differential equations (see Chapter III) has been
formulated. Desirable features that have been incorporated in equation
(37) include:

1. The Bond number, By, appearing in the differential equation
is based on a characteristic container dimension rather than on the
surface radius of curvature.

2. The polar coordinate system utilized eliminates the possi-
bility of ""double-valued' functions which can occur in other coordinate

systems whenever the surface profile curves back on itself, that is,

27



whenever two values of Z occur for a given value of X. Thus, solutions
are possible for zero contact angles and zero Bond numbers.

3. A computer solution of the differential equation is easily
accomplished using the Runge-Kutta numerical technique. Bond num-
ber, contact angle, container shape, and fill level (except in the case
of a cylinder) are the only necessary input.

Theoretical interface shapes for various conditions were deter- -
mined using the computer program. The results are presented and

discussed in the subsequent chapter.

28



V. THEORETICAL RESULTS

Low gravity interface shapes in spherical, prolate and oblate
spheroidal, and cylindrical containers for a wide range of Bond num-
bers, fill levels, and contact angles were determined and are presented
in Figures 4 through 15, However, since almost all known liquid pro-
pellants for space vehicle applications have contact angles near zero
degrees, the presentation of interface shapes emphasizes shapes for
zero degree contact angle fluids. A discussion of the influences of

various parameters is contained in subsequent paragraphs.
A, Bond Number and Container Shapes

Figures 4 through 11 illustrate the effects of Bond number and
tank configuration on surface shapes for zero degree contact angle
fluids. As one would anticipate, the liquid-vapor interface shape
approaches the shape observed in normal gravity as the Bond number
increases. Some specific observations on the interface shapes calcu-
lated for each of the four container shapes analyzed are as follows:

1, Cylindrical Containers - Since container empty fraction has no

influence on interface shape in a cylinder (provided the container top or
bottom does not interfere with interface formation), Bond number is
sufficient to prescribe interface shape for a given contact angle. Bond

number as defined herein for a cylinder is

2
By = PaR
Tiv
where the container radius, R, is the characteristic dimension. The
vertical and horizontal coordinates of the interface shapes presented

are, therefore, nondimensionalized with respect to container radius as

follows

Vertical distance measured from Bond number = » position
Container radius

Z
R
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X Radial distance from container axis
- Container radius

b

Interface shapes for specific Bond number§ ranging from 0 to 200
are illustrated in Figure 4. However, the influence of Bond number on
interface shape is best illustrated in Figure 5 where the vertical posi-
tion of the low gravity interface at the two end points (at the container
center and wall) are presented as a function of the Bond number from
one to 1000, For Bond numbers less than two and greater than twenty,
the interface shape begins to asymptotically approach maximum and
zero deviation from a horizontal interface. Since a point of inflection
occurs between Bond numbers of two and twenty, the Bond number
influence on interface deformation is maximum in this region. Also,
it is interesting to note that the interface distortion becomes very
small or even negligible for Bond numbers greater than approximately
200,

If the interface shape is desired for a Bond number that is not
presented, Figure 5 can be used to determine the position of the inter-
face at its two end points. These two dimensions will aid in interpo-
lating the interface data presented to find the required interface shape.

2. Spherical Containers - Since spherical containers are often con-

sidered for space vehicle applications, a rather extensive presentation
of interface shapes is contained in Figures 6 through 9 for Bond numbers
ranging from 5 to 150. The interface shape for the limiting case of
Bond number equal zero was omitted because the interface merely
assumes the shape of a sphere with a volume equal to the vapor volume
in the container. The dimensionless parameters and symbols used in
the figures presented are the same as those described for a cylinder.

The empty fraction has a very significant effect on the interface
shape in a sphere for a given Bond number. This observation is
evidenced by comparing the low gravity interface shapes for normal
gravity liquid levels in the upper half of the container with those in the
30



lower half, The interface shapes in the lower half have significantly

less curvature than those in the upper half because the interface must
bend less to become tangent to the container wall and satisfy the zero
degree contact angle condition.

3. Oblate and Prolate Spheroids - In cryogenic space vehicle applica-

tions, particularly liquid hydrogen (fuel)/liquid oxygen (oxidizer) sys-
tems, the oxidizer tank is usually an oblate spheroid or some modifica-
tion thereof. As a typical spheroid, the oxidizer tank shape used on the
Centaur space vehicle was chosen for analysis (1 by 1,38 ellipse).
Interface shapes for four different fill levels and Bond numbers of 5,
20, 50, and 100 are shown in Figures 10 and 11. The dimensionless
parameters used are the sarme as those for a sphere except that the
characteristic length parameter, R, is one-half the vertical height of
the spheroid. The selection of vertical height instead of container width
as the characteristic dimension was necessary to simplify the integra=
tion of spheroidal shapes in the computer program. However, whether
width or length is used in the Bond number is somewhat arbitrary as
long as care is taken to maintain eonsistency when the influence of
Bond number is discussed.

Examination of the interface shapes presented discloses that the
interface characteristics are a combination of those noted for cylindri-
cal and spherical containers. As one would probably anticipate, in
addition to the effects of Bond number, contact angle, and empty frac-
tion, the ratio of major axis to minor axis must be considered a very
significant parameter when determining interface shapes in spheroidal

containers.
B. Contact Angle

As mentioned previously, most liquid propellants considered for
space applications seem to exhibit zero or near zero degree contact

angles on solid materials., However, to illustrate the effect of contact
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angle, representative interface shapes for contact angles from 5 to 90
degrees are presented in Figures 12 through 15 for cylindrical and
spherical containers.

1. Cylindrical Containers - Figure 12 illustrates the effect of contact

angleon interface profile for Bond numbers of 0 and 50; and as one
would expect, the influence of contact angle decreases with increasing
Bond number. The influence of contact angle is best demonstrated in-
Figure 13, where the interface rise above the infinite Bond number
liquid level versus Bond number for various contact angles is presented.
For example, examination of this figure reveals that the difference
between surface shapes with 0 and 5 degree contact angles becomes
almost negligible near a Bond number of 100.

2. Spherical Containers - High contact angle surface profiles are pre-

sented for three fill levels and Bond numbers of 0 and 50 in Figures 14
and 15, Unlike the cylinder, a contact angle of 90 degrees does not
assure negligible interface distortion at all Bond numbers., The limit-
ing contact angle in all container shapes is that angle measured in the
liquid between a horizontal plane corresponding to the infinite Bond
number liquid level and the tangent to the container boundary. Hence,
in all vessels with curved boundaries, this limiting angle is dependent
on fill level, It is not surprising, therefore, that for the fill level near
the bottom of the sphere, the interface becomes flat for all Bond num-
bers when the contact angle is equal to 54 degrees. At the fill level
near the top of the sphere a contact angle of about 143 degrees is

required before Bond number no longer affects the surface shape.
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Vi. EXPERIMENTAL VERIFICATION

Experimental surface shapes for various Bond numbers and
ligquids in cylindrical conta.inérs were measured in normal gravity
by personnel at Lockheed Missiles and Space Company, and are
described in Reference 16. The Lockheed Company data are used
herein to verify the theoretical solution presented in this report.

The test equipment and procedure used by Lockheed was
relatively simple., The test containers were fabricated from Lucite
blocks approximately 2 x 2 x 4 inches by drilling and polishing holes of
various diameters in the blocks. The experimental procedure consisted
simply of placing the test liquid in containers of various diameters,
thereby varying Bond number, and photographing the meniscus shape,

The measured meniscus was corrected for distortion by
calculating correction factors based on basic laws of reflection and
refraction, The calculated correction factors were checked and veri-
fied by reading photographs of ball bearings with known dimensions.
This procedure yielded accurate results except very near the cylinder
walls where distortion was greatest. As mentioned in Reference 16,
because of distortion problems, difficulties were encountered in deter-
mining exactly where the interfaces intersected the container walls, and
accurate contact angle measurements were not possible,

Lockheed measured surface shapes for Bond numbers ranging
from 8 to 53 using three test liquids: water, carbon tetrachloride, and
methyl alcohol. Contact angles of 66, 18, and 17 degrees were speci-
fied for the water, carbon tetrachloride, and alcohol, respectively.
However, the contact angles specified for carbon tetrachloride and

alcohol are believed to be incorrect for the following reasons:
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1. Lockheed investigators did not express confidence in the
measured contact angles.

2. Contact angles of zero degrees are usually quoted in litera-
ture for carbon tetrachloride and methyl alcohol in contact with glass
or Lucite. (References 17 and 18.)

3. The theoretical shapes calculated by Liockheed indicated
that the actual contact angles were lower than the measured values.

The measured contact angle for water should be correct since
the measurement accuracy for such large angles should be good.

Using contact angles of zero degrees for carbon tetrachloride
and alcohol and 66 degrees for water, theoretical surface shapes were
determined and are compared with the Lockheed experimental data in
Figures 16 through 18, As illustrated in these figures, the theoretical
profiles agre’e exceptionally well with the experimental data. In fact,
if the actual contact angle is known, it is believed that the static equili-
brium interface profiles can be computed with greater accuracy than
they can be measured due to the distortion and reflection problems
inherent in such experimental measurements.

Attempts have been made to obtain additional experimental data
in actual low gravity environments provided by the Marshall Space
Flight Center (MSFC) drop tower facility., Cylindrical and spherical
containers six inches in diameter were utilized with petroleum ether,

a zero contact angle liquid, as the test fluid. However, when a liquid-
vapor system is subjected to a sudden decrease in acceleration, such
as that encountered in drop tower testing, certain interface oscillations
must occur before the equilibrium configuration is attained. Theoreti-
cal and experimental evaluations of such interface oscillations have
been presented by Paynter, Fung, and Siegret, et al in References 19,

20, and 21, respectively.
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The r;naximum test time available in the MSFC drop tower
(4.3 seconds) was insufficient to permit the interface to attain complete
equilibrium. Thus, at best, the surface profiles attained only a state
of quasi-equilibrium and the data can not be used to accurately verify
theoretical interface solutions. However, based on preliminary
comparisbns, it can be stated that the experimental profiles did
appear to oscillate about the theoretical static equilibrium shapes.
It is anticipated that this drop tower data will be published in a MSFC

document in the near future.
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VII. CONCLUSIONS

Based on the theoretical and experimental data acquired by these
and other investigators, the following conclusions are made.

1. TUse of a polar coordinate system in developing the basic
differential equation for liquid-vapor interface profiles eliminates con-
vergence difficulties encountered in the solution of previously developed

differential equations.

2. The polar coordinate system enabled the incorporation of a
Bond number based on a container dimension into the basic differential
equation as opposed to a Bond number based on interface radius of .

curvature.

3. Using the Runge-Kutta numerical technique, the interface
equation developed herein can be readily solved by a computer. The
method imposes no significant limitations on contact angle or Bond

number.

4. The effect of contact angle on surface shapes decreases with
increasing Bond number and becomes negligible as the zero degree con-

tact angle liquid surface approaches flatness.

5. The theoretical equilibrium interface profiles, determined
using the methods presented herein, correlate well with experimentally

measured surface profiles.

6. Due to the distortion and reflection problems inherent in
measuring actual surface profiles and contact angles, it appears that
~ the profiles can in most cases be theoretically calculated with greater

accuracy than the surfaces can be measured.
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APPENDIX A

LIQUID-VAPOR-SOLID INTERFACES

That the shape of a droplet can be significantly affected by the
presence of a solid is a well known observation. The degree to which
the liquid-vapor interface shape is influenced is dependent on whether
the cohesive* or adhesive* forces dominate, that is, the "wettability''.
The term "wettability'', sometimes called ''spreadability'' is easily
illustrated by noting a common, everyday occurrence; the effects of
waxed and unwaxed surfaces on liquid droplet behavior. Droplets of
water on the waxed surface will form ''beads'', while water on the
unwaxed surface rapidly spreads or wets the surface. Whenever the
degree of attraction between the liquid and solid is discussed (wetta-
bility) the term usually invoked is ''contact angle''.

Contact angle, as described in Figure 1A, is the angle (measured
in the liquid)- between the solid-liquid and the liquid-vapor interfaces.
If a contact angle less than 90 degrees exists, the surface is said to
be wetted; a contact angle greater than 90 degrees denotes a ''non-wetting"
of the surface. Many liquid-solid surfaces demonstrate total wetting,
i.e., contact angles of zero degrees; but it is impossible to have a
perfectly non-wetting liquid-solid surface, i.e., a contact angle equal
to 180 degrees. The only liquid approaching complete non-wettability
is mercury, which has a contact angle of about 125 degrees o‘n glass

surfaces.

* These terms are defined in this study under '"Basics of Liquid-Vapor-
Solid Systems!''.
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FIGURE 1A. CONTACT ANGLE MEASUREMENT

Over 150 years ago, Thomas Young proposed treating the contact
angle of a liquid as the result of the mechanical equilibrium of three
surface tensions acting on the line of contact between a liquid-gas
interface and a solid surface. These surface tensions are usually
termed the solid-vapor (ogy), liquid-solid (09 g), and liquid-vapor (o)
surface tensions and are assumed to act in a direction parallel to each
of their respective interfaces at the line of contact (see Figure 2A).
This line of contact can be displaced to increase the solid-gas interface
at the expense of the solid-liquid interface. If the solid-liquid surfaces
exerted no force upon the line of contact, then obviously no equilibrium
position would be possible since a force, 0y COS 0, parallel to the solid
surface acts on this line,

There must, therefore, be forces of the same nature as surface
tensions that act through the line of contact, P, and are associated
with the solid-vapor and solid-liquid interfaces. Young (Ref. 22)
proposed that contact angle be related to the surface tensions of the

three surfaces by the relation

g, COSQA=0__ -0
v

sv sf (14)
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FIGURE 2A. SURFACE TENSIONS AT A LIQUID-VAPOR-
SOLID INTERFACE

Since the solid-vapor and solid-liquid surface tensions are not well
‘understood and are difficult if not impossible quantities to measure
experimentally, Young's equation is an extremely useful tool in that it
expresses the _effects of these surface tensions in terms of measurable
quantities, that is, contact angle and liquid-vapor surface tension.
However, the relation is deceptively simple and has been the
source of many ar‘gu:ments. Bikerman (Ref. 23) has criticized the
equation on the grounds that the equilibrium conditions are discussed
only with respect to forces parallel to the surface, and that no account
is taken of the component oy sin @ normal to the solid surface.

A clear statement of the problem and a thermodynamic justifica-
tion of Young's relation was given by Johnson (Ref. 24). Also,
Lester (Ref. 25) has recently given a sophisticated treatment of the
equation and showed that it is correct so long as the solid is not
easily deformable.

In addition, the surface condition of a solid can significantly
affect the contact angle of a liquid on the solid. One such effect,
which was analyzed by Wenzel (Ref. 26), is surface roughness. It
seems thatliquid on a rough surface will exhibit lower contactangles thanon

a smooth one, because the surface irregularities provide many capillary
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paths for the liquid and thereby cause the liquid to spread. Wenzel

suggested a modified form of equation (1A)

opy CO8 @ =r(ogy, - Ogg) (2A)

where @ is the average apparent contact angle and r is the ratio of true
to apparent area of the solid,

A second influence on contact angle is the presence of molecules
adsorbed at the solid interface. This influence was observed by
Langmuir (Ref. 27) when he measured a contact angle hysteresis
effect whenever the line of contact between the liquid and solid was in
motion, that is, the measured contact angle depended on whether the
boundary was advancing or receding. Langmuir attributed this varia-
tion in contact angle to a monomolecular layer that was adsorbed when
liquid advanced over the surface and thereby decreased the contact
angle when the liquid receded.

In conclusion, the use of Young's equation and the concept of
contact angle appears to be valid if the restrictions involved are
properly understood. If further information on liquid-solid-vapor
interfaces is desired, Reference 28 contains a comprehensive summary

of recent works on the subject.
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APPENDIX B

BOUNDARY CONDITIONS DEPENDENT ON
CONTAINER SHAPE

The expressions for boundary conditions that are dependent on
container shape are developed in this Appendix, As noted previously,
the liquid-vapor interface shapes are symmetrical about the vertical
axis, and therefore, the, relations for container boundary and contact
angle can be formulated based on a vertical cross-section of the

container,
A. Prolate and Oblate Spheroids

Referring to Figure 1B, the equations for container boundary
(YB) contact angle (@), and empty fraction () are derived as follows:

1. Container Boundary - In this study, the equation for a vertical

cross-section of both a prolate and oblate spheroid (an ellipse) is non-
dimensionalized with respect to the vertical semi-axis of the ellipse,
i,e., the Z/Ro intercepts are always (0, -2). Therefore, the boundary

for an ellipse is defined by the single relation

___2Db% cosB
B " sin? 6 + b? cos®o

(1B)

where "b" is always the horizontal dimension., Therefore,

b <1 Prolate Spheroid
b >1 Oblate Spheroid
2. Contact Angle - As proven in Reference 29, the acute angle, |,
between the tangent to the boundary, Yg =y(0), at point '"P" and the
line OP is defined by the relation
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Yg=y(6)

(0’ "2)

FIGURE 1B. GEOMETRY FOR PROLATE AND OBLATE
SPHEROID BOUNDARY CONDITIONS
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- x(e)
tan § = 7(0) {(2B)
Since

2 b? cos 0
8inZ@ + be cos’

y(e) =

Performing the operation indicated in equation (2B) yields

(3B)

cos 6 (sin*0 + b? cos?6)
Y = arctan

8in6 -~ b® cos?Hsind + 2 sin b cos?0

Also, note that since X =R,y sin @ and Z =- R, y cos 0 then the
angle, y, measured from the vertical MP and the tangent to y(6) at "P"

can be specified as follows

Y = arctan (_?zg) at point P

y! 8ind + y cos 6
y 8in6 - y' cos® (4B)

Y = arctan

From the geometry of Figure 1B, it is apparent that the contact angle

ais
a=y+d=y+06 -y (5B)

Substituting in equation (5B) from relations (3B) and (4B) the final equa-

tion for contact angle is

-
@ = arctan v! 8in b +*y‘cos9>_l_e

y 8in 0 - y' cos @

cos 0 (sin?0 + b? cos?9) :l (6B)

- arctan[sinae - b2 cos®0 sin0 + 2 sinO cos?O

3. Empty Fraction - Since the equation for an ellipse with the origin

at the top of the ellipse is

b%+(Z+1)’=1
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Then it is easily shown that for the total container volume (Vt) and

vapor volume (Vv), the relations are

0 0
Vt=2w5‘X2dZ= sz[l-(Z+1)z]dZ
-1 -1
4 .2
Vt—s‘n'b
and 0
Vg = sz[l-(Z+1)z]dZ
Vg

v, =m b (ng _X§i>

and empty fraction, B, is simply

Yy _3 2 Yg
B. Spheres

(7B)

(8B)

(9B)

Itis a very simple matter to develop relations for the boundary

conditions in a spherical container by setting the semimajor and semi-

minor axes equal, i.e., setb =1, in the equations for the spheroidal

containers to make the relations applicable to a spherical cross section

(circle). On inserting b =1 in relations (1B), (6B), and (9B),

1. Container Boundary
Yp =2 cos®

2. Contact Angle

a=20 +'l§9arctan " "
i vy sin@ - y' cos @

60

(X' sin@ + vy cos @

90°

(10B)

(11B)



3. Empty Fraction
Since the equation for empty fraction in the spheroids is
independent of ''b", relation (9B) need not be changed for application

to spherical containers,
C. Cylinders

The cylinder is the most simple geometrical configuration to
analyze from the standpoint of interface shape since the container
boundary is independent of the vertical coordinate "Z", Therefore,
using Figure 2B to illustrate the geometry involved, it is easy to
show that the boundary conditions for a cylinder are as follows:

1., Container Boundary - The vertical cross section of a cylindrical

container that is symmetric about the vertical axis and of infinite

height is prescribed by

lvgl =1 (12B)

2. Contact Angle - Contact angle is the slope of a tangent to the liquid-

vapor interface/container boundary or

R
]

arctan (g_}zg> at point P

and,

sinb + y cos 0
s8in® - y' cos 6

R
]

yl
arctan (Y (13B)

3. Original Liquid Height - Since the interface shape in a cylinder of
at least one container radius in depth is independent of the empty frac-
tion, a calculation of P is not necessary to specify the interface in a
cylinder. However, in order to designate the high gravity liquid level
corresponding to the low gravity interface, it is necessary to compute
the liquid volume participating in the interface deformation. The equa-
tion employed is
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FIGURE 2B. GEOMETRY FOR BOUNDARY CONDITIONS
IN A CYLINDER
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a(vy) == [1 - @é—)z]dz

9
Vy =S. 7 (1 - y? sin?0)(y sin@ - y' cos0)de
0

Therefore, the original liquid height ""h" is

0,
a3 2 gin? ; .
h= - (1 - y* sin®0)(y sin® - y' cos ©) d6 (14B)
0

4, Special Boundary Conditions Applicable to a Cylinder - Since the

liquid fill level has no significance in the calculation of interface shape
in cylinders, the only requirement for the observation point position
(coordinate system origin) is that it be above the interface. Therefore,
the distance to the low gravity face can be set equal to one, that is,

Yo = 1, and the initial conditions for the main interface differential

equation (equation (37)) can be simplified to

y(0) =yy =1
y'(0) =0 (15B)
Yn =1 - KO
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APPENDIX C

COMPUTER PROGRAM FOR DETERMINING
INTERFACE SHAPE

A, General Computer Procedure

A general outline of the computer program sequence in engineering
terms is as follows:

1. Print out input data which includes:

COMPUTER | ENGINEERING

SYMBOL SYMBOL DEFINITION UNITS
KSVHC Container Designation:
1 - Spherical
2 - Vertical
3 - Oblate Spheroid
4 - Prolate Shperoid
B By Bond Number Dimensionless
YG Vg Distance from Origin to
Surface for Bond Number = | Dimensionless
A2 Spheroidal Container Major
Axis Dimensionless
B2 Spheroidal Container Minor
Axis Dimensionless
CONANG a Contact Angle Degrees
Y ok Yo Estimated Distance from
Origin to Low Gravity Sur-
face Center Point Dimensionless

2. The input data are used as initial values in the "Runge-Kutta' itera-
tign solution of the main differential equation (33), which continues until the

% The authors wish to acknowledge the contributions of Mrs Pam T. Hughes,
of Computer Sciences Corporation, to the development of the computer
program outlined herein.

#% After some experience hasbeen acquiredindetermining interface shapes,
initial values of y, canbe determined thatwill enable more rapid computer
convergence. Also, note that y, = 1 in the case of a cylinder, since fill
level has no influence on interface (see Appendix B).
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_interface inter sects the container boundary. The Runge-Kiitta formulas
applied are those specified in Reference 11 for the integration of second-
order equations of,the general type,

“ = f(e Y, ¥ )
and consist of
k],_ = A0 f(ens Yn» Yn')

« A0 Y] e k
k, =A8 f(en+-:2~, Ynt 5 yn+——k,, vy, +-—’-)

8 2
- AG L0 A0 k
K =201+ 57 vt By vy +%)

Ky =A0£On + A8 yu+ AB v, + 5% Ky, yn' + k)

AY =Ae+%(k1+kz +k3)

1 .

3. Solve for interface/container boundary contact angle, @, and compare
with the desired contact angle. If the calculated contact angle is negative,
K, is too large and must be de¢reased. However, if the angle is positive
but too large, it is necessary to increase K, In either case, new values
of K, are selected and used as new input in the Runge-Kutta solution until
the desued contact angle is approached.

4. Empty fraction¥ (vapor volume/container volume), B, is determined
and compared with ‘the'desired empty fraction.. If the correctp is not cal-
culated, the value of Vo determined is entered in step 1, and new B is com-
puted. This procedure is continued until enough data is generated to gener-
~ated to extrapolate or interpolate a curve fit of "'yo versus B" for the
correct y,.

5. The correct value of y, is entered in step 1 with the original value of
K,, and the entire procedure is repeated until the desired contact angle
and empty fraction are obtained.

s

* In the case of a cylinder, the empty fraction criteria is by-passed.
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6. Program outputdata is printed:

COMPUTER ENGINEERING :
SYMBOL SYMBOL DEFINITION UNITS
X/R; OX X/Ro Horizontal Distance fiom |
’ Container Vertical Axis
to Liquid~Vapor Interface] Dimensionless|
Z/R; OZ Z/Ro Vertical Distance from
X Axis to Liquid-Vapor
Interface Dimensionless|
ANG; CONTACT Contact Angle Degrees
ANGLE
DXDY r Ko Parameter Related to
Curvature atInterface
Centerpoint - Dimensionlessj
YO Yo Distance from Origin |
to Low Gravity Surface ,
_ Centerpoint Dimensionless|
TH; THETA e Angle Measured from
Vertical Axis to y Degrees
BETA; EMPTY Calculated Empty
FRACTION Fraction Dimensionless|
BETAD D Desired Empty Fraction |Dimensionless
Y vy Distance from Originto
l Liquid Surface Dimensionles s'

B. Program Limitations

As the low gravity interface shapes approach flatness at high Bond
~numbers, increasingly accurate values of K, are required because K, is

approaching zero.

In the present program, difficulty is encountered in

obtaining contact angles of less than approximately five degrees at Bond
numbers greater than or equal to 200, because the computer (GE 235) is
unable to store the very small variations of K, required for further con-

vergence,

This problem could be eliminated by using a more accurate

computer (IBM 7094) if interface shapes at very high Bond numbers are
desired; however, the interface shape variation caused by a five-degree
contact angle deviation at Bond numbers above 150 is insignificant for

most applications.
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C. Programming Information

1. Definition of Terms - Some of the significant terms not defined

previously include:

Cosﬁggf‘ NG R ING DEFINITION - UNITS
DDY | y" Second Derivative of y with

Respect to 6 Dimensionless
DY y! First Derivative of y with v

Respect to © Dimensionless
S Sin 0 - Sin © Dimensionless

Cos 0 Cos 0 Dimensionless

\A% Vi, Liquid Volume Dimensionless
DVB AV, Incremental Liquid Volume Dimensionless
DBET Aﬁ Incremental Empty Fraction | Dimensionless
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2. Flow Chart

KONMON OX {2000) ,0Z(2000)

PAGE 13

10
I 10 l
START - — ) P133.141392033¢ -—3 READ  37,KSVHC |— | READ 30,84 Y6+ AZ, B2, CONANG
%0 10
"
0THD=360. A .
COTHz. 008 Mravheos
| = NT 8
BETAD= (Y6432/4.) % (3. -Y6) KVHC=1 PRINT 83

i

‘——a' PRINT 34,8,BETAD, Y6,A2,B2,CONANG

11=0

o]

——-4760 TO 9 l KVHC:KSVHC-lH'

COMPUTED 6O TO

IF THE VALUE TRANSFER -
TO
1s STATEMENT ]
1 990
2 991

OF KVHC

3

992

PRINT 993

PRINT 34,3.851"0;YG;AZQBZ;CWAWHGO TO0 9

991

| oo ]
t PRINT 994 y

992

—«)*———{ PRINT u.e.uno,vcmz.az.comm?l———{co 10 9

L

| soz |
PRINT 995 1

—~* PRINT 990,08 r
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Tt

KOMKRON OX {2600),02(2000)

PAGE 2

0 To ] s00 l
301
301 COMPUTED 60 TO
M o | IF THE VALUE  TRANSFER [ess |
: OF KVHC 10 et
j sense ek ), READ | READ 30, YY0,D0Y0 1s STATEMENT p1sBe/As
= 1 218
V"‘ 2 216
3 271
% Y0
so0
218 217 l 2 ] r——]“” l i l
. DELX=DELXIN REPEAT TO so3 .
———l{ Al=1. Yo=vv0 DXDY=DDDY Ji=0 FOR oX(l)=o
&0 TO gy = = .
} 81=a2/82 0YC=DDYO DDX=DXDY I=1,141;...,2000 J
COMPUTED 60 TO
] 203 l IF THE VALUE  TRANSFER 220 219 f_]uz
OF KVHC To DOY=1,-DXDY
oztl)=o. 15 STATEMENT =, 60 TO 221 DOY=YO* (1, -DXDY) =0
Yo=1.
1 219 ~
2 219
3 220
COMPUTED 6O TO I 1002 I
IF THE VALUE TRANSFER I 1001 l l 1000 1 i
OF KVHC T0 n::g.
L Is STATEMENT DTH=PI/DTHD 60 TO 1002 DTH=P1/DTHD KCDTHEO
1 1000 ov:n-
2 1000 .
3 1008
672
BETA=0. L=0 I=1+g CA=DTHADDY
EsET=0. vv=g, M=Me1 YAZY4DTHADY/2, +OTHRCA/S.
BE=2. % (DDY-Y0) /YOR#2-BHYO pve=o. C=COSF (THHDTH/2.) DYA=DY+CA/R.
Y210 DVA=0. S=SINF (THDTH/R.) AAZYARRR
ABzDYASER YAZY+0THHDY/2, +DTHICA/S.,
ACZAA+AB DYA=DY+CB/E,
AD=AC#SQRTF (AC) AAzYAReg »
CBzOTHR(LR . BAAGI . 2AB) /YA-DYARCRAC/ (AARS) ¢ (BEYARCHBE) xAD/YA) AB=DYAR%R
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KOMMON OX (2000) ,0Z(20600)

PacE

AD=ACASQRTF (AC)

CO=DTHE (B, 3AA+3, XAB) /TA-DYARCHAC/ (AAXS) + (BRYAXC+BE) %AD/YA)

0YZ=DY Y2Y+DTHE(DY* (CA+CB+CC)/8.) Y g
THZ=TH DY=DY+ (CA+2. % (CB+CC) +CD) /6.
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AD=ACHSQRTF (AC) $=SINF (THDTH) .
CCxDTRS((R.SAASI . SAB) /TA-OYASCSAC/ (AARS) + (BaYAXC +BE) %AD/TA) C=COSF (TH+DTH)
YAZY+DTHADY DTHHCC /2, AAZTASSR
*
60 TO -
er3
AB=OYASRZ 1Zzy A
ACZAA+AB

oLDY=Y

0 TO GO0 TO
631 651 651
0 -
cor A I 630 I A I gs2 J AAZYRY
¥-OLDY - KCOTH 0 o OTH=CDTH AB=DYXDY
CONT 1RVE CONT INUE KCDTH=1 ACZAA+AB
F, AD=AC*SQRTF (AC)
+ +
¢ TO 60 TO
51 631

70

60 TO
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i
-
——* DOYz (2.%AA+3. $AB) /Y -DYXCHAC/ (AA%S) + (BxY#C +BE) %AD/Y ——* SENSE SWITCH 18 ]
F,
wp
60 TO
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; TH=THSDTH OF KVHC 70 :
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KONKON OX (2000) ,0Z2(2000)

PAGE

[« ]

oX(I)zYss

0 10 %0 1O
% 4 18

- 5 :
N m N e
¥83-1. L% 3 ¢0 TO 93 CK1Z2, #B1ESRHC/ (SR +B 1 4R HCHER) Y-CK1 L= 3 CONTINUE L-1

-
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(-]

60 TO ¢ TO

.3 0Z(1)zYeC

Lz0
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OELX=DELX/4

S=SINF (THA)

AB=Y-2.%B 1 k2 %C/ (Skk2 +B 1 kK2 &C k%2 )

’{ €0 70 49 | THA= (ABXTHZ-AAKTH) / (AB=-AA)

OXDY=zDOX*DELX

TH=THA

COMPUTED ¢O TO ] 83 l
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oF xvuc 1o VVSVV+DVB +DVA
Ty STATEMENT DVASDYE 60 TO 3
! s s2=$
e Y
by 3
G0 TO
672
l 8 l - 73
DBET= (. 73% (YAS-DYHC) % (Y%S) x#2) / (B14%2) [ 3 l A 873
BETA=BITA+0. 3% (EBET+DBET) *DTH TH%L80./P1-90
- H%180, . | PRINT
EBET=DBET €Z=C PRINT PRI 10
s2=8 F,
+
0 TO
673
] 7 l
AA=YZ-2. #B14#2HCZ/ (STHk2 +B1 KA2KCIHKR) C=COSF (THA)

Y22, 814k %C/ (ShkR +B 1 k&R HCX%L)
DY=DYZ+(DY-DYZ) #(THA-THZ) / (TH-THZ)

i

1 4

OX(J+1)=2Y%8

——

OZ(1s3)zY%C

J—

[ o ]

TE=TH-DTHR(Y%8-1.)/ (Y%3-YZ%8Z)
$=SINF (TE)

0Z(1+1)=Y*C
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KOMMOW OX (2000),02(2000) PAGE 3

COMPUTED €O TO
" IF THE VALUE  TRANSFER I 1008 |
ANG B3 ANG OF KVHC 10
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KOMMON OX (2000) ,0Z(2000)
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KOMMON OX (2000) ,02 (2000)

PAGE

¢ 10 ¢ To0
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- r
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OF KVHC 10
DDX=DXDY
___,{ PRINT 101,ANG,DXDY, Y, THA XD OXOr UL c0 10 49 | xf su:g::nr
2 850
3 74

850

$5:25%$

OBET= (.73 (YRS-DY%C) X (Y%8) *¥2) / (B1%%2)
2Z2=-0Z(1+1)
BETA=BETA+0. 5% (EBET+DBET) *k(TH-THZ) #(3./4 . %(2ZZ¥*3/3,+ZZ2%%2))

BB=BETAD-BETA
YO12Y0

[ ]

| coNTINVE

4

¢ T0 60 TO
74 32
A 47 \
-——{ PRINT ¢67,BETA, Y0 H ABSF (B8B) 'Wq——’—)- NERR=1 mea
3 F,
] +
¢o To o TO
74 52

I1I=11+}
ANS (1)=YO
YO=YO+DYO

ARG (1)=BETA

DELX=DELXIN
OX0Y=000Y

DDX=DXDY
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KOMNON OX (2000) ,0Z(2000) PAGE o

%0 10 ; 0 T0

3 m 39 | l
- —‘] - 38

Plzllet rag A E
-1 L0y As@=zvo DELX=DELXIN I o o ANS (33270
1 7 DXDY2D0DY %0 TO 4999 CONTINUE I-2
| ARG (2)=BETA bX~DXDY 11=1141
YO= YO+D YO [J
* *
% To 60 TO
3 39
0 YO o To
7
8 r-———lu | s
l 3 | A AT=ARG (1) [7e ] A
ARG (1) -ARG (3) ARG (1) =ARG (3) ANS.(1)=ANS (3) ARG (1) -ARG(2) [0
AR (3)=BETA ) ARG (3) =AT ANS (3)=T5 CONTINUE
¥, TS=ANS (1) IF,
+* +
¢ ToO 60 TO
58 88
¢ TO
[es | 89 [To0 ]
PP=ARG (1) l 87 1 A ST=ARG (2)

ARG (1) =ARG (2) ANS (1) =ANS (2) CONTINUE ARG (2) ARG (3) L0 o ARG (2)=ARG(3) ANS (2) =ANS (3)
ARG (2)=PP ANS (2)=T$ , ARG (3)=8T ANS (3)=TS
TS=ANS (1) \V TS=ANS (2)

*
0 T0
90
60 T0
730 :
730
AR
9 iy
TRANSFER 70 SUBROUTINE ) b eitadbehy
NERRZ 1 MLAG PRINT | PRINT 9101, ANSE ANSE |- OXDYS000Y
3:3,BETAD, ARG, ANS, ANSE , NERR \y DOX=DXD ¥
L
¢ To
31
&
{r 1920 | dor o aeec ]
A vosrro o €0 10 49:
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KOMMON OX (2000),02(2000)

PAGE

i m™ COMPUTED 6O TO

” IF THE VALVE  TRANSFER

:oun:t‘ ms;:»(;:n:én o avac "

ARG {2) 2 ARG (B) A z

= NNzNeg —N 18 STATENENT

ARG (2) 2ARG (3) DELX=DELXIN 0oX=DXDY €0 1O 4999 : b

ANS (1) TANS (2) DXDY=ZDDDY 2 732

3 733

REPEAT TO 81

FOR
152 7% 32 TRUREY

PRINT

| PRINT 31,0K (NN) ,OZ (NN)

REPEAT TO 82
FOR
122,244, ... sM

60 TO 734

PRINT 31,0X(1),0Z(1)

PRINT 31,0X(NN) ,0Z (NN)

734
PRINT 66,ANG H THAA=THA%180./P1

COMPUTED 6O TO |_860
IF THE VALUE  TRANSFER 860
OF  KVHC 10
\——{nut 117,0XDY, YO, THAA 18 STATEMENT PRINT PRINT 1010,VV
1 870
2 870
3 880

[ 14]
. 870

[0 ]

—3 PRINT 63,BETA

PRINT

___{r

RANSFER TO SUBROUTI!
ENDR

NE ¢0 TO 710
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29
N
21
1N
66
4

3. Program Listing

SPHERE INTFRFACE, EMPIRICAL -~ VERSION C=2

KOMMON OX(2000)s0Z(2000)

COMMON ANS(3)sARG(3)sTRDX(2) s TBANG(2)

FORMAT (12)

FORMAT (5E1648) , (

FORMAT (6HX/R = sFTels8Hs 2/R = sFTe4)

FORMAT (5Xs1"HNO CONTACT) A

FORMAT (14HCONTACT ANGLF sF7.,298H NDFGRFES)

FORMAT( //391X3HB= F11¢593X6HBETAD=F1145+3X3HYG=F114533X3HA= F11.55

13X3HB= E1145+2X11HANG DESIRFN92XF11.5)

53

63
9913
994
995
998,

70

45

99n

991

992

37
501

500
215

216
217

271

4999

FORMAT (1H1s1X27HSPHERE INTERFACEs EMPIRICAL)
FORMAT (17HEMPTY FRACTION = sF6.4)
FORMAT({1H13s16HPROLATE SPHEROID)
FORMAT(1H1915HORLATF SPHEROIN)
FORMAT(1H1 s 8HCYL INNFR)
FORMAT(/?HR=F114.5)
Dl1=2,1415926535%

READ 3T7sKSVHC

READ 3NsRsYGsAZ2sR23CONANG
DTHD=360,

CDTH=4N03
BETAD={YG%¥%D2 /44 )% {34=-YC)

11=0

IF(KSVHC-1)45s64945

KVHC=1

PRINT 53

PRINT 34sRsRBETADsYGsA29829sCONANG
GO 7O 9 .
KVHC=KSVHC-1

GO TO(99M7 49919992 o X VHC

PRINT 992

PRINT 34sBsRETADSYGsA2sR? sCONANG
GO TO 9

PRINT 994

PRINT 34+BsBETADsYGsA2sB2 sCONANG
GO TO 9

PRINT 995

PRINT 996sR

pONY=0,

DFLXIN=1.

DDYN=41

DBC=,40N5

YYO=YG

FORMAT(11)

IF(SENSE SWITCH 1915019500

READ 305YYO0sDDYO

GO TO (21592163271 )sKVHC

Al=1,

R1=R2/A2

GO TO 217

Al=1,

B1=A2/R2

YO=YYO

DYO=DDYO

DELX=DELXIN

DXDY=DDDY 77
DDX=DXDY

JJ=0



49 DO 503 I=1+200"
OX(1 )=QC
503 0Z({1)=n,
GO TO (219+219s220) s KXVHC
22N DDY=1 ¢=DXDY
YO=1,
GO TO 221
219 DDY=YO#(1ae=DXDY)
221 M=0
GO TO (10709107091 001) sKVHC
17201 DTH=PI/DTHD
GO TO 1002
1000 DTH=PI/DTHD
1=n
KCDTH=0
NY=0,
BETA=O.
FRET=0,
RE=2 ¥ (DDY=YOQ)/YO*%*2~R¥*Y0D
¥Y=Y0O
L=0
V=0,
DVP=0.
NPVA=0,
672 I=1+1
Mz=M4+ 1
C=COSF{TH+DTH/ 24 )
S=SINF(TH+DTH/24)
CA=DTH®EDNY
YA=Y+DTHHDY /2 o +DTH®CA/E,
DYA=DY+CA/ 24
AA=YA¥%2
AR=DYA%*%*2
AC=AA+AR
AN=AC*#SQRTF (AC)
CR=DTHH® ({2 ¥AA+3 ¢ ¥ARY /YA=NDYAXCHAC/ (AN RS L {BAYARCHAT Y HAD/YAY
YA=Y+DTH*DY/Z o +DTH*CA /8,
NYA=DY+CR/ 2
AA=YA®%2
AB=DYA%%?
AC=AA+AR
AD=ACH#SQRTF(AC)
CC=DTHR ({2 ¥AAL3 ¢ ¥AP ) /YA=DYARXCHAC/ (AAXSY+(BRYAXCHRF)XAD/YA)Y
YA=zY4DTHXEDYHDTHXCC /D o
NYA=NY+CC
S=SINF(TH+DTH)
C=COSF(TH+DTH)
AA=YA#%2
AR=DYA#%2
AC=AA+AR
AD=AC*SORTF(AC)
CN=DTH*{ {2 FAALR G ¥AR) /YA-NYAXCHAC/ (AAXS) +(REYAXCHRF)RAD/VAY
YZ=Y
nyzZ=ny
THZ=TH
oLnyY=Y
Y=Y4DTH* (DY+ (CA+CR+CC)Y/ 64}
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682
650
652

651

103
105
104

225
224

18
83

673

93

DY=DY+(CA+2 % (CB+CCI+CN) /b
IF(Y)6T73+673+682
IF(Y=0OLDY)A5"s651 9651
IFIKCNTHIS51 496529651
NTH=CNTH

KCNTH=1

AA=Y%Y

AR=DY3#NY

AC=AA+AR

AD=AC*SQRTF(AC)

DDY=(2 e #AA+2 ¢ #AB) /Y =DYRCHAC /[ AARS) +(B%YRCHRE)RAD/Y

IF (SENSF SWITCH 18)1Nn2,104

PRINT 1059YsDYsDDY s THsCA B CeCN
FORMAT(5Xs8F12,5)

TH=TH+DTH

L=L+1

GO TO {224e224+225) s KVHC
IF(Y#5-16119034+93

CRIzD ¢ ¥RIHADHC/ (SHUDLRIH#DHCH®ED Y
TFIY=CK1V 19467

IF(L=1)18,18y2

OX{1)y=Y*S

0Z(1)y=Y*C

=0

GO TO (8s8s83) sKVHC
DVB=(14-Y#H2XSHS )X (YR S=NYRCI*DTH /2.
VV=VV+DVR  +DVA

NV A=DVYR

§2=5

GO TO 3

DBET={ ¢ 75# {YXS—DY*CI* (YXS)#%2 )/ (R1¥%2)
BETA=BETA+0 5% (EBET+DRFT I #DTH
FRET=DRET

5Z=5

CZ=C
IF{TH®18Ne/PI=904)6T7296733673
PRINT 10

DELX=DFLX/4e

DXDY=DDX+DELX

GO TO 49

AA=YZ =2 o ¥B1#%2HKCL/ (SZHUDLBIHRIHRCTH %D
AB:Y-Z.*R 1**27‘(‘C/ (S**?-{-P] **Z*C**Z)
THA=(AR¥THZ =AA¥THY / { AR~AM)
S=SINF(THA)

C=COSF({THA)

Y=2 o ¥B1¥%2%HC/ (SH¥2FRI* X2 ACHXD)
DY=DYZ+(DY=DYZ)*{THA~THZ )/ (TH=THZ}
TH=THA

OX({1+1)=Y*S

0Z{1+1)=Y*C

GO TO 91 :
TE=TH=DTH#(Y%*S5~14 )/ (Y#S5~YZ#57)
S=SINF(TF)

C=COSF(TF)

OX{(I+1)=Y*5

0Z({1+1)=Y*C

DTE=TF+DTH-TH

VV=VYV+DVAXDTE/DTH
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DYE=DYZ+DTE*({DY-DYZ)/DTH
THA=TE
91 ANG2=ANG1
ANG1=ANG
; GO TO (1005510251006 sKVHC
1006 ANG=180+/PI#(ATANF((DYE#S+C/S)/(1e=DYE*C)))
GO TO 1007 ‘ ‘
1005 YSI= ATANF( (2o #B1¥%2#CH (SHRDIRIHADHCH®D) ) /(= (=D (#PIX%DIRSH¥34
12 e ¥R 1# %4 CHR IS~ 4.*n1**2*s*c**7)))*180./01
GAM=180,%TH/P1-YS1I
ALAM= 180./PI*(ATANF((Y*C+WY*§)/(Y*< NY#CY ) )
ANG=GAM+ALAM
1007 IF{ANG1+ANG2=2.%ANG)595646459
646 IF(ANG)6N 9485948
59 IF (ANG) 60546551
46 IF(JJ=1)1664T+664626647
6647 IF(SENSF SWITCH 15)6648,6649
6648 PRINT 101sANGsDXDY sY s THA
6649 DDX=DXDY ~
DELX=DELX/2e
DXDY=DXDY~DELX
GO TO 49
6646 IF(ANG)60 8493849 _
849 IF(ARSF{ANG=CONANG)=1e)94859485949
949 IF(SENSE SWITCH 15)950951
950 PRINT 101sANGsDXNY sY s THA
. 951 TBDX(1)=DXDY
TBDX(2)=NDX
TBANG(1)=ANG
TBANG(2)=ANG1
NERR=1 ,
CALL MLAG(2929CONANGsTRANGs TRDX s TDXsNERR)
DXDY=TDX
IF(SFNSE SWITCH 151952949
952 PRINT 2077sDXDY
2077 FORMAT(1X4HDXDYE1648)
GO TO 49 .
60 IF (SENSE SWITCH 15) 61+62
61 COST=24%C
PRINT 1013sANGsDXDY sY s THA
62 DFELX=DELX/4e
DXDY = DDX + DFLX
IKODE=1
GO TO 49
51 IF{ANG- CONANG)46,9948,9948
9948 IF{ABSF{ANG=CONANG)=e5)9489948352
52 COST=24%C
IF(IKODE)852+8534852
852 DELX=DELX/4e
TKOPFE=N
853 CONTINUE
JJ=1
IF(SENSE SWITCH 15)8544+855
854 PRINT 101sANGsDXDYsY s THA
101 FORMAT(1X3HANGE12¢552X4HDXDYE16e832X1HYE12e592X2HTHE1245)
855 DDX = DXDY
DXDY = DXDY + DELX
GO TO 49
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948

850

667

47

33

32
36

35
38

39

58

18
88

87
9n

89

9101

GO TO (8509850574 )sKVHC

55=5%S

DBET=( o 75%(Y#*5~ DY*C)*(Y*S)**?)/(Rl**Z)
222=-0Z(1+1)

BETA=BETA+O 5*(EBET+DBFT)*(TH-THZ)+(3./4.*(222**3/3.+ZZZ**2))

RB=RETAD-RETA

YO01=Y0

PRINT 6679sRFTASYO
FORMAT(1X4HBETAE16.893X2HYOE1? 5)
IF(ABSF(BR)=DBC 74974947
NERR=1

IF(I1)32+33932

11=11+41

ANS(1)=Y0

YO=YO+DYOD

ARG(1)=BFTA

DELX=DELXIN

DXDY=DDDY

DDX=DXDY

GO TO 4999
IF(II=1)35536535

II=11+4+1

ANS(2)=YO

ARG(2)=BFTA

YO=Y0O+DYOD

DELX=DFLXIN

DXDY=DDDY

DDX=DXDY

GO TO 4999
IF(II=2)29438539
ANS(23)=Y0D

[I=11+1

ARG(3)=RFTA
IF(ARG({1)-ARG(3))78+58+58
AT=ARG(1)

ARG(1)=ARG(3)

ARG(3)=AT

TS=ANS(1)

ANS(1)=ANS(3)

ANS(2)=TS
IF(ARG(1)-ARG(2))87+88+88
PP=ARG(1)

ARG(1)=ARG(2)

ARG(2)=PP

TS=ANS({1)

ANS({1)=ANS(2)

ANS(2)=TS
IF(ARG(2)~ARG(3) 189590590
ST=ARG(2)

ARG(2)=ARG(3)

ARG(3)=ST

TS=ANS(2)

ANS(2)=ANS(3)

ANS(3)=TS

NERR=1

CALL MLAG(3,398FTAD9ARGoAN§9ANSE’NFRR)
PRINT 91C19ANSE
FORMAT(1X16HEXTRAPOLATED YO E12.5)
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~ IF(ANSE)7305730,731
730 DYO=DYO+DDYO/2.
DELX=DELXIN
DXDY=DDDY
PDX=NXNY
11=0
YO=YYO
GO TO 4999
731 YO=ANSE
ARG(1)=ARG(2)
ARG(2)=ARG(3)
ANS(1)=ANS(2)
ANS(2)=ANS(3)
Ak%(?) =Y0
DELX = DFLXIN
DXDY:DDDY
DDX=DXDY
100 FORMAT(1X2F16.8)
GO TO 4999
74 NN=M+1
GO TO (72297325723 )sKVHC
732 DO 81 1=2eMye?
81 PRINT 31+0X(1)s02(1)
PRINT 23190X(NN) 302 (NN)
GO TO 734
733 DO 82 I= 2sM 4
82 PRINT 31s0X(1)s0Z2(1)
PRINT 3190OX{NN)sOZ (NN)
724 PRINT 6635ANG
THAA=THA%*180,4/P1
PRINT 117sNDXDYsYOsTHAA
. GO TO (BT7Ns870+86N)sKVHC
86N PRINT 1010sVV
1010 FORMAT(2X7THHEIGHT= E]? 5)
GO TO 890 A
87N PRINT &£2sRFTA
117 FORMAT(2X5HDXDY=F164852HY0=E16485?X6HTHETA= F1648)
89N CALL FNDR
GO TO 70
END
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D. Deck Setup

Computer Configuration

a.. Computer GE.235
b. Core size required 16 K

c. Language FII

d. System SLEM"
e. Plotter required , - NONE
f. Card punch required NONE

Estimated Run Time -~ Five minutes

Restart Procedure - Multiple Cases Read by ENDR

Deck Sequence

- ZERO MEMORY 16 K

SLEM CALL CARD

ID CARD

BINARY FOR MAIN DECK
BINARY FOR MLAG
BINARY FOR ENDR

1/2 PUNCH

DATA INPUT DECK

Diagonistics

If the program seems to be cycling,the program can be run with sense
switch 15 down and the computer will print out the calculated contact
angle, DXDY, and YO after each pass through the Runge-Kutta
procedure.
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6. Input Sheet

INPUT DATA SHEET

Date:

Job No. 574260
KSVHC =1, 2, 3, 4
1 - Spherical Shape, 2 - Vertical ellipse,

rd 1 . A .
Ca 3 - Horizontal ellipse, 4 - Cylinder
Bond No. | YG-Fill Level | A, - Major Axis B, - Minor Axis | Contact Angle

Card 2

Col 1l 16 17 32 33 48 49 64 65 80
Card 3 Y, DY,
OPTIONAL

Col'l 16 17 32
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7. Example Output - Sphere

BPHERE INTERFACE, EMPIRICAL

Bs 0,140008 03
NO CONTACT
NG CONTACT
NO@ GONTACT
NG CONTACY
NO CONTACT
NO CONTAGY

NG CONTACT :
BETA 0.57880322E 00:
N

0 CONTACY
NO CONTAGT
NO CONTAGT
NO CONTACT
NG CONTACT
NO CONTACT
NO CONTACT
NO CONTAC®
NO GONTACT

CONTACT

NO
BETA 0.035269846E 00
NO CONTACY

NO CONTACT
NO CONTACT
NO COUNTACT
NG CONTACT
NO CONTACT
NO CONTACY

QETA 0,72331732€ 00

WETAUR058683E 00

Yu 0.111505 0l

YO 0.,12190€ 03

10 0,131908 03

__EITRAPOLATED YO 04143236 04

NO CONTACT

NG CONTACT

NQ CONTACY

NQ CONTACY

NG CONTACT

NG CONTAGCY

NO CONTAQY

NO CONTACT

NO CONTAGT
BETA 0.588809708
AR = 0,0198, /R

XPR B 0.0398, I/R
R/R = 0.0593, Z/R
X/R w  0.0792, Z2/R
X/R v 040991, /R
X/R ®  0.3190, Z/R
X/R = 0.4390, 2/R
X/R = 044591, /R
X/R & 0.1793, Z/R
X/R u 021997, /R
X/R w  0.220%, E/R
AR = 0.2407, Z/R
X/R = 0.2644, /R
XIR 2 0.2525. /R
X¢R u 0.3034, Z/R
X/R = 0.3247, /R
X/R = 0,3462, Z/R
KIR = 0.3679, I/R
X/R = 0.3898, Z/R
X/R = 04121, Z/R
XA = 0,4348, I/R
X/R = 046574, I/R
X/R 3 0.4808, I/R
X/R = 0.5040, I/R
X/R = (.5278, 2/R
X/R ® 05520, /R
XIR v 0.5766, Z/R
X/R = 0.,6046, T/R
X/ a 0.6R70, /R
xR = - 046528, TI/R
X/R 2 06791, 2/R
X/R = 047058, /R
X/R ®  0.7328, Z/R
AR = 07602, Z/R
X/R = 047879, I/R
XIR = 0.0156, Z/R
X/R = 048433, Z/R
X/R ®  (0.8706, 2/R
XIR v 08971, /R
X/R 8 §.9225, 2/R
X/R = §.9462, Z/R
XIR = 049675, I/R
RIR = 0.98%4, /R
%R = 09849, /R
X/R = (.9896, /R
R/R = 0.9938, 2/R
RIR = 0,9971, /R
XOR a 0.9993, /R
x/. = 0, + LR

® 0|9999 /R

LR ."..‘-“-’.'-.-II-.’-‘.'.-....-q..'I'ﬂ-'-"-

YU 0,11323€ 03
1,4923
i.4%23
1,4923
1.13823
4,1323
1,1323
41,1923
1,1323
14,1323
1.1323
1,3923
11,1323
1,4323
1,1323
1,4323
31,4322
1,4322
1,1322
1.4322
1,1322
1.432%
144921
41,1921
1,4%20
1,439
1,1318
1.,4316
1,131¢
1,1311
L,1307
14,1302
14,1498
14,1285
1,1271
1.14%2
41,1226
1.1198
1,1343
1.1079
1,0994
1,0884
1,0745
1,0969
1,0956
1,0480
41,0398
41,0308
41,0208
0,
1,032

QONTAG? ANGLE 0,620 DEGREES

UXDYs  0,37629902E=(3v0%

ENPTY PRACTION » 0,.3888

0,11322064E 01 YNETA'

YQe0,14490E 01

Av 0,100008 01

0,44631996E 02

e 0,500008 04 ANG DESIRED 0,
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