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ABSTRACT 

A theoretical method for determining equilibrium interface 

configurations in axisymmetric containers of arbitrary shape was 

investigated. A single differential equation was derived from the 

principle of minimum surface and potential energy using the calculus 

of variations. This equation, in conjunction with boundary conditions 

dependent on container shape and contact angle, can be numerically 

solved for the desired surface profile using the Runge-Kutta iteration 

technique. 

angle or  Bond number and is easily programmed for computer solutions. 

Representative theoretical results a r e  presented concerning the influ- 

ences of contact angle, Bond number, and container f i l l  level on sur- 

face shapes. Also, theoretical results a r e  compared with experimental 

data, 

The method imposes no significant limitations on contact 
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SHAPES IN AXISYMMETRIC CONTAINERS 
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SUMMARY 

The purpose of this study was to derive a convenient method for 

deter mining equilibrium liquid-vapor interface shapes in axis ymmetr ic 

containers of arbitrary shape. 

mining interface shapes were previously proposed by other investiga- 

tors. 

profiles w a s  presented by Bashforth and Adams in 1883. However, 

these solutions are either inconvenient to apply or a r e  restricted to 

a certain range of boundary conditions. 

Several legitimate methods for deter- 

In fact, the basic differential equation for computing interface 

A convenient form of the basic interface differential equation was 

derived from the familiar principle of minimum surface and potential 

energy using the calculus of variations. 

system eliminated the convergence difficulties encountered in the previ- 

ous solutions. Also, the derivation enabled the incorporation of a Bond 

number based on a characteristic container dimension into the basic 

differential equation as opposed to a Bond number based on interface 

radius of curGature. 

The use of a polar coordinate 

The basic differ entia1 equation and boundary conditions dependent 

on container shape were programmed for a GE235 computer so that sur- 

face shapes for any particular combination of Bond number, vapor 

volume, and contact angle can be determined. 

utilizes the Runge-Kutta numerical technique and imposes no significant 

limitations on contact angle or Bond number. 

The computer solution 



Representative surface shapes were computed to determine the 

influence of contact angle, Bond number , and container fill level for 

three container shapes: cylindrical, spherical, and spheroidal. It was 

determined that, in a cylinder, the influence of Bond number on inter- 

face deformation is maximum between Bond numbers of two and twenty 

and becomes negligible for Band nurnbers greater than approximately 

200. In spherical or spheroidal containers, the empty fraction has a 

significant effect on the interface profile. Also, unlike the cylinder, 

a contact angle of 90 degrees does not assure negligible interface 

distortion in spherical or spheroidal containers. 

angle is that angle measured in the liquid between a horizontal plane 

corresponding to the infinite Bond number liquid level and the tangent 

to the container boundary. 

The limiting contact 

The theoretical profiles were compared with experimental data, 

and exceptional agreement was obtained. In fact, i f  the actual contact 

angle is known, it is believed that the static equilibrium interface pro- 

files can be computed with greater accuracy than they can be measured 

due to the distortion and reflection problems inherent in such experi- 

mental mea sur ements . . 

I. INTRODUCTION 

In environments devoid of any disturbances except that of a low 

acceleration or gravity, surface tension forces become comparable to 

those of gravity, and equilibrium liquid-vapor interface shapes may 

radically depart from the near flatness observed in normal gravity. 

This i s  especislly true of the many liquids that exhibit wall contact 

angles at or near zero degrees. 

descriptions for various container shapes, liquids and acceleration 

The problem of low gravity interface 

levels is of especial interest to engineers responsible for the design of 

propellant control schemes for space vehicles and storage tankers that 

must operate for long periods of time in orbital environments, that is, 

under low gravity conditions. 
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The purpose of this study was to provide a general method that 

can be used to determine low gravity interface shapes for liquids in 

axisymmetric containers subjected to axial accelerations less  than that 

of normal gravity. As demonstrated herein, a single differential equa- 

tion, which is applicable to all  containers that a r e  symmetric about an 

axis parallel to the acceleration direction, can be derived from the 

principle of minimum potential and surface energy using the calculus of 

variations. This differential equation in conjunction with boundary con- 

ditions dependent on container shape and contact angle can be solved 

numerically for the desired interface shape using the Runge-Kutta 

iteration technique. Although the basic differential equation and its solu- 

tion is applicable to all containers symmetric about the vertical axis, the 

following geometrical shapes were selected for analysis based on their 

practical significance in space vehicle applications: (a) cylindrical, 

(b) spherical, and (c) prolate and oblate spheroids. 

method for interface determination was programmed for  a GE 235 com- 

puter, and theoretical interface shapes were computed for a wide range 

of conditions Since practically all known liquid propellants considered 

for  space vehicle propulsion exhibit contact angles a t  or  near zero 

degrees, interface configurations for fluids of zero contact angle a r e  

emphasized. 

a 

D 

#- 

f 

This theoretical 

x 

Also presented a r e  experimental data concerning low gravity 

interface shapes that were obtained from a Lockheed Missiles and 

Space Company experimental program. Although the data a r e  not 

extensive in scope, it is sufficient to substantiate the proposed theoreti- 

cal techniques of interface shape determination. 

3 



11. BASICS O F  LIQUID-SOLID-VAPOR SYSTEMS 

A fundamental property of liquid surfaces is their tendency to 

contract to the smallest possible surface area for a given volume, i. e. , 
a spherical surface. This property has been proven by thorough 

theoretical and experimental investigations which have been performed 

ever since the phenomena of capillarity was first noted by Leonard0 da 

Vinci (Ref. l)*. 

used to account for this minimization of surface area.  On the interior 

of the liquid, each molecule is surrounded by others on every side and 

is, therefore, subject to attraction in all  directions. This, however, 

is not the case in the surface. Molecules in the surface a r e  attracted 

inwards and to  each side by neighboring molecules, but there i s  no out- 

ward attraction to balance the inward pull since the molecular density 

of the vapor is much less than that of the liquid. 

molecule is subject to a strong inward attraction perpendicular to the 

surface. This inward attraction causes the surface molecules to move 

inwards more rapidly than others move outwards to replace them. 

diminishing of molecules in the surface continues until the maximum 

number of molecules a r e  in the interior, that is, until the surface is 

spherically shaped, subject to external conditions or forces acting on 

the liquid. 

The properties of molecules in liquids can easily be 

Hence, every surface 

The 

When external forces, such a s  gravity and those created by the 

presence of other materials, must be considered, the resulting liquid- 

vapor interface shapes a r e  more complicated. 

tend to miniLmize the potential energy associated with the mass of 

Gravity forces always 

* This reference contains an excellent summary of early works per- 
formed on capillary phenomena. 

P 
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liquid affected by the liquid-vapor interface shape and, therefore, is an 

important factor in determining equilibrium interface shapes. In addi- 

tion, another influencing factor that must be considered is the presence 

of a solid material and the molecular attraction between it and the 

liquid. If the molecules in the liquid a r e  attracted by the solid (adhesive 

forces) more than by neighboring molecules in the liquid (cohesive 

forces), the liquid is said to Ilwet" the solid, that is, the liquid tends to 

spread on the solid surface. 

the adhesive forces, the liquid does not wet the solid surface. 

If the cohesive forces a r e  greater than 

Since surface energy is associated with a liquid-vapor interface 

and work must be done against the internal liquid molecules to  extend 

the surface, a vast nurnber of problems relating to the equilibrium 

position of surfaces can be solved i f  the magnitude of surface energy is 

known. To simplify the calculations, however, a hypothetical tension, 

which acts in all directions parallel to the surface, i s  substituted for the 

surface energy. 

tension. I '  Surface tension has the same dimensions a s  surface energy 

per unit surface area and it must have the same numerical magnitude. 

Proof of this is relatively simple and is readily available in literature 

on physics of surfaces (a thermodynamic proof is contained in Ref. 2). 

Several references (see References 3 and 4) emphasize that the concept 

of liquid surfaces behaving like a stretched membrane must not be 

misconstrued, since surface energy is  the fundamental liquid pro- 

perty and surface tension is merely i ts  mathematical equivalent. 

This hypothetical tension is generally termed ' 'surface 

At any rate, the proper utilization of surface tension i s  very con- 

venient. In systems involving liquid surfaces the equilibrium position 

can be acquired by totaling up the changes in surface energy of the 

various inter faces (liquid- solid, liquid-vapor , and solid-vapor ) whose 

a reas  a r e  altered by a displacement. However, i f  the surfaces a r e  

considered a t  the boundaries where each is pulling with the appropriate 

"4 
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"surface tension" on their boundaries, then the changes in liquid-solid 

and solid-vapor surface a reas  do not have to be calculated. 

approach i s  taken in this report, which considers the effects of low 

gravity envir onrnents, container shapes, liquid "wettability"*, and 

liquid surface tension, on the equilibrium interface shape. 

Such an 

* The term "wettability" refers to the degree of solid-liquid attrac- 
tion. 
tact angle, 

The degree of wetting is usually measured in terms of "con- 
which is explained in Appendix A. 
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III. REVIEW O F  PREVIOUS ANALYSES 

P 

Several investigators have devoted considerable time to the 

evaluation of static equilibrium configurations of liquid-vapor systems 

in zero and low gravity environments. 

ever, apply only to containers of cylindrical shape (see for example 

References 5, 6 ,  and 7). 

(Ref. 8); Reynolds, Saad, and Satterlee (Ref. 9); and Li (Ref. 10)  can 

be applied to axisymmetric containers of arbitrary shape. 

Most of their evaluations, how- 

Only the works of Bashforth and Adams 

Undoubtedly, the most important ear ly  exploration of the subject 

was performed by Bashforth and Adams and is recorded in their book 

which was published in 1883. Bashforth and Adams were primarily 

concerned with the shape of liquid droplets on or  suspended f rom a 

horizontal surface. Their results apply reasonably well to the 

present problem a s  demonstrated by Yeh and Hutton (Ref. 11)  and 

Jurney (Ref. 12) .  

Bashfor th and Adams derived the governing differ entia1 equation 

beginning with the generally accepted relation for pressure difference 

across any curved liquid-vapor interface a t  a particular point 

where Pv and Pi a r e  the pressures on the vapor and liquid side of the 

surface respectively, r i  and r2  a r e  the principal radii of curvature of 

the surface a t  the point of interest, and viv is the surface tension of 

the interface. 

As shown in Figure I,  if Pio is the interior pressure of the sur- 

face at  its origin, then due to hydrostatic pressure variation 

7 
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\ dZ 
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1 Acceleration 
Direction 

1 dX 
Note: r l  is in the X Z  plane and 

rz is in a plane perpendicular 
to the XZ plane. 
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N 

FIGURE 1. REFERENCE COORDINATE SYSTEM 
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where pl is the liquid density and a is the local acceleration. 

Also, at the origin 

where r1 = r2 = ro in equation (1). 

Using equation (3) and substituting for Pio from equation (Z), 

P, - ~g = * + pg a z = v i v  d'; +$) 
r0 

(4) 

Let X be the horizontal and Z be the vertical coordinates of any 

point in a meridional section of the surface, r l  the radius of 

curvature of the meridional section a t  that point, and + the angle which 

the normal to the surface makes with the axis of revolution. Then, the 

and equation length of the normal terminated by the axis (r2) is - 
(4) becomes 

X 
sin + '  

2 
where H = pp a i s  a dimensionless number often termed the Bond 

V 
number. 

Another form of equation (5) can be easily derived. Since the 

expression for the radius of curvature of a line in the XZ plane is 

[l + ( ~ ) 2 1  'I2 

d Z  
dX2 

r l  = - 

and from Figure 1 

9 
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dX 
sin = 

then equation (5) is equivalent to 

dX2 

or 

These equations will be recognized in subsequent paragraphs a s  forms 

of the differential equation derived by other investigators using other 

approaches to the problem. 

Equation (5) was solved by Bashforth and Adams using either the 

a r c  length L or  + as the independent variable. For example, i f  

(9 is taken as  the independent variable, then upon integration of the 

e qua tion s 

* 
x 

dZ = r l  cos+, - - dX 
d + +  sin+ 

- 
d +  

with use of the initial conditions a t  the origin 

+ = Z  = O ;  r l  = r 2  = r o  

* 
equation ( 5 )  will yield r l  as a function of the coordinates X and Z .  

First, theformof the curve in the neighborhood of the origin can 

be found by developing r l  and the coordinates X and Z in series of 

ascending powers of 9. Next, the coordinates for larger values of 9 

10 
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can be obtained by step by step numerical integrations. 

numerical tables a r e  presented in Reference 8 that give coordinates 

of surfaces for various values of H. 

Extensive 

In present day space vehicle applications, it is  desirable to base 

the interface shape on a Bond number in which a container dimension, 

such as  tank radius, is the characteristic dimension. Bashforth and 

Adams' system can be converted to the desired Bond number system, 

but extensive interpolations a r e  often required between tables in order 

to locate the proper liquid volume, contact angle (cu), and Bond number 

combination. 

Bashforth and Adam's tables contain a maximum Bond number (based 

on container radius) of about ten, so that for many applications their 

tables must be considerably extended. 

In addition, according to Yeh and Hutton's studies, 

Reynolds, et a1 obtained a modified but equivalent form of 

Bashforth and Adams' differential equation by performing a force 

balance on an infinitesimal annular ring cut from the meniscus. 

the coordinate system shown in Figure 1, a vertical force balance on 

an annular ring yields 

Using 

Capillary Force, Fc = Pressure Force, Fp 

or  

dZ) = (Pv - Pi)  (2a XdX) 

Substituting equation (2) for Pa, 

Introducing the dimensionless quantities 

( 9 )  

11 



crjg v - where rc  = H' - 
(pv - pQ 0) ul V 

the f i n a l  differ ent&l equation becomes 

., 
d x  

A second differential equation was obtained from the geometric condition 

which when differentiated, gives 

dz  d 2 z  dx  d 2 x  
d l  d l  dP d l  

t- 7 = o  - 

Equations (10) and (11) form a pair that can be solved numerically. 

The problem is treated as an initial value problem in which 

and 

x' (0) = 1 

Calculations of this type were performed for various values of H' 

(from 0 to 10) and contact angles. 

of Bashforth and Adams and a r e  subject to similar limitations. 

The calculations are similar to those 

In fact, it can be shown that equation (11) is a modified form of 

Bashforth and Adams' equation. 

ing that 

Beginning with equation (9) and recall- 

12 
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h 

and 

dL = [ 1 t ~ ~ ) 2 ] 1 ’ 2  dX 

then equation (9) becomes 

which is identical to equation (6b). 

Using a still different approach, that is, the principle of minimum 

surface and potential energies and the calculus of variations, Ta Li* 

derived the interface differential equation 

H Z  1 d  - 1/2 

X dX 

with 

where X is a Lagrange multiplier; and a t  Z = 0 

= 0, and Z = Z o  = O  dZ 
ro’ dX 
- d2 Z 1 

= -  

Then Li’s final equation can be written 

1 d  
X dX 

which is identical to equation (6b). 

* Li’s derivation is not presented here since a similar procedure is 
used in the subsequent section of this report. 

13 



However , Li solved the differential equation through a transfor- 

mation of variables and the introduction of a power series to give 

Z - = f (X) 
r O  

Li obtained the first four terms of the expansion, and later Yeh and 

Hutton derived and used three additional terms of the expansion. 

ever, the minimum contact angle for which Yeh and Hutton obtained 

satisfactory convergence was about 53 degrees. 

cluded that Li 's  solution could not be used for contact angles at or  near 

zero degrees, since the number of coefficients required for the series 

solution wits  a function of the cotangent of the contact angle, and there- 

fore, an infinite number of coefficients w a s  required a s  the contact 

angle approached zero. 

How- 

Yeh and Hutton con- 

In conclusion, it is noted that several approaches can be used to 

derive the basic differential equation for low gravity surface profiles. 

However, the independent variables chosen, the method of solution, and 

the coordinate system a r e  important factors in obtaining numerical 

results for a wide range of conditions. 

4 
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IV. THEORETICAL ANALYSIS 

As related previously, Ta Li  has proposed a general method of 

calculating low gravity liquid-vapor interface shapes in axisymmetric 

containers. His method appears to be legitimate but is unsuccessful in 

the many cases when the interface slope reaches o r  passes the vertical, 

i. e . ,  curves back on itself. Tb avoid this difficulty, a polar coordinate 

system is proposed in the following sections. An integral equation is 

derived from energy considerations, and the calculus of variations is  

used to obtain a differential equation that can be solved numerically. 

A. Total Energy of a Capillary System 

Consider ZL container that is  cylindrically symmetric and is partly 

filled with liquid. 

surface and potential energies. 

The total energy of this arrangement is the sum of 

Total Energy = Surface Energy t Potential Energy 

E = S.E. t P. E. 

The surface energy is the surn of surface energy of three interfaces: 

liquid-vapor (Iv), solid-vapor (sv), and solid-liquid (si ). Therefore, 

where u is the surface tension and A is the area of the respective inter- 

faces. 

constant and the relation* 

Using the fact that the total area of the solid surface Atotal is 

UJv cosa = o-sv- us1 

where a is the wall/liquid-vapor interface contact angle, then 

* Refer to the Appendix A for a discussion of this relation. 
15 



2 

S .  E. = u l v  (Ai, - Asl cos a) t Constant (12b) 

Consider the coordinate system indicated in Figure 2. 

variable is Z ,  the liquid-vapor surface is described by X = X ( Z ) ;  and 

the container boundary, which is axisyrnmetric about the Z axis, is 

described by Xw = X,(Z). 

The independent 

Z 

t 

r. 

Acceleration 
Direct ion 

FIGURE 2. REFERENCE COORDINATE SYSTEM 

The liquid-vapor interface surface area is 

-2 1 1 2  dAlv = ~ w X  (E2 t dX ) 

and the liquid volume (VI ), which is constant, is 

dV1 = r ( X W 2  - X 2 )  dZ 

16 
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1 

Also, the potential energy of the liquid referenced to an arbitrary point 

on the liquid surface is 

d(P. E. ) = a (pp  - pv) Z dVp 

or 

d(P.E.)  =maAp (Xw2 - X 2 )  ZdZ 

where: a = local acceleration of gravity 

Ap = liquid density - vapor density = pp - pv  (usually 

Ap = p1 for all practical purposes) 

Now, consider a change to the coordinate system indicated in Figure 3.  

P 

Acceleration 
Direction 

y 

X/Ro 

ontainer Boundary 

FIGURE 3.  REFERENCE POLAR COORDINATE SYSTEM 

The parameter y describes the liquid-vapor interface shape, and the 

angle 8, measured from the vertical to y, i s  the independent variable. 

The coordinate transformation is 

z = - R, y  COS^ (164  

where Ro is any convenient length parameter of the container. The 

17 



container boundary is now given by 

where Y is the dimensionless radius of the container wall in a horizontal 

plane with the point (y, 8 ) .  

In the new coordinate system, if relations (16) and (17)  a r e  

substituted into equations (13) ,  (14), and (15) 

d Vi = nRO3 (Y2 - y2 sin2 8)(y sin 8 - dy/de cos 9) de 

1 

P 

d(P, E , )  = -n aApR,* y cos 8 (Y’ - y2 sin’ 8)(y sin8 

Note that the total liquid volume must remain constant and from equa- 

tion (19) i s  

01 

V1 = nRO3 (Y’ - y2 sin’ 8)(y sin8 

0 

- y’ c 0 ~ 0 ) d e  t f (Z,) (21) 

wheref(Zo) is the volume of liquid below the horizontal plane a t  8 = 0 

and is, therefore, independent of the detailed form of interface shape. 

Using relations (12) and (18), anewrelation can be derived for surface 

energy. Referring to Figure 3 and letting el  be the final 8, i. e., 8 

measured a t  the interface/container wall inter section, 

Ai, = 2nRo ys in8  (y’ t y1z)1/2d8 

0 

dY Note: y1 = 

18 



Substituting equation (22) into (12) 

A S i  COS (Y S.E. = 2nRO2 uiv [ 1 ys in8  (y2 t y t 2 ) d e -  2nR2 
0 

i- Constant 

Q 

However, A,Q is  independent of the detailed form of y(8), the interface 

shape, and is dependent only on 8, and the container boundary. 

Ther efor e ,  

and 

S. E. = 2~ uivR0 '[ ysin8(y2 $yt2)1/2dC3-f(81)aoscr 

0 

t Constant 

From equation (ZO), the total potential energy is represented by 

81 (24) 
P.E. = -aaApR;[ y c o s 8 ( Y 2  - y 2  s in28)(ysin8-y 'cos8)de 

0 

If a dimensionless parameter termed "Bond number,It which is a ratio 

of "body forces" to "surface tension forces, l1  

ApaRo2 
B N =  U I V  

is incorporated, then equation (24) becomes 

P. E. = - ~ U Q ~  BN Ro 

0 
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By combining equations (23) and (25), the total energy is  represented by 

E = ~ r c ~ ~ R d [ 2  f y s i n 0 ( y 2  ty1Z)’ /2d0  - 2f(e1) cosa 

0 
01 

- BN y COS 0 (Y2 - y2 sin2 0)(y s in8 - y‘ cos 9)de t Constant 1 
0 

i 

In subsequent sections the expressions derived for total liquid 

volume, equation (Zl), and total energy, equation (26), will be used in 

conjunction with certain physical considerations to provide a basic 

equation for the equilibrium liquid-vapor interface profile. 

cal considerations a r e  that the total liquid volume must rernain constant 

and that the principle of minimum energy must be satisfied. 

The physi- 

B. Principle of Minimum Energy 

Numerous investigators have observed through experimentation 

that the total energy, E, of a liquid-vapor-solid system such a s  

the one under consideration, tends toward a minimum. The thermo- 

dynamics of such a capillary system can be used to explain this 

principle of minimum energy. Using equation (12b) the work required 

to extend the liquid-vapor interface is  given by 

d W, = d(S. E. ) = UQV~AC 

where A, = A l v  - A i s  cos a. 

The work performed against gravity when the capillary system’s 

center of mass i s  moved upward a distance of dZ, is 

d Wa MadZ . 

Then the total reversible work done on a capillary system is 
II 
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In a reversible or irreversible change of state, the entropy 

change, dS, is related to the energy transferred to the capillary sys- 

tem by 

T dS = dU - dW (28) 

where U is the internal energy and T i s  the temperature. 

Substituting equation (27) in equation (28) 

T dS = dU - ulvdAc - MadZ (29)  

The general cri teria for neutral equilibrium of a system for all 

possible variations is 

AS)€ = A€)s = 0 

and for stable equilibrium is 

AS)€ < 0 or A€), > 0 

where E is the stored system energy. 

variations in the system for which 

AS)€ 5 0 or A€)s 2 0 

Thus, in general, for all possible 

a stable or neutral equilibrium state exists. 

In this case, equation (29) represents L e  infinitesimal change 

between two equilibrium states. 

energy ( E  = U in this analysis) 

Consider changes at constant internal 

ulvdAc MadZ 
T T 

- dS)U = - 

Then, i f  the initial state is in neutral or  stable equilibrium and 

since T is always positive 

and 

dE 2 0 
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Since the capillary system energy can only increase, the equilibrium 

state must be one of minimum energy, E. 

Thus, the energy described by equation ( 2 6 )  must yield a mini- 

mum in order to satisfy the principle of minimum energy. 

strated in the next section, this principle of minimum energy enables 

As illu- / 

a convenient application of the calculus of variations. 
1 

V 

C. Application of Variational Principle 

In view of the aforementioned factors concerning the total energy 

and liquid volume of the system, it is necessary to minimize the total 

energy while keeping the liquid volume constant. Such a condition is 

known a s  an "isoperimetric problem" with a mobile upper limit (8 ,) 

in the calculus of variations. 

the calculus of variations to construct a function from Euler's relation 

(Ref. 13) 

As  shown by Li, it is convenient to use 

where I1Fl1 and "GI1 are integrands of integrals to be minimized and 

held constant, respectively, and I ' h "  is a Lagrange multiplier. 

Therefore, 

F = ~ ( y ,  e)* 

= 2 y  sine(y2 t y ' 2  1 / 2  
' 

- B N Y  cos8(Y2 - yz sin28)(y sin8 - yl cos8) 

* The te rm f(8,) is not included a s  a part  of F because, a s  proven by 
Li, this only effect of the term is to assure the proper contact 
angle at the container boundary. Thus, this terminal condition 
i s  not satisfied for the time being. 
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G = (Y' - y2 sin28)(y s ine  - y1 cos e) 

r 

5 

Performing the indicated operations in equation (3 l),  

a - (F t AG) = 2 sine (y2 t y+ t 2y2 sine(y2 ty12)- 112 
a Y  

- BN cos 8(Y2 - y2 sin2e)(y s ine - y1 cos e) 

t ($$ - 2y sin2 8 (X - BNY COS e)(y sine - y1 COS 6) ) 
t sin8 (X - BN y cos 6)(Yz - y2 sin28) (32) 

and 

- ~ y y '  sin e(yyi t yly'l)(y' t yl' - 3 1 2  

t 2yy1cosB(y2 tyl ' )- ' / '  - ( B N Y c o s ~ - X ) ( Y ~  -yz sin2B)sin8 

t ( B ~ y c o s  8 - X)[$(Y2) - 2yy' sin'8 - 2y2 s inecos 8 COS e 1 
On combining relations (32) and (33) according to equation (31) and with 

considerable algebraic manipulation, it can be shown that: 
c 

(3 4) 
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where C = (y2 t yl') for simplification. 

where Y = f (Z)  and aYa cote ay2 
a Y  Y a e  On examining - t - - 

Note that 

dY 
a y  d z  a y  dZ 

= - R, COS e - ay2 dY2az - =- - 

dYz = t Ro y sin8 - a e  - d z  a e  dZ 
ay2  dY2az ---- 

Hence, 

This relation is very significant, for it means that container shape 

drops out of the differential equation (34). Incorporating equation (35) 

in equation (34) and solving for y" 

t - 1 (BN y COS e - x)(y2 t Y 12 1 3/2 
Y 

The undetermined multiplier X can be solved for by treating the 

problem as an initial value problem in which the following "initial 

conditions" a r e  prescribed 

y(o1 = yo 

y ' W  = y o  (1 - KO) 
yI(0) = 0 (interface symmetry) 

The initial value for ~ ' ' ( 0 )  can be derived using the equation for 

curvature of an a r c  at any particular point 

J 
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4 

Substituting the conditions specified for y(0) and ~ ' ( 0 )  and solving for 

Y" (0 1 

or 

where KO = yoko and may be considered a parameter related to inter- 

face curvature a t  the point of symmetry. 

the prescribed "initial conditions" in equation ( 3 6 )  and solving for X 

Therefore, by substituting 

2 K  
yo BN yo X =- 

Using this value for X, the final form of the differential equation is 

obtained 

The validity of equation (37) can be checked a t  the two limiting condi- 

tions, namely, BN = 0 and as BN approaches infinity, At BN = 0 (zero 

gravity), it has  been experimentally verified by numerous investigators* 

that the surface of a totally wetting liquid will tend toward a shape of 

minimum surface area, that is, a sphere. 

tion (37) must be satisfied by the equation for a circle, y = yo cos 8. 

Therefore, a t  BN = 0 equa- 

* See, for example, Reference 14. 
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Substitution of 

= yo COS e 
y1 = - yo sin8 

in equation (37) gives 

= t 2  

which verifies that y = yo cos 8 at BN = 0 .  

As BN approaches infinity the equation should become that for a 

horizontal line. 

tion (37) by BN and taking the limit a s  BN approaches inifinity, 

a case, equation (37) becomes 

That this occurs is easily verified by dividing equa- 

In such 

o r  

Yo y =- 
COS e 

which is the equation for a horizontal line. 

For  values of BN between the two end points, numerical solution 

of equation (37) is easily accomplished using the Runge-Kutta iteration 

technique (Ref. 15), which yields a dimensionless plot of the liquid- 

vapor interface for a given yo, KO, and BN. 

boundary conditions of contact angle, constant vapor (or liquid) volume, 

and container shape must be satisfied in order to obtain the desired 

interface shape. 

tions a r e  all functions of container geometry and, therefore, constitute 

the only changes that must be considered when the container shape is 

modified. 

in tank configuration, the equations for boundary conditions dependent 

However, the additional 

The equations for calculating these boundary condi- 

To illustrate the modifications that a r e  required by a change 

7 

t 

L 

26 



c 

n 

on tank shape a r e  described in Appendix B for four shapes: spherical, 

prolate spheroid, oblate spheroid, and cylindrical. 

Equation (37) and the boundary conditions described in Appendix 

B a r e  programmed for a GE 235 computer so that the surface shape 

for any particular combination of Bond number, vapor volume, contact 

angle, and container shape can be determined. Basically, the calcula- 

tion of a surface shape using the computer program consists of initiat- 

ing the computation procedure with an initial set  of conditions at the 

interface centerpoint and using the Runge-Kutta procedure until the 

calculated surface inter sects the container wall. 

reaches the container boundary, the boundary conditions of contact 

angle and vapor volume a r e  checked. 

not satisfied, appropriate changes in the initial set  of conditions a r e  

selected by the computer and used to initiate the Runge-Kutta procedure 

again. 

satisfied and the desired interface is yielded. 

Whenever the surface 

If these boundary conditions a r e  

Thus, the iteration procedure continues until al l  conditions a r e  

The computer program is described briefly in engineering terms 

This information provides a better visualization of the in Appendix C. 

relationships of the various parameters involved in the determination 

of an interface shape. 

Thus, a differential equation (equation (37)) which enables the 

elimination of difficulties incurred in the application of previously 

derived interface differential equations (see Chapter 111) has been 

formulated. 

(37) include: 

Desirable features that have been incorporated in equation 

1. The Bond number, BN, appearing in the differential equation 

is based on a characteristic container dimension rather than on the 

surface radius of curvature. 

2. The polar coordinate system utilized eliminates the possi- 

bility of “double-valued’’ functions which can occur in other coordinate 

systems whenever the surface profile curves back on itself, that is, 
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whenever two values of 2 occur for a given value of X. 

a r e  possible for zero contact angles and zero Bond numbers. 

Thus, solutions 

3 .  A computer solution of the differential equation is easily 

accomplished using the Runge-Kutta numerical technique. Bond num- 

ber, contact angle, container shape, and f i l l  level (except in the case 

of a cylinder) a r e  the only necessary input. 

Theoretical interface shapes for various conditions were deter- 

mined using the computer program. 

discussed in the subsequent chapter. 

The results a r e  presented and 
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V. THEORETICAL RESULTS 

‘1. 

T 

1 

Low gravity interface shapes in spherical, prolate and oblate 

spheroidal, and cylindrical containers for a wide range of Bond num- 

bers, fill.levels, and contact angles were determined and a r e  presented 

in  Figures 4 through 15. However, since almost all known liquid pro- 

pellants for space vehicle applications have contact angles near zero 

degrees, the presentation of interface shapes emphasizes shapes for 

zero degree contact angle fluids. 

various parameters is contained in subsequent paragraphs 

A discussion of the influences of 

A. Bond Number and Container Shapes 

Figures 4 through 11 illustrate the effects of Bond number and 

tank configuration on surface shapes for zero degree contact angle 

fluids. As one would anticipate, the liquid-vapor interface shape 

approaches the shape observed in normal gravity a s  the Bond number 

increases. 

lated for each of the four container shapes analyzed a r e  a s  follows: 

1. Cylindrical Containers - Since container empty fraction has no 

influence on interface shape in a cylinder (provided the container top or 

bottom does not interfere with interface formation), Bond number i s  

sufficient to prescribe interface shape for a given contact angle. 

number a s  defined herein for a cylinder is 

Some specific observations on the interface shapes calcu- 

Bond 

where the container radius, R, is the characteristic dimension. 

vertical and horizontal coordinates of the interface shapes presented 

are, therefore, nondimensionalized with respect to container radius as  

follows 

The 

Z 
R Container radius 

Vertical distance measured from Bond number = cu position - -  - 
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X 
R Container radius 

Radial distance from container axis - -  - 

Interface shapes for specific Bond numbers ranging from 0 to 200 

However, the influence of Bond number on a r e  illustrated in Figure 4. 

interface shape is best illustrated in Figure 5 where the vertical posi- 

tion of the low gravity interface a t  the two end points (at the container 

center and wall) a r e  presented a s  a function of the Bond number from 

one to 1000. 

the interface shape begins to asymptotically approach maximum and 

zero deviation f r o m  a horizontal interface. 

occurs between Bond numbers of two and twenty, the Bond number 

influence on interface deformation is maximum in this region. 

For Bond numbers less than two and greater than twenty, 

Since a point of inflection 

Also, 

it is interesting to note that the interface distortion becomes very 

small or  even negligible for Bond numbers greater than approximately 

200. 

If the interface shape is desired for  a Bond number that is not 

presented, Figure 5 can be used to determine the position of the inter- 

face a t  its two end points. 

lating the interface data presented to find the required interface shape. 

2. 

sider ed for space vehicle applications, a rather extensive presentation 

of interface shapes is contained in Figures 6 through 9 for Bond numbers 

ranging from 5 to 150. 

Bond number equal zero w a s  omitted because the interface merely 

assumes the shape of a sphere with a volume equal to the vapor volume 

in the container. The dimensionless parameters and symbols used in 

the figures presented a r e  the same as those described for a cylinder. 

The empty fraction has a very significant effect on the interface 

These two dimensions will aid in interpo- 

Spherical Containers - Since spherical containers a r e  often con- 

The interface shape for the limiting case of 

shape in a sphere for a given Bond number. 

evidenced by comparing the low gravity interface shapes for normal 

gravity liquid levels in the upper half of the container with those in the 

This observation is 

, 
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lower half. 

less  curvatwe than those in the upper half because the interface must 

bend less  to become tangent to the container wall and satisfy the zero 

degree contact angle condition. 

3. 

tions, particularly liquid hydrogen (fuel)/liquid oxygen (oxidizer) sys- 

tems, the oxidizer tank is usually an oblate spheroid or  some modifica- 

tion thereof. As a typical spheroid, the oxidizer tank shape used on the 

Centaur space vehicle was chosen for analysis (1 by 1.38 ellipse). 

Interface shapes for four different f i l l  levels and Bond numbers of 5, 

20, 50, and 100 a r e  shown in Figures 10 and 11. The dimensionless 

parameter s used arb the same a s  those for a sphere except that the 

characteristic length parameter, Ro, is one-half the vertical height of 

the spheroid. 

a s  the characteristic dimension w a s  necessary to simplify the integra- 

tion of spheroidal shapes in the computer program. However, whether 

width or length is used in the Bond number i s  somewhat arbitrary a s  

long a s  care is taken to maintain consistency when the influence of 

Bond number is discussed. 

The interface shapes in the lower h a l f  have significantly 

Oblate and Prolate Spheroids - In cryogenic space vehicle applica- 

The selection of vertical height instead of container width 

Examination of the interface shapes presented discloses that the 

interface characteristics a r e  a combination of those noted for cylindri- 

cal and spherical containers. As one would probably anticipate, in 

addition to the effects of Bond number, contact angle, and empty frac- 

tion, the ratio of major axis to minor axis must be considered a very 

significant parameter when determining interface shapes in spheroidal 

containers. 

B. Contact Angle 

As mentioned previously, most liquid propellants considered for 

space applications seem to exhibit zero or  near zero degree contact 

angles on solid materials. However, to illustrate the effect of contact 
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angle, representative interface shapes for contact angles from 5 to 90 

degrees a r e  presented in Figures 12 through 15 for cylindrical and 

spherical container s. 

1. 

angleon interface profile for Bond numbers of 0 and 50; and as one 

would expect, the influence of contact angle decreases with increasing 

Bond number. The influence of contact angle is best demonstrated in 

Figure 13, where the interface r i se  above the infinite Bond number 

liquid level versus Bond number for various contact angles is presented. 

For  example, examination of this figure reveals that the difference 

between surface shapes with 0 and 5 degree contact angles becomes 

almost negligible near a Bond number of 100. 

2. 

sented for three f i l l  levels and Bond numbers of 0 and 50 in Figures 14 

and 15. 

assure  negligible interface distortion at all Bond numbers. 

ing contact angle in all  container shapes i s  that angle measured in the 

liquid between a horizontal plane corresponding to the infinite Bond 

nurnber liquid level and the tangent to the container boundary. 

in all  vessels with curved boundaries, this limiting angle is dependent 

on f i l l  level. It is not surprising, therefore, that for the f i l l  level near 

the bottom of the sphere, the interface becomes flat for all Bond num- 

bers when the contact angle is equal to 54 degrees. 

near the top of the sphere a contact angle of about 143 degrees is  

required before Bond number no longer affects the surface shape. 

Cylindrical Containers - Figure 12 illustrates the effect of contact 

Spherical Containers - High contact angle surface profiles a r e  pre- 

Unlike the cylinder, a contact angle of 90 degrees does not 

The limit- 

Hence, 

At the fill level 

8 
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8 VI. EXPERIMENTAL VERIFICATION 

Experimental surface shapes for various Bond numbers and 

liquids in cylindrical containers were measured in normal gravity 

by personnel at Lockheed Missiles and Space Company, and are 

described in Reference 16. The Lockheed Company data are used 

herein to verify the theoretical solution presented in this report. 

The test equipment aiid procedure used by Lockheed was 

relatively simple. 

blocks approximately 2 x 2 x 4 inches by drilling and polishing holes of 

various diameters in the blocks. The experimental procedure consisted 

simply of placing the test liquid in containers of various diameters, 

thereby varying Bond number, and photographing the meniscus shapBI 

The test containers were fabricated from Lucite 

The measured meniscus was corrected for distortion by 

calculating correction factors based on basic laws of reflection and 

refraction. The calculated correction factors were checked and veri- 

fied by reading photographs of ball bearings with known dimensions. 

This procedure yielded accurate results except very near the cylinder 

walls where distortion was greatest. As mentioned in Reference 16, 

because of distortion problems, difficulties were encountered in deter- 

mining exactly where the interfaces intersected the container walls, and 

accurate contact angle measurements were not possible. 

Lockheed measured surface shapes for Bond numbers ranging 

from 8 to 53 using three tes t  liquids: water, carbon tetrachloride, and 

methyl alcohol. Contact angles of 66, 18, and 17 degrees were speci- 

fied for the water, carbon tetrachloride, and alcohol, respectively. 

However, the contact angles specified for carbon tetrachloride and 

alcohol a re  believed to be incorrect for the following reasons: 
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1. Lockheed investigators did not express confidence in the 

measured contact angles. 

2. Contact angles of zero degrees a r e  usually quoted in litera- 

ture for carbon tetrachloride and methyl alcohol in contact with glass  

o r  Lucite. (References 17 and 18.) 

3 .  The theoretical shapes calculated by Lockheed indicated 

that the actual contact angles were lower than the measured values. 

The measured contact angle for water should be correct since 

the measurement accuracy for such large angles should be good. 

Using contact angles of zero degrees for carbon tetrachloride 

and alcohol and 66 degrees €or water, theoretical surface shapes were 

determined and a r e  compared with the Lockheed experimental data in 

Figures 16 through 18. As illustrated in these figures, the theoretical 

profiles agree exceptionally well with the experimental data. 

i f  the actual contact angle is known, it is believed that the static equili- 

brium interface profiles can be computed with greater accuracy than 

they can be measured due to the distortion and reflection problems 

inherent in such experimental measurements. 

In fact, 

Attempts have been made to obtain additional experimental data 

in actual low gravity environments provided by the Marshall Space 

Flight Center (MSFC) drop tower facility. 

containers six inches in diameter were utilized with petroleum ether, 

a zero contacf angle liquid, a s  the test fluid. 

vapor system is subjected to a sudden decrease in acceleration, such 

a s  that encountered in drop tower testing, certain interface oscillations 

must occur before the equilibrium configuration is attained. Theoreti- 

cal and experimental evaluations of such interface oscillations have 

been presented by Paynter, Fung, and Siegret, e t  a1 in References 19, ' 

20, and 21, respectively. 

Cylindrical and spherical 

However, when a liquid- 

c 
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The maximum test time available in the MSFC drop tower 

(4.3 seconds) was insufficient to permit the interface to attain complete 

equilibrium. Thus, a t  best, the surface profiles attained only a state 

of quasi-equilibrium and the data can not be used to accurately verify 

theoretical interface solutions. However, based on preliminary 

comparisons, it can be stated that the experimental profiles did 

appear to oscillate about the theoretical static equilibrium shapes. 

It is anticipated that this drop tower data will be published in a MSFC 

document in the near future. 

, 
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VII. CONCLUSIONS 

f 

* 

Based on the theoretical and experimental data acquired by these 

and other investigators, the following conclusions a r e  made, 

1. Use of a polar coordinate system in developing the basic 

differential equation for liquid-vapor interface profiles eliminates con- 

vergence difficulties encountered in the solution of previously developed 

differential equations. 

2. The polar coordinate system enabled the incorporation of a 

Bond number based on a container dimension into the basic differential 

equation as opposed to a Bond number based on interface radius of 

curvature 

3 .  Using the Runge-Kutta numerical technique, the interface 

equation developed herein can be readily solved by a computer. 

method imposes no significant limitations on contact angle or  Bond 

number. 

The 

4. The effect of contact angle on surface shapes decreases with 

increasing Bond number and becomes ‘negligible as the zero degree con- 

tact angle liquid surface approaches flatness. 

5 .  The theoretical equilibrium interface profiles, determined 

using the methods presented herein, correlate well with experimentally 

measured surface profiles. 

6 .  Due to the distortion and reflection problems inherent in 

measuring actual surface profiles and contact angles, it appears that 

the profiles can in most cases be theoretically calculated with greater 

accuracy than the surfaces can be measured. 
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APPENDIX A 

LIQUID-VAPOR-SOLID INTERFACES 

That the shape of a droplet can be significantly affected by the 

presence of a solid is a well known observation. The degree to which 

the liquid-vapor interface shape is influenced is dependent on whether 

the cohesive* or adhesive* forces dominate, that is, the tlwettabilitylt. 

The te rm l'wettability'', sometimes called l'spreadability" is  easily 

illustrated by noting a common, everyday occurrence; the effects of 

waxed and unwaxed surfaces on liquid droplet behavior. Droplets of 

water on the waxed surface will form "beads", while water on the 

unwaxed surface rapidly spreads or wets the surface. Whenever the 

degree of attraction between the liquid and solid is discussed (wetta- 

bility) the te rm usually invoked is Itcontact angle". 

Contact angle, as described in Figure lA, i s  the angle (measured 

in  the liquid) between the solid-liquid and the liquid-vapor interfaces. 

If a contact angle less than 90 degrees exists, the surface is said to 

be wetted; a contact angle greater than 90 degrees denotes a "non-wetting" 

of the surface. 

i.e., contact angles of zero degrees; but it is impossible to have a 

perfectly non-wetting liquid-solid surface, i. e. , a contact angle equal 

to 180 degrees. The only liquid approaching complete non-wettability 

is mercury, which has a contact angle of about 125 degrees on glass 

surfaces. 

Many liquid- solid surfaces demonstrate total wetting, 

c 

* These terms are defined in this study under "Basics of Liquid-Vapor- 
Solid Systems". 
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FIGURE 1A. CONTACT ANGLE MEASUREMENT 

Over 150 years ago, Thomas Young proposed treating the contact 

angle of a liquid as  the result  of the mechanical equilibrium of three 

surface tensions acting on the line of contact between a liquid-gas 

interface and a solid surface. These surface tensions a r e  usually 

termed the solid-vapor (usv), liquid- solid (ua S ) r  and liquid-vapor (aiv) 

surface tensions and a r e  assumed to act in a direction parallel to each 

of their respective interfaces at the line of contact (see Figure 2A). 

This line of contact can be displaced to increase the solid-gas interface 

at the expense of the solid-liquid interface. If the solid-liquid surfaces 

exerted no force upon the line of contact, then obviously no equilibrium 

position would be possible since a force, uav cos 8 ,  parallel to the solid 

surface acts on this line. 

There must, therefore, be forces of the same nature as  surface 

tensions that act through the line of contact, P, and a r e  associated 

with the solid-vapor and solid-liquid interfaces. 

proposed that contact angle be related to the surface tensions of the 

three surfaces by the relation 

Young (Ref. 22) 

u c o s a = u  - ( j -  
PV sv sa 
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FIGURE 2A. SURFACE TENSIONS AT A LIQUID-VAPOR- 
SOLID INTERFACE 

Since the solid-vapor and solid-liquid surface tensions a r e  not well 

understood and a r e  difficult if not impossible quantities to measure 

experimentally, Young's equation i s  an extremely useful tool in that it 

expresses the effects of these surface tensions in terms of measurable 

quantities, that is ,  contact angle and liquid-vapor surface tension. 

However, the relation is deceptively simple and has been the 

source of many arguments. 

equation on the grounds that the equilibrium conditions a re  discussed 

only with respect to forces parallel to the surface, and that no account 

is taken of the component u j V  sin CY normal to the solid surface. 

Bikerman (Ref. 23) has criticized the 

A clear statement of the problem and a thermodynamic justifica- 

tion of Young's relation was given by Johnson (Ref. 24). Also, 

Lester (Ref. 25) has recently given a sophisticated treatment of the 

equation and showed that it is correct so long a s  the solid is not 

easily deformable. 

In addition, the surface condition of a solid can significantly 

affect the contact angle of a liquid on the solid. 

which was analyzed by Wenzel (Ref. 26), is surface roughness. It 

seems that liquid on a rough surface will exhibit lower contact angles than on 

a smooth one, because the surface irregularities provide many capillary 
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paths for the liquid and thereby cause the liquid to spread. 

suggested a modified form of equation (1A) 
Wenzel 

where cy is the average apparent contact angle and r is the ratio of true 

to apparent area of the solid. 

A second influence on contact angle i s  the presence of molecules 

adsorbed a t  the solid interface. 

Langmuir (Ref. 27) when he measured a contact angle hysteresis 

effect whenever the line of contact between the liquid and solid was in 

motion, that is, the measured contact angle depended on whether the 

boundary was advancing or receding. 

tion in contact angle to a monomolecular layer that was adsorbed when 

liquid advanced over the surface and thereby decreased the contact 

angle when the liquid receded. 

This influence was observed by 

Langmuir attributed this varia- 

In conclusion, the use of Young's equation and the concept of 

contact angle appears to be valid i f  the restrictions involved are 

properly under stood, 

interfaces is desired, Reference 28 contains a comprehensive summary 

of recent works on the subject. 

If further information on liquid- solid-vapor 

4 

56 



APPENDIX B 

BOUNDARY CONDITIONS DEPENDENT ON 
CONTAINER SHAPE 

The expressions for boundary conditions that a r e  dependent on 

container shape a r e  developed in this Appendix. As noted previously, 

the liquid-vapor interface shapes a r e  symmetrical about the vertical 

axis, and therefore, the relations for container boundary and contact 

angle can be formulated based on a vertical cross-section of the 

container. 

I 

A. Prolate and Oblate Spheroids 

Referring to Figure lB,  the equations for container boundary 

(YB) contact angle (a), and empty fraction (p) a r e  derived a s  follows: 

1. Container Boundary - In this study, the equation for a vertical 

cross-section of both a prolate and oblate spheroid (an ellipse) is non- 

dimensionalized with respect to the vertical semi-axis of the ellipse, 

i. e., the Z/Ro intercepts a r e  always (0, -2).  

for an ellipse is defined by the single relation 

Therefore, the boundary 

2 b2 cos 8 
= sin2 8 t b2 cos28 

where "bl' i s  always the horizontal dimension. Therefore, 

b < 1 Prolate Spheroid 
b > 1 Oblate Spheroid 

2. 

between the tangent to the boundary, YB = y(8), a t  point rrPtl and the 

line O P  is defined by the relation 

Contact,Angle - As proven in Reference 29, the acute angle, +, 
- 
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FIGURE 1B. GEOMETRY FOR PROLATE AND OBLATE 
SPHEROID BOUNDARY CONDITIONS 
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Since 

Performing the operation indicated in equation (2B) yield6 

1 cos 8 (sin28 t b2 cos2 e) 
sin'e - b2 cos28 sin 8 t 2 sin 8 cos2 8 + = arctan 

Also, note that since X = Ro y sin 9 and Z = - Ro y COB 8 then the 

angle, y, measured from the vertical M P  and the tangent to y(8) at ltP1t 

can be specified as follows 

- 

(a> dX a t  point P y = arctan 

From the geometry of Figure lB, it is apparent that the contact angle 

Q, is 

Substituting in equation (5B) from relations (3B) and (4B) the final equa- 

tion for contact angle is 

1 sin3€) - b2 cos28 sin0 t 2 :in9 cos28 
cos 0 (sin28 t b2 cos2 8 

3. 

at the top of the ellipse is 

Empty Fraction - Since the equation for an ellipse with the origin 

x! 
t (Z t 1)2 = 1 

5 9  



Then it is easily shown that for the total container volume (V,) and 

vapor volume (Vv), the relations a r e  

0 0 

and 

V t = 2 a  s X 2 d Z =  ~ b ’ [ l - ( Z t l ) ’ ] d Z  

-1 -1 

4 Vt = - T b 2  
3 

0 
A 

V, = a  J b2 [l - (Z t l)’] dZ 

yg 

3 Vv = a b2 (yg 

and empty fraction, p, is simply 

B. Spheres 

It is a very simple matter to develop relations for the boundary 

conditions in a spherical container by setting the semimajor and semi- 

minor axes equal, i.e., set b = 1, in the equations for the spheroidal 

containers to make the relations applicable to a spherical cross section 

(circle). On inserting b = 1 in relations (lB), (6B), and (9B), 

1. Container Boundary 

2. Contact Angle 

a = 2 e + n  180 arctan sin8 t y cose) - 9 o o  
sine - y1 cos0 
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3. Empty Fraction 

Since the equation for empty fraction in the spheroids is 

independent of "bit, relation (9B) need not be changed for application 

to spherical container s . 
C. Cylinders . 

w The cylinder is the most simple geometrical configuration to 

analyze from the standpoint of interface shape since the container 

boundary is independent of the vertical coordinate f fZ1 t .  

using Figure 2B to illustrate the geometry involved, it is  easy to 

show that the boundary conditions for a cylinder a r e  a s  follows: 

1. 

container that is symmetric about the vertical axis and of infinite 

height is prescribed by 

Therefore, 

Container Boundary - The vertical cross section of a cylindrical 

2, 

vapor inter face /container boundary or  

Contact Angle - Contact angle is the slope of a tangent to the liquid- 

dX 
ct = arctan (z) at  point P 

and, 

(; ' sine sine - + y' cos e ct = arctan 

3. Original Liquid Height - Since the interface shape in a cylinder of 

at least one container radius in depth is independent of the empty frac- 

tion, a calculation of p is not necessary to specify the interface in a 

cylinder. However, in order to designate the high gravity liquid level 

corresponding to the low gravity interface, it is necessary to compute 

the liquid volume participating in the interface deformation. 

tion employed is 

The equa- 
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c 

91 

Vi =s r(1 - y2 sin29)(y sin9 - y' cos9)de 

0 

Therefore, the original liquid height "h" is 

91 

(1433) VQ h =- (1 - y2 sin29)(y sin0 - y1 cos9) de 
?r 

0 

4. 

liquid f i l l  level has no significance in the calculation of interface shape 

in cylinders, the only requirement for the observation point position 

(coordinate system origin) is that it be above the interfacev 

the distance to the low gravity face can be set equal to one, that is, 

yo = 1, and the initial conditions for the main interface differential 

equation (equation (37)) can be simplified to 

Special Boundary Conditions Applicable to a Cylinder - Since the 

Therefore, 
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APPENDIX C 

COMPUTER PROGRAM FOR DETERMINING 
INTERFACE SHAPE 

A. General Computer Procedure 

A general outline of the computer program sequence in engineering 
terms is as follows: 

1. Print  out input data which includes: 

Z OMPUT ER 
SYMBOL 

KSVHC 

B 

YG 

A2 

B2 

CONANG 

Yo** 

ENGINEERING 
SYMBOL 

Ly 

yo 

DEFINITION 

Container Designation: 
1 - Spherical 
2 - Vertical 
3 - Oblate Spheroid 
4 - Prolate Shperoid 

Bond Number 

Distance from Origin to 
Surface for Bond Number = c( 

Spheroidal Container Major 
A x i s  

Spheroidal Container Minor 
Axis 

Contact Angle 

Estimated Distance from 
Origin to Low Gravity Sur- 
face Center Point 

UNITS 

Dimensionle s s 

Dimensionless 

Dimensionless 

Dimensionles s 

Degrees 

Dimensionles s 

2.  
tidn solution of the main differential equation (33) ,  which continues until the 

* The authors wish to acknowledge the contributions of Mr s Pam T. Hughes, 
of Computer Sciences Corporation, to the development of the computer 
program outlined herein. 

After some experience has been acquired in determining interface shapes, 
initial values of yo can be determined that will enable more rapid computer 
convergence. 
level has no influence on interface (see Appendix B). 

The input data a r e  used a s  initial values in the "Runge-Kuttatl itera- 

Also, note that yo = 1 in the case of a cylinder, since f i l l  

t 
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n 

interface inter sects the container boundary. 
applied a r e  those specified in Reference 11 for the integration of second- 
order equations of, the general type, 

The Runge-Kutta formulas 

Y" = f@,  y, Y' )  

and consist of 

3.  
with the desired contact angle. 
KO is too large and must be decrea'sed. However, i f  the angle i s  positive 
but too large, it i s  necessary to increase KO. 
of KO a r e  selected and used a s  new input in the Runge-Kutta solution until 
the desired contact angle is approached. 

Solve for interfacelcontainer boundary contact angle, a, and compare 
If the calculated contact angle i s  negative, 

In either case, new values 

4. 
and compared ' k t h t h e  desired empty fraction. 
culated, the value of yo determined is entered in step l ,  and new f3 is com- 
puted. This procedure is continued until enough data is generated to gener- 
ated to extrapolate or interpolate a curve f i t  of 'lye versus 
correct yo. 

Empty fraction* (vapor volurirrelcontainer volume), p,  is determined 
If the correct f3 is not cal- 

for  the 

5. 
KO, and the entire procedure is repeated until the desired contact angle 
and empty fraction are obbined. 

The correct value of yo is entered in step 1 with the original value of 

* In the case of a cylinder, the empty fraction criteria is by-passed. 
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6 .  Program output data is printed: 

SYMBOL 

X/R; OX 

Z/R; 02 

ANG; CONTACT 
ANGLE 

DXDY 

BETA; EMPTY 
FRACTION 

BETAD 

Y 

ENGINEERINC 
SYMBOL 

X/Ro 

Z /Ro 

KO 

Yo 

e 

D 

Y 

D E  FINITION 

Horizontal Distance from 
Container Vertical Axis 
to Liquid-Vapor Interface 

Ve'rtical Distance from 
X Axis to Liquid-Vapor 
Inter face 

Contact Angle 

Parameter Related to 
Curvature at Interface 
Center point 

Distance from Origin 
to Low Gravity Surface 
Center point 

Angle Measured from 
Vertical Axis to y 

Calculated Empty 
Fr a c tion 

Desired Empty Fraction 

Distance from Origin to 
Liquid Sur face 

UNITS 

Dimensionles 

Dimensionles 

Degrees 

Dimensionle s 

Dimen s ionle s 

Degrees 

Dimensionles 

Dimensionle s 

Dimensionle s 

B . Program Limitations 

As the low gravity interface shapes approach flatness a t  high Bond 
numbers, increasingly accurate values of KO are required because KO is 
approaching zero. In the present program, difficulty is encountered in 
obtaining contact angles of less  than approximately five degrees a t  Bond 
numbers greater $an or equal to 200, because the computer (GE 235) is 
unable to store the very small variations of KO required for further con- 
vergence. 
computer (IBM 7094) i f  interface shapes at very high Bond numbers a r e  
desired; however, the interface shape variation caused by a five-degree 
contact angle deviation at Bond numbers above 150 is insignificant for 
most applications. 

T h b  problem could be eliminated by using a more accurate 

t 

66 



C. Programming Information 

Liquid Volume Dimensionless 

DVB AVL Incremental Liquid Volume Dimensionless 

DBET AP Incremental Empty Fraction Dimensionless 

vv VL 

1. Definition of Terms - Some of the significant terms not defined 
i_ previously include: 

* 
DEFINITION - 

" 
Dimensionless 

First Derivative of y with 
Dimensionless 

Dimensionless 

Dimensionless 
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2. Flow Chart 

W 

C W U T E D  60 TO 
IC THE VALUE TRANSFER 

KVHC=KSVHC-1 STATEUENT 
990 
991 
992 

& PR IN1 

I c 

J 

L. -1 
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~oitloll ox 12000) ,oz (2000)  

s 27 1 co TO * 
s 00 

PAC8 L 

2 1  1 49 

* 

-I - 
DELX=DELXIN 

DXDY=DDDY 
Bl=A2/B2 +' DY-DDYO DDX=DXDY 

A 1 - 1 .  Yo= Y YO ii? CO TO ti? 
REPEAT TO 103 

F'OR ox ( I  1.0. 

COMPUTED 60 TO 
IF THE VAL* TRANSFER 

O f  KVHC TO 
STATEMNT 

1000 
1000 
1001 

r 

KCDTH=O 
DTH=PI/DTHD CO TO 1002 DTH=PI/DTHO 

1 .;;.ci I F ~ ~ ~ ~ U E  COWUTED CO TRANSFER TO 

02 (1) =0. STATEMNT DDY=Yo*(l.-DXDY) DOY=l.-DXDY 
Y h  . TO 

e70 
* 

BETA=O. L=0 IIItI CA=DTW*DDY 
EBET=o. vv= 0. M=Utl YA=Y*OTH*0Y/2.*DTHUA/e. 

1 ' .  ¶L 

- DYA=OY+CA/t. M r l .  *(ODY -YO) /YO*w-B*YO - DVB=O. - CZCOSF (TH+DTH/L. 1 - 
rr YO DVA=O. S=SlNF (fH*DTH/2. 1 A A = Y A * U  , 

1 I I 
r 

I 7- 1 r , 
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aooI(yo)1 ox (2000) ,oz ( ~ O O O J  

1 0 4  

TH=TH*DTH 
L = L + l  - ?R I I l l  I 09 r I r 0  I e DO I r TH t C A r CB r CC 

CD I 

?ACE S 

+ 

COMPUTED GO TO 
I F  THE VALUE TRANSFER 

OF KVHC TO 
IS STATEMENT 

I t t 4  
t t t 4  

C W f l N U E  

3 It5 I 

4 3  COllTlrmc 

60 TO 
65 1 

co TO 
6 5 1  

6 5 2  

OTH=CDTH 
KCOTH=l 

co TO 
65 1 1 
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F 

1 

COVUTED CO TO 
IF THE VALUE TRANSFER 

OF K V M  TO 
la STATEllLNT 
1 e 
t 8 
3 33 

83 

D M =  (1. - Y  **2*S*S) * ( Y  *S-DY *c ) *DTH/2. 
VV=VV*DVB+DVA 

DVA=DVB 
SZ=S 

I J I 

c 
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COWUTED 60 TO 
1F THE VALUE TRAMSFLR 

OI KVHC 10 
IS ST AIL WEIT 
1 1005 
2 1001 

DOX=DI(DY 
DELX=DELX/t. 

DXDYZDXDY-DELX 

c 

__* 

646 

CON1 I NUE 60 TO 940 

CO TO 
940 

I .+o TO 4.1 

SENSE W I T C H  15 
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KOW)(oll OX (11000) 102 (11000) ?ACE b 

k 
TBOX t 1) =oxo 7 
TBOX t2)rOOx 

T B A M  t 1) 3 A M  

SENSE SWITCH 

W 

D C L X t M L X / 4 .  
DXOl=OOX*OLLX GO TO 49 

c 
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C o w l  1nuc 
J J = l  

COMPUTED GO TO 
IF THE VALUE TRANSFER 

GO TO 4s STATEIYNT 
85 0 
850 
74 

DxOY=OxDY*DELX 
PRINT 10lmAI*&XOrr YDTHA 

3EN8E SWITCH 

r 
47  

c 

OELX=DELX I N  I I = I I * l  
ANS I i  ) = YO 

AR6 (1 1 =BETA 

oxo Y=oooY co TO 49ss 
YO=YO*DYO - DDX=DxDY - 

4 

4 
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KOYlywI OX 41000) rOZ (1000)  CACC 8 
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3 .  Program Listing 

8 

4 

t 

C SPHERE INTERFACE,  F P P I R T C A L  - V F R S I O N  C-2 
KOVFAON O X ( 2 0 ~ 0 ) 9 O z ( 2 0 0 ~ )  
COMWON A N S ( 3 ) , A R G ( 3 ) r T P D X ( 2 ) , f B A N G ( 2 )  

29 FORYAT (12, 
’3n FORYAT ( 5 C 1 6 . 8 )  
3 1  FORMAT / 6 H X / R  = ,F7o4rAH, Z / R  = 9F7.4) 
i n  FORYAT (5x,inHn‘o C O N T A ~ T )  
66  FORYAT ( I 4 H C O N T 4 C T  ANGLF 9F7.79PH n F G R F F S )  
?4 FORMAT( / / r Z X ? H S =  E ~ ~ ~ ~ , ~ X ~ H R E T A D = ~ ~ ~ O ~ , ~ X ~ H Y C = E ~ ~ . ~ , ~ X ~ H A =  F l l . 5 9  

1 3 X 3 H B =  E I l o 5 , 2 X l l H A N G  D F S I R F 0 , 2 X F l l o S )  
5 3  FORPAT ( l H 1 9 1 X 2 7 H S P H E R E  INTERFACE,  E M P I R I C A L )  
6’3 FORYAT ( 1 7 H E Y P T Y  F R A C T I O N  = 9F6.4) 

993 F O R M A T ( l H l , 1 6 H P R O L 4 T E  SPHF‘ IOI6)  
994 F O R M A T ( l H 1 , 1 5 H O S L A T F  S P H E R o I n )  
995 F O R u P T ( l H 1  r 8 H C Y L I h ’ f 7 F R l  
996 F01744AT ( / 7 H S = F 1  I05 ) 

D I = ? . 1 4 1 ~ 9 2 6 5 3 6  

RFAD S ~ , R , Y G , ~ ~ Y R ~ , C O ~ P ~ ! G  
D fHO= ’3600  
CDTH=.f’r)? 
R E T A D = ( Y G ~ * 3 / 4 . ) * ( 3 o - Y C )  
T I = O  
I F ( Y S V H C - I ) 4 6 , 6 , 4 5  

6 Y V H C = l  
D R I N T  5 3  
P R I N T  3 4 , e i n E T A D , Y G , A 2 , R 2 , C O ~ A ~ ~ ~  
GO TO 9 

GO T O ( 9 9 % 9 9 1  $ 9 9 2 )  ,yVHC 

P R I N T  34,R,qFT409YG,A2,R? ,CONANG 
GO TO 9 

P R I N T  34,B,BETAD9YG,P2,B2 9 C O N A N G  
GO TO 9 

9 9 2  P R I N T  9 9 5  
P R I N T  9 9 6 9 R  

9 Dr)DY=Oo 
D F L X I N = I  
DOYO= 0 1 
DBC=,0Q5 
YYO=YG 

37 F O R M A T ( I 1 1  
f F ( S E N S E  SWITCH 19)5r1;1,500 

70 RFAT) 97,KSVHC 

4 5  KVHCzKSVHC- I  

990 P R I N T  993 

991 P R I N T  994 

5 0 1  READ 3Q,YYQ,DDYO 
500 GO TO (215 ,216 ,271) ,KVHC 
2 1 5  A l = l o  

P l = R 2 / A 2  
GO TO 217 

R l = A 2 / R 2  

r)Yo=nDYo 

216 A l = l o  

217 YO=YYO 

2 7 1  DELX=DELXTN 
DXDY=DDr)Y 
PDX=DXDY 

4999 J J = O  
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91 

1 0 0 6  

1 0 0 5  

1007 
646 
59 
46 

6647 
6 6 4 8  
6 6 4 9  

6646 
8 4 9  
9 49 
9 5 Q  
9 5 1  

9 5 2  
2077 

60 
6 1  

6 2  

5 1  
9 9 4 8  

5 2  

8 5 2  

8 5 3  

8 5 4  
101 

8 5 5  

1 2 . * R ~ * ~ 4 * C * * 2 * S - 4 . * ~ 1 * * 2 * S ~ C ~ # . ~ ) ~ ) * ~ ~ ~ . / ~ I  
G A ~ = 1 8 n . * T H / P I - Y S I  
A L A ~ = 1 8 0 o / P I ~ ( A T A N F ( ( Y ~ C + ~ Y * ~ ) / ( Y * S - ~ Y * C ) ) )  
A NC = G A FA+ A L AM 
I F ~ A N G ~ + A N C ~ ~ ~ O * A N G ) ~ ~ , ~ ~ ~ , ~ ~  
I F ( A N G ) 6 n , 9 4 8 , 9 4 8  
I F  ( A N G )  6 0 , 4 6 9 5 1  
I F ( J J- 1 1 66 4 7 9 6 6 4 6  9 6647 
I F ( S E N q E  SGl'ITCH 1 5 1 6 6 4 8 9 6 6 4 9  
PR I h l T  
DDX=DXDY 
D F L X = D E L X / 2 .  
DXDY=DXDY-DELX 
GO TO 49 
I F ( ANG ) 6r\ 9 849.9 8 4 9  
I F ( A R S F ( A N G - C O N 4 N C ) - 1 . ) 9 4 8 , 9 4 8 , 9 4 3  
I F  (SENSF: S N I T C H  1 5  1 9 5 0  9 9 5 1  
P R I N T  101 ,ANG9nXPY9Y9TPA 
T B D X ( l ) = D X D Y  
T B D X ( 2 ) = P D X  
TSANG ( 1 1 = A Q G  
T R A N G ( 2 ) = A N G l  
N E R Q = l  
C A L L  M L A G ( 2 , 2 r C O N A N G j T R A N ~ , T R D X , T ~ X , Y E R R )  
DX DY =TDX 
I F ( S FN SE SW I TCH 1 5 1 9 5 2 9 19 
P R I N T  2077,DXDY 
F O R M A T ( l X 4 H D X D Y E 1 6 . 8 )  
GO TO 49 
I F  (SENSE SWITCH 1 5 )  6 1 9 6 2  
COST=2.*C 
P R I N T  101  9ANG9DXDY ,Y t T H A  
OFLX=DELX/4 .  
DXDY = DDX + DFLX 
I K O D E = l  
GO TO 49 
IF(ANG-CONANG)46,9948,S948 
I F ( A B S F ( A N G - C O N A N G ) - o ! 5 1 9 4 8 , 5 2  
COST = 2 e *C 
I F ( I K O D E ) 8 5 2 9 8 5 3 9 8 5 2  
D E L X = D E L X / 4 .  
TYC)PF=n 
CON,T I YlJE 
JJ=1 
I F ( S F N S E  S N I T C Y  1 5 1 8 5 4 , 8 5 5  
PR I NT 

DDX = DXDY 
DXDY = DXDY + DELX 
GO TO 49 

101 9 4NG9QXDY 9 Y  9THA 

10 1 ,ANG 9 DXDY 9 Y 9 THA 
F O R M A T ( l X 3 H A N G E 1 2 . 5 ~ 2 X 4 H D X D Y E 1 6 . 8 , 2 X 1 H Y E l 2 ~ 5 ~ 2 X 2 H T H ~ ~ ~ ~ 5 )  

3 

1 
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# 

948 GO TO ( 8 5 0 9 8 5 0 9 7 4  ) r K V H C  
8 5 0  SS=S*S 

DRET=( .75* (Y*S-DY*C) * (Y++S) * *2 ) / ( ! 31* *2 )  
zzz=-oz(I+1l 
R E T A = B E T A ~ O . S * ( E S E T + D D F T ) * ( T H ~ T ~ Z ) + ( 3 * / 4 ~ * ( Z Z Z * * ~ / 3 ~ + Z Z Z * * 2 ) )  

Y O l = Y O  
P R I N T  6 6 7 , S F T A p Y O  

I F ( A B S F ( R B ) - D R C  1 7 4 9 7 4 9 4 7  

."* SR=SETAD-RFTA 

667 F O R M A T ( l X 4 H E ! E T A E 1 6 ~ 8 ~ 3 X 2 H Y O E 1 7 ~ 5 )  

A 47 N E R R = l  
.. I F ( I 1 1 3 2 9 3 3 9 3 2  

33 TI=11+3 
A N S ( l ) = Y O  
YO=YO+DYO 
A R G ( l ) = R F T A  
D E L X = D E L X  I N  
DX DY = DDDY 
DDX=DXOY 
GO TO 4999 

'32 I F ( I 1 - 1 ) 3 5 9 3 6 9 3 5  
'46 I I = I I + I  

A M S ( 2 ) = Y O  
A R G ( 7 ) = R F T A  
YO=YO+r)YO 
D F L X = D F L X I Y  
DXDY=DDDY 
DDX=DXDY 
GO TO 4999 

3 5  I F ( I I - 2 ) 1 9 9 3 8 9 3 9  
38 A N S ( ? ) = Y O  

I I = I T + l  
439 A R G ( ? ) = R F T A  

I F ( A R G ( l ) - A R G ( S )  1 7 8 9 5 8 9 5 8  
5 8  A T = A R G ( l )  

A R G ( l ) = A R G ( 3 )  
ARG(  3 1 = A T  
TS=ANS ( 1) 
A Y S ( 1 = AN S ( S 1 
A N S (  1 = T S  

8 8  P P = A R G ( l )  
A R G ( l ) = A R G ( 2 )  
ARC ( 2 =PP 
TS=ANS ( 1) 
A N S ( l ) = A N S ( 2 )  
A Y S ( 7 ) t T S  

9n S T = A R G ( 2 )  
A R C ( 2 ) = A R G ( 3 )  
A R G ( S ) = S T  
TS=ANS ( 2  1 
ANS ( 2 1 =ANS ( 3 1 
A N S ( 3 ) = T S  

C A L L  ~ L A G ( 3 , 3 , S E T A D , A R G , P ~ S 9 A N S E 9 N ~ R ~ )  
P R I N T  9 l r l 9 A N S E  

78 I F ( A R G ( 1 ) - 4 R G ( 2 )  1 8 7 9 8 8 9 8 8  

87  I F ( A R G ( 2 ) - A R G ( 3 )  ) 8 9 9 9 1 ) 9 Q O  

89  N E R R = l  

9101 FORMAT( lX16HEXTRAPOLPTEP YO E 1 2 . 5 )  
81 



c 

i 

... 
-‘ 
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D. Deck Setup 

L 

.. 

1. 

a.. Computer GE-235 

b. Core size required 16 K 

c. Language F I1 
d. System SLEM 

e. Plotter required NONE 

f .  Card punch required NONE 

2. Estimated Run Time .. Five minutes 

3. Restart  Procedure - Multiple Cases Read by ENDR 

4. Deck Sequence 

ZERO MEMORY 16 K 

SLEM CALL CARD 

ID CARD 

BINARY FOR MAIN DECK 

BINARY FOR MLAG 

BINARY FOR ENDR 

112 PUNCH 

DATA INPUT DECK 

5. Diaaonis tics 

If the program seems to be cycling,the program can be run with sense 
switch 15 down and the computer will print out the calculated contact 
angle, DXDY, and YO after each pass through the Runge-Kutta 
procedure. 
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6 .  Input Sheet 

Bond No. Y G  - Fill Level A, - Major Axis B, - Minor Axis 

INPUT DATA SHEET 

Contact Angle 

Job No. 

Card 1 

Card 2 

Card 3 

574260 

KSVHC = 1, 

1 -  
3 -  

Date: 

2 ,  3, 4 

Spherical Shape, 2 - Vertical ellipse, 
Horizontal ellipse, 4 - Cylinder 

I Y, I DYn I 
I 

OPTIONAL I I 
Col 1 16 17 32 

c 

< 

4 

c 

b 
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7. Example Output - Sphere 

Y 

Da 0 ,140  
NO c 
NO c 
NO 0 
NO c 
NO C 
NO C 
NO c 

BETA 0,  
NO C 
NO C 
40 c 
NO c 
NO c 

0 
IN IN 

IN 
IN 
IN 

11 

Ih Ih 

Ih Ih 

lh Ih 

lh 1L 

I1 c 

I1 I1 

'6 I1 

I1 
II 

11 
I1 

I1 
I1 
I1 
I1 
I1 

I 03 UPTAOaOt58O13l 0 0  ~~a0,1,11,90E OI A m  O~I0080P O I  Dm 011,0000E 0% AN0 DSC1RYD 0 8  

'ACT 
'ACT 
'ACT 
'ACT 
'ACT 
'ACT 
'ACT 
I80522E 0 0  Y O  O~ll190E 0 1  
'ACT 
'ACT 
'ACT 
' & E T  
'ACT 
'ACT 

00 Y O  0,IPlQOE 01, 

Ne CONTACT 
NO CONTACT 
NO CONTACT 
NO CONTACT 

,319OE 

,23231 

,11322 

O I  

01, 

t 

0 1  
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