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ABSTRACT
 

"IA wide-band Dicke radiometer capable of operating in the
 

frequency range 2.6 to 14 KMC is constructed. The operation of
 

the radiometer is explained with special emphasis on the
 

accomplishment of such an extremely wide bandwidth. Calibration
 

of the radiometer is carried out within the 2.6 to 9 KMC frequency
 

range using three different noise sources. As an application of
 

this wide-band receiver, electron cyclotron resonance intensity
 

measurements in a plasma are made. 

ii 



ACKNOWLEDGMENTS 

The author wishes to express his gratitude to Professor Osman 

K. Mawardi, for the suggestion of the thesis and his continuing 

guidance. He would also like to thank Dr. A. M. Ferendeci, and 

especially to Mr. R. 0. Shaffner for their helpful suggestions in 

the completion of the project. 

Thanks is also due to Mrs. Martha S. Dybas and Miss Jeanette 

Yount for their competent typing of the manuscript. 

The financial support was provided in part by Nato Ilim 

Burslari Komitesi (Nato Scientific Fellowship Committee of Turkey), 

and the National Aeronautics and Space Administration. 

iii
 



TABLE OF CONTENTS
 

Page 

ABSTRACT 	 ii
 

ACKNOWLEDGMENTS ....................................... 	 iii
 

TABLE OF CONTENTS . iv
 

LIST OF ILLUSTRATIONS .................................... v
 

Chapte 

I. Introductien .................................. 	 1
 

II. Theory of Operation ............................ 8
 

III. Descriptien of the Apparatus .................... 15
 

IV. Measurenents and Calibration ................... 29
 

V. 	 Discussion of the Results and
 
Conclusions ................................. 41
 

APPENDIX I ............................................... 47
 

APPENDIX II ......................... ..................... 57
 

LIST OF EEFERENCES ....................................... 61
 

iv
 



LIST OF ILLUSTRATIONS 

Figure Pg
 

1. A Subtraction Type Radiometer ..................... 3
 

2. A Dicke Type Radiemeter ........................... 
 4
 

3. A TWT 	Radiometer .................................. 
 6
 

4. Block Diagram of a Dicke Radiometer ................ 11
 

5. Photegraph of Equipment ....... ..........* ........ 16
 

6. Photograph of Equipment ........................... 17
 

7. A Magic "T............... .....................	 19
 
8. Ridged-Waveguide Instruments ...................... 21
 

9. Cross-Section of Double-Ridge Guide ............... 23
 

10. Photograph of the Waveguide Switch ................ 24
 

11. I.F. Amiplifier Circuit, and-the Detector .......... 26
 

12. Switch Attenuation Versus Frequency ............... 30
 

13. I.F. 	Amplifier Output Versus Frequency ............. 31
 

14. Receiver Noise-Figure Measurements Block Diagram 33
 

15. Argon-Radiometer Output Versus Frequency .......... 
 34 

16. FluorescentI Radiometer Output Versus Frequency ... 
 35
 

17. FluorescentI Radiometer Output Versus Frequency 
... 36 

18. Cyclotron Radiation Measurements Block Diagram .... 38*
 

19. 	 Cyclotron Raiation-Radiometer Output Versus-

Frequency .................................... 39
 

v 



CHAPTER I 

DTRODUCTION 

All objects above absolute zero temperature radiate energy as 

electromagnetic waves. The intensity of radiation, when thero­

dynamic equilibrium prevails, is given by- the Plank's-radiation 

formula and depends on the temperature of the body. If the object 

in question is a "blackbody", radiated power (P) per cycle per 

second is related to the temperature (T) as, 

=PAf kT (U) 

where Af is the frequency-bandwidth considered, and k. is the
 

Boltzmann's,censtant.
 

The detection of weak thermal radiation, or similar signals, 

at the radio and microwave frequencies is limited by the internal 

noise of the receiving equipment. For this purpose special 

techniques like ."radiometry" are required. Radiometry makes use of 

a radiometer which is a very sensitive power detecting device, that 

measures electromagnetic energy considered as thermal radiation.-

A radiometer has to be extremely sensitive,, since, for example an 

object at a-temperature of IO0K has an equivalent radiative power 

of about 1.4 x 172® fatts/cycle/sec., according to equation (1). 

Measurements of such a ,mall signal undoubtedly requires high 
i 
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sensitivity equipment. 

Radiometers can be classified, mainly, in two groups: 

1. Subtraction type 

2. Multiplier type. 

In -most of the early work on weak thermal radiation studies, 

subtraction type-radiometers have been used.7,19 Figure 1 shows the 

main parts of such an instrument. The received signal is amplified 

and detected. After the detector a subtracter, a low-pass filter, 

and an output meter are placed. A known d.c. voltage is fed into 

the subtracter to insure that the output meter reads zero when there 

is no signal at the receiver input. The sensitivities reached with
 

this type of instrumentatien are adequate, whenever the fluctuations 

and drift within the receiver components are negligible. Unfortun­

ately this is net true with the conventional- vacuum tube receivers, 

and the multiplication type radiometers are preferred for weak 

thermal radiation measurements because of their superior 

sensitivities.
 

The first multiplier type radiometer was built in 1946 by 

Dicke. 4 The main components of the Dicke type radiometer are. shown 

in Figure 2. In this device, the incoming signal is mdulated to 

achieve the high sensitivity. The signal is detected after 

conversion to intermediate frequency by beating it against a local 

oscillator within the mixer. Using this type of rediometer Dicke 

was able to detect a temperature change of about 0.5°K, and used it 



ANEN 	 Rc'iE SECOND
1:C1: SU--ACTO 
SYSTE 	 DETECTOSUBTRACTOR 

V-D.C. VOLTAGE 

LOW-PASS 

FILTER 

fOUTPUT
METER
 



AE SWTBALANCEDMIXER I. .
AMPLIFIER 

SECOND 
DETECTOR 

BAND-
PASS FILTER I 

C-). 

Cr 

~REFERENCE 
[II 

SIGNAL 

LOW-PASS 

FILTER 

I 

I OUTPUT 
RECORDER 



5
 

in measurements of thermal radiation from the moon, and the sun. 

Since 1946, several people working with weak thermal radiation­

measurements have made use of similar circuitry shown in-Figure 2. 

Its use have been largely employed in radio-astronomy studies.
4 ,311 

This type-of radiometer has also been used in laboratory plasma
 

measurements.1,15,22
 

After the discovery of traveling wave-tubes, radiometers
 

21 
involving TWT have also been built. 5 , The block diagram of a 

traveling-wave tube radiometer is shown in Figure 3. The principle 

of operation-is the same as-the Dicke radiometer, except that 

detection-takes place at the microwave frequency level. 

Sensitivities of TWT radiometers are much superior to these which­

involve an i.f. amplifier since low noise-figure, and high gain 

traveling-wave tubes are available, Temperature changes of G.01°K 

has been detected in this manner, using traveling-wave-tubes.5 

The main concern of this work has been the construction of a 

Dicke type radiometer which is capable of operating in a very wide 

frequency bandwidth (2.6 to 14 IMC). Ridged-waveguide components 

have been-constructed in order to obtain such a broad-bandwidth 

receiver system. A double-ridged waveguide balanced mixer, 

modulating switch, and directional coupler have been built. In 

order to make the maximum use of the radiometer, waveguide 

transitions from the double-ridged -to the conventional "S" , and "X" 
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band have also been developed and constructed. 

For the receiver part of the radiometer, a low-noise (noise
 

figure of 3 db) 30 MC tred i.f. amplifier has been designed with 

a gain of about 90 db, and 1.5 MC bandwidth. 

The calibration of the radiometer is carried out using 

fluorescent and argon noise sources located inside of an S-band 

waveguide. After the calibration process, as one immediate 

application of the radiometer, cyclotron radiation intensity 

measurements have been obtained from an argon discharge tube located 

inside of a magnet. 



CHAPTER II 

THEORY OF OPERATION 

Radiometers are used in weak thermal radiation measurements 

and therefore sensitivity is a crucial factor. Before computing'the 

minimum detectable signal of a Dicke type radiometer, it will be 

helpful to summarize-several tthresholds which affect the ,sensitivity 
2 1 

of a racliometer. 

There are mainly four thresholds which influence the 

sensitivity: 

1. Thresholds due to internal noise of the receiver, 

2. Thresholds due to gain fluctuations, 

3. Thresholds due to impedance mdulation, and 

4. Thresholds due to the receiving antenna-. 

Main contributions to the internal noise come from the i.f. 

amplifier, balanced mixer, and the local oscillator. The- crystals in 

the balanced mixer arms have an intrinsic noise, which is introduced 

to the system through the i.f. amplifier. Any mismatch of the mixer 

crystalp will cause local oscillator noise -to be amplified. 1.1k 

amplifier input impedance and the vacuum tubes in the amplifier are 

also sources of noise consequently a low-noise i.f; aPl4fier is 

essential to a radiometer. The other contributions associated with 

this tnreshold can be caused-by the detectors, and the filters used. 

Even though the sensitivity of a radiometer is independent of the 

8 
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detector used, the power output-is very much dependent on it.
20
 

However, the type of low-pass filter used can affect the sensitivit'
 

considerably. 'Frexample, a critically damped low-pass filter
 

provides an optimum sensitivity.
21
 

The i.f. amplifier in a radiometer operates with a very high 

gain, in the order of l05- 106. Any small variation in the gain will 

cause severe fluctuations of the output meter. Possible sources of 

variation -can be due to change in the line -voltage, ambient tempera­

ture drift-of the tubes, etc.. There are also fluctuations in the.
 

conversion gain and the intrinsic noise of the crystals -within the
 

mixer. In order to reduce gain fluctuations the amplitude modulation­

of the incoming signal -should be at a frequency higher than the
 

maximum significant ,component of gain fluctuations spectrum. In the 

switching- or amplitude modulation process if the reference source 

and antenna temperature differ greatly, there will exist a threshold
 

because of temperature fluctuations. However, a stable comparison 

source can reduce this factor.
21
 

The third-threshold is attributed to the impedance modulation. 

Anlitude modulation of the signal creates this difficulty. However, 

if modulation takes place in-a systematic manner, effects of 

impedance modulation on the sensitivity are negligible. 

The last threshold mentioned above is established-by the
 

characteristics- of the antenna:. The sizes of the antenna and the
 

back lobes created, pose -problems in most of the astronomical
 

http:factor.21
http:sensitivity.21
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studies. Factors involved in the antenna threshold will net-have 

significant effects in our measurements, since the radiometer will 

be used mostly in conjunction with highly directive horns. 

The thresholds explained above point out the purpose of 

different parts of a Dicke radiometer,(Fig. 2): a) I order to 

reduce the effective internal noise measured on the output meter, 

a low-pass filter is placed just before the output recorder. 

b) Gain fluctuations in the receiver are reduced by amplitude 

modulation of the signal. c) After the detection process, signal is 

fed through a bandpass filter centered about the modulation 

frequency, which filters out the white-noise contributed internally.
 

The expression for the minimum detectable signal of a radio­

meter, can be calculated using diagram of Figure 4. In the 

derivations correlation technique is used, and also the "ergodic" 

theorem is assumed. This theorem simply states that; "the 

statistical ensemble averages can be replaced by the time averages." 

Mathematical derivations are carried out in Appendix I with the 

following assumptions:9 

1. Signal s(t), -and noise n(t) have independent stationary 

Gaussian amplitude distributions with zero means and average powers 

of G2 and U2 respectively.s n 

2. Signal and noise have uniform spectral densities over the 

frequency range f- to fl + 
1 2 1 2
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3. The modulator has a frequency q , and does net affect the 

noise. 

4. The band-pass filter has uniform response from q - I to 

q + 4 cps where $ is the bandwidth of the filter. 

5. The low-pass filter has a uniform response over the range 

0 to y Cps. 

6. The i.f. amplifier is tuned at a frequency f1 cps , has a 

bandwidth of a cps , an produces linear gain. 

As shown in Appendix I, the output signal to noise ratio of this 

type of radiometer is, 

a 4 
(S 1-6
 

S~ (2) (2)
 
n
( o17 4 3 +24 r 

2 s 2s n f 

2
For weak signals a << G 2 , and therefore,
S n
 

4

S Us__

(I)o Ts ( E) •(3) 

When the worst possible case of output signal to noise ratio equal
S 

to one, (R)o= 1 , is considered, the expression for the mininum
 

detectable signal in terms of the input noise power reduces to, 

a 24 -U2(4)E
nfl n a
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The expression in equation (4)is dependent on the bandwidths of the 

low-pass filter as well as of the i.f. aplifier. The value of y 

for the filter can be made as small as possible. Hbwever, the 

amplifier bandwidth has to be selected for an optimum sensitivity. 

When the i.f. bandwidth is made toe large, the amplifier gain will 

drop because of the constant gain bandwidth product, and the power 

at the radiometer output will be small. 

The minimum detect.able signal of a radiometer also depends on
 

the type of modulation, and on the reference signal fed into the
 

multiplier (Figure 4). Derivation of equation (4) is carried out
 

assuming sinusoidal modulation, and sinusoidal reference signal.
 

When square-wave modulation,and -quare-wave reference signal is
 

produced, the power output increases by a factor of 4 to give,
23
 

02 =v/2/Y (5)
md n 

Instead of expressing minimum detectable signal of a radio­

meter, the least detectable temperature change can also be specified.
 

4,11
When-a critically damped low-pass filter is used,
 

AT = kTa F(Y)l/2 
a 

where a and y are, the bandwidths specified before) 
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F is the overall receiver noise figure, expressed as
 

a power ratio,
 

AT, the temperature fluctuations of the output meter,
 

Ta, the temperature of the pomparison source, and 

k is a constant. 

The constant k is called the operator's constant. It will vary 

for different radiometer circuits, depending specifically on the 

type of filters and the switching process used. 1 1 



CHAPTER III 

DESCRIPTION OF THE APPARATUS 

The radiometer which has been constructed is the Dicke radio­

meter shown in Fig. 2, which operates over the broadband frequency 

range 2.6 to 14 KMC. Over such a wide frequency bandwidth, it is 

no longer-possible to use standard waveguide components for the, 

microwave frequency section of the receiver. However construction
 

of ridged-waveguide instruments with suitable guide, dimensions, makes 

it possible to operate the receiver in the desired frequency 

spectrum. 

The pictures of the experimental setup for the radiometer are 

shown in Figures 5 and 6. The antenna, at the input of the receiver3 

is a waveguide horn with a transition from the X- or the S-Band 

conventional waveguide to the double-ridge guide. Behind the 

antenna a switch is located for amplitude modulation of the incoming 

signal. This switch is built also from double-ridge waveguide , and 

the modulation is accomplished by driving a resistive card in and 

out of the guide using a motor. On the upper part of the switching 

waveguide a photo conductor is placed to supply the reference signal 

synchronized with the modulation process. 

The microwave switch is followed by a double-ridge balanced 

mixer. The incoming signal is fed into the "E" plane while the 

15 



* 16 

U NOT REPRODUI"m 

I7 
IA 

Fiue5Ihtgaho qimn 



17
 

NOT PEPRODUCMB 

Figure 6. Photograph of Equipment 
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local oscillator is connected to the "Hf plane of the mixer - also 

referred to as the magic "V' (Figure 7). The magic "T'provides
 

frequency conversion of the incoming signal from the microwave to
 

the intermediate frequency by beating of the local oscillator against
 

the signal. The balanced arm of the mixer are equipped with micro­

wave crystals, and the output from these crystals is applied to an
 

i.f. amplifier. The i.f. amplifier is tuned at 30 MC, and the input 

circuit of the amplifier is designed in such a way as to cancel the
 

local oscillator output noise.
 

Following the i.f. amplifier, a square-law detector is connected, 

and the output of the detector is applied to a phase lock-in
 

amplifier system (LIA). The phase lock-in system is coposed of a
 

band-pass filter, a multiplier circuit for demodulation, and an R-C 

low-pass filter. 

The (LIA) is essentially a phase sensitive detecting instrunent.
 

The signal to be measured is applied to the "INPUR" terminals. A 

potentiometer is located at the input in order to pick out any
 

desired fraction of the incoming signal. The signal level control
 

terminals are followed by an amplifier tunable to the desired
 

frequency to be studied. The output of the amplifier is applied to
 

a phase-sensitive detector. his detector is essentially a mixer 

diode, and the demodulation of the signal is accomplished within the 

detector by the application of a reference voltage to the diode. 

She reference signal is at the modulation frequency, and at the 
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output of the phase detector sum and difference of the input and 

the reference frequencies are obtained. The difference of two of 

these signal frequencies is zero, and the amplitude of this D-C 

voltage is dependent upon the cosine of the relative phases of the 

signal and the reference wavefons. The contribution from the sum 

of two frequencies is eliminated with a low-pass filter following 

the phase detector. The low-pass filter is an R-C circuit whose 

time constant is adjustable to as high as 10 seconds. The zero 

frequency D.C. output of the low-pass filter is further amplified. 

The output terminals of the lock-in amplifier are internally 

connected to a galvanometer, and there are provisions for measure­

ments with any type of recorder. 

The critical part of this wideband radiometer is the design 

and construction of the ridged-waveguide components. Following the 

construction of two prototypes, the dimensions and the shape of the 

balanced mixer is determined for optimum operation over the range 

2.6 to 14 EMC. Pictures of some ridged-guide instruments are shown 

in Fig. 8. In order to obtain adequate information about the 

operation of the ridged-waveguide components, a slotted line is 

constructed in addition to the essential parts such as the switch, 

the balanced mixer, the coaxial to ridge transitions, a directional 

coupler, a ridged-guide termination, and two horns from the X- and 

S-Band to the double-ridge. 

TeM dimensions of the double-ridge waveguide used are shown in 
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Fiue8. Ridged-Wavegude Instrmments 

1. S-Bmnd to ridge transition. 
2. X-Band to ridge transition. 
3. Double-ridge balanced mixer. 
4. Double-ridge directional coupler. 
5. Slotted-line.
 
6. Coaxial to ridge guide adapter. 
7. Coaxial to ridge guide adapter. 
8. Double-ridge termination. 
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Fig. 9. he width and height of the guide are selected to be 

identical to the dimensions of a regular X-Band waveguide. The 

chosen cross-section provides the extended bandwidth capability. 

The cutoff-frequencies of a rectangular X-Band waveguide for the 

IE10 and the 'E20 mode are, 

fc'lO 6.67 NMC (7) 
fc,20= 13.34 KMC 

The cutoff frequency for the TEO mode is reduced by a factor of
 

about 2.57 with the ridge gap of 0.040". On the other hand, 

fortunately, the cutoff frequency for the TIE mode increased2 0 is 

by a factor of about 1.2. The cutoff frequencies of the double­

ridged waveguide of Fig. 9 are,
 

f, 2.59 KMC
 
f' =16 MC (8) 
c,20
 

Sherefore, in the T10 mode it is possible to operate the double­

ridged guide from 2.6 to 14 KMC. Such an extended bandwidth 

sacrifices the power handling capacity of the ridged waveguides. 

Also, the attenuation is higher and the guide characteristic 

impedance is diminished by a factor about 6. 2,8,12,13
 

A picture of the waveguide switch is shown in Fig. 10. In the
 

center of the guide, a slot of width 0.090" is cut. Since the width
 

of the ridge is three times the width of the slot in that region,
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the reflection coefficient is fairly low and the longitudinal 

discontinuity in the guide is not affective on the field lines. 

Onto the waveguide a motor is -mountedwith a semicircle resistive 

card fastened to its rotor. The resistive card is driven in and out 

of the waveguide through the center slot. 

The switching waveguide is also equipped with a photo conductor
 

and a light source. The light source is aligned with the photo
 

conductor which is wired in series with a battery and a resistor.
 

The rotation of the absorbing wheel with the motor produces
 

oscillating voltages across the resistor which are synchronized with
 

the modulation process. This voltage is-applied to the reference
 

channel of the phase lock-in amplifier for phase-sensitive detection.
 

In its present status the mixer arms are satisfactorily matched-,
 

but the response over the operation frequency range is not very
 

uniform. However, this is not a lack for the operation of the radio­

meter since the calibration--of the instrument determines the response
 

of-the radiometer at each frequency.
 

The i.f. amplifier circuit is shown in Fig. 11. The input of 

the amplifier is designed with a transformer whose primary is wired
 

with coils each of an equal number of turns, but opposite-in phase.
 

The local oscillator external noise arrives in phase at the balanced
 

anms of the-mixer since it.is sent through the "H"plane. The 

primary turns N1 and N2 are coiled in opposite directions, and 



5025 2500 - 2 50 D ' 25 olI O + 0 

000J0 

00 

p" 

00011 

_ -LOTU 

1g0 

0001 250 250 IN 

IN454 

240 750 0 O UT 

INPUTLI 
INPT I 1 

. 

INPUT4 

0001 25S 

10 001T 

aL2 

i . iV IM 

Fig.1511 I.E15li0e 

2 OM. TUNED TRANSFDRMER 

SELF RESONANT CHOKES WOUND OVE R 5.2K, I'WATT RESISTANCES 
I~h TUNABLE COILS -C Cr1f CAPACITANCES 

VhV 2. RCA 7596 NUVISTOR TUBES 

APTENTIOMEu a ET De 

Ircit and t/he[ DetectorT 



27
 

this phase inversion furnishes cancellation of the local oscillator 

noise at the input of the i.f. amplifier. The transformer at the 

input stage is useful also in providing an optimum input impedance 

for .the first stage. The noise figure of the amplifier is very much 

dependent upon its input impedance. With the balanced mixer crystals 

(1N23WEM) used, there is an effective input impedance of 2400 Ohms 

to the i.f. amplifier. In Appendix II this-value of imopedanceis
 

shown to minimize the noise figure of the amplifier. 24 The 

secondary of the input transforner is tuned with the input 

capacitance of the first stage triode to 30 MC. 

The initial stages of the i.f. amplifier are constructed using 

low noise triode tubes since partition noise'is-absent in triodes in
 

comparison to pentodes or tetrodes. The first two stages are 

cascode connected where the grounded-cathode is followed by a 

grounded-gridtriode. The amplification factor of the first stage 

is low, and this provides a stable grounded-cathode circuit. The 

transformer between the triodes is used to tune both stages to 30 KC 

by proper design of the coils. In this cascode arrangement; the 

noise figure of the grounded-grid stage is- small enough so that £he 

noise factor of both triodes is very close to that of the grounded­

cathode stage alone. 2 5 

The detector used at the output of the i.f. amplifier is also 

shown in Fig. 11. A germanium diode (1N34) is used in the detector 
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circuit, and its characteristic represents' a square law. In order 

to establish preper matching of the i.f. amplifier to the phase 

lock-in amplifier, a tunable coil is placed' following the detector. 



CHAPTER IV 

MEASURBENTS AND CALIBRATION 

Following the copletion -f -various parts of the radiometer, 

the characteristics of'some of-the components had to be determined
 

before any calibration procedure was attempted. The waveguide switch 

attenuation, the frequency-response and the -noise-figure of the i.f.
 

amplifier, and th&over-all noise figure of the receiver were among 

some of the measurements- made. Once these -parameters were specified, 

the. calibration of-the radiometer was carried out using three 

different noise sources at a-teperature of 1l,000°K. After the 

calibration of the apparatus a set of cyclotron radiation intensity 

measurements -were-made usijg an argon- discharge tube at a pressure 

of 30 microns with a-discharge current of 400 milliamps under about 

a 1 Kgauss magnetic field. 

The switchingwaveguide attenuation as a function of-frequency 

is sketched in -Fig. -12. The resistive-card power absorption varies; 

between 10 and, 15 db depending upon the incident power frequency. 

The i.f'. amplifier frequency response curve is obtained using
 

an intermediate frequency generator (Fig. 13). The input to the 

amplifier is kept at a constant value of 10 microvolts, and the 

frequency of-operation is varied. The i.f amplifier is tuned to 

30 MC yqith a bandwidth of 1.5 MC. By making use of a noise figure 

29­
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meter, the amplifier noise figure of 3 db is also measured. 

The radiometer temperature sensitivity as given in Eq. (6) is 

one of the parameters that has to be specified. Therefore, the 

overall-noise figure of th&receiver needs to be measured. The 

circuit block diagram for the receiver noise figure measurements- is 

shown in Fig. 14. An X-Band noise- source is applied to the input of 

the .radiometer. The output of the i.f. amplifier is connected to a 

noise-figure mter which measures the relative noise figure 

automatically. The local oscillator frequency is swept over a small
 

range of X-Band frequencies, and an average receiver noise figure of 

16.5 db is-measured. 

The calibration of the radioeter. is carried out using two 

fluoresgent and one argon noise source located inside an S-Bahd 

waveguide. The S-Band horn is connected to the input to provide a 

suitable transition to the double ridged-waveguide. The local 

oscillator is swept-overthe frequency- range of 2.6 to 9 IMC, and a 

point by point plot of the radiometer output voltage is made at 50 

MC intervals. Normalized plots with all three noise sources are 

shown in-Figures 15, 16, and 17. 9he fluorescent and argon noise 

tube outputs are very similar at the lower frequencies. However, 

above 6 TMC the argon tube output is higher. The voltages sketched 

on these figures correspond to a temperature of ll,0000 K at each 

frequency. Therefore, the calibration-of the radiometer is obtained 

by a pointwise plot. Following the calibration of the radiometer, 



LOCAL
 
OSCILLATOR 

NOISE-POWER TO SOURCE 
FIGURE METER 
HP-342A
 

Fig. 14 Receiver Noise-Figure Measurements Block-Diagram
 



1300 

0 

I­

0 

LiiI-

Id 

a 

1000 

30012.5 

Fig. 15 

I I I I 
3.5 45 5,5 6.5 75 

FREQUENCY (KMC) 

Argon-Nornmlized Radiometer Output Versus Frequency 

a5 



1300 

0-J 

I­

20 
oJ 

LJ 
0 
1LJ 

3 002.5 3o5 4.5 5.5 6.5 7.5 8.5 

FREQUENCY (KMC) 

Fig. 16 Fluorescent I Normalized Radiometer Output Versus Frequency 



1300
 

0_.1 

I­

a-000 

0 

00L 

2.5 

Fig. 17 

3.5 

Fluorescent I 

4.5 5.5 6.5 
FREQUENCY (KMC) 

Normalized Radiometer Output 

7.5 

Versus Frequency 

8.5 



37
 

the apparatus-shown in the block diagram of Fig. 18 is prepared to
 

obtain a set of cyclotron radiation intensity measurements.
 

It is well-known that an electron in an external magnetic field
 

radiates electromagnetic energy at the .cyclotron frequency and at its
 

harmonics. The electron cyclotron frequency is given by
 

eB 
-0 (9)


e
 

where B is the external magnetic field, and e and me are
 

charge and mass of an electron, respectively. An argon discharge 

tube that is used as a source -of radiation is located inside an 

S-Band waveguide. This waveguide is surrounded by a magnetic coil 

which establishes a magnetic field parallel to the dischargetube 

axis and the length of the waveguide.- The argon discharge tube­

pressure is maintained -at 30 microns, and a D.C. current of 400 

milliamperes is-run through it. The magnetic field intensity is. 

about 1 Kgauss -corresponding to a fundamental cyclotron frequency 

below 3 RMC. The'harmonics areat integer multiples of the 

fundamental frequency. By sweeping the local oscillator from 2.6 to 

9 EMC, the first three harmonics of the radiation intensities are 
I­

maaured. In Fig. .19 the normalized radiometer output voltages for 

the radiation; is plotted as a function of frequency by-selecting 

points 50 MC apart. 

For all the measurements made with the radiometer, the R-C
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low-pass filter time cpnstant was selected to be T = 3 seconds. 
1 

This is equivalent to a filter bandwidth of y = cps. Therefore, 

the minimum detectable signal of the radiometer can be calculated 

fr&m Eq. (4),since the i.f. amplifier bandwidth is- a = 1.5 MC. 

U2 2= 2.65xlO- a (10)md n 

This implies that a signal power which is about 3/1000 of the input 

noise power can be detected with the radiometer. 

The minimum detectable temperature change- can also be computed 

since the receive- noise figure and the ceonarison source temperature 

are known parameters. 

Using Eq. (6),
 

F = 16.5 db
 

0
Ta = 300 K 

1 
y = - cps 

a Il.5xlO6 cps 

AT = 2.3K 'K (11) 

However, for the Dicke radiometer the value of constant K4 1 is 

=-0.69 , and-therefore, 

AT r 1.60K (12)
 

73/2 



CHAPTER V 

DISCUSSION OF THE-RESULTS AND.THE CONCLUSIONS
 

The double-ridged balanced mixer used in the radiometer could
 

have been operated from 2.6 to 14 IMC; however, the-absence of a
 

microwave signal generator above 9 1QC made it possible to check the 

instrument above this frequency. Within the,frequency range 2.6 to
 

9 1MC, the mixer arm balanced sufficiently well, but the frequency 

response was not uniform. The non-uniform frequency response was
 

due .tothe magic "T" Junction where, at certain frequencies, the 

incident power was only partly transmitted to the mixer crystals. 

In the frequency range 4.5 to 5 1MC, there was complete redflectien
 

of the signal sent through the "E" plane of the mixer. 'Except for
 

the 0.5 KMC-frequency interval between 4.5 and 5 MiC, it was -still
 

possible to use -the mixer in the radiometer provided frequency­

characteristics were taken into account during-the calibration
 

procedure. 

The double-ridged directional-coupler built for the radiometer
 

was not used at- all because of undesirable variations in the
 

coupling coefficient. This difficulty was faced, mainly because of
 

the double ridges used.
 

The microwave switch employed was a resistive card driven at
 

'80 cycles per second with about 90% resulting power attenuation.
 

41 
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The slot through which the resistive card was driven in and.out of 

the ridgedwaveguide did net cause any noticeable discontinuity-to 

the field lines, and the reflection coefficient was ,always below 

two. In the original-Dicke radiometer, instead of 80 cycles per 

second, a,30 cycles per second switching frequency was used. Yven 

though the switching time- did not appear explicitely in the earlier 

sensitivity equations (4) and (6), it was a critical factor toward 

achieving improved sensitivities for the radiometer. This was due 

to the ,fact that with high modulation frequency a considerable 

cancellation of the. circuit's inherent noise would take place since, 

daring the switching interval, the inherent noise level would not 

deviate noticeably. On the-other hand, with low switching 

frequencies if a small quantity of noise remained in the circuit 

during the switching process, it would appear on the output of the 

radiometer as fluctuations and-effectively would reduce the 

sensitivityi 

The i.. -amplifier used, was -tuned to 30 MC and had a bandwidth 

of-l.5 MC. As shown inEquations (4) and (6), the sensitivity of 

the radiometer was inversely proportional to the square ret of the 

i.f. bandwidth.- Therefore a larger i.f. bandwidth than the one used 

would result in a better sensitivity for the radiometer. However, 

there had to be an upper bound for the bandwidth of-the i.f. 

anplifier, and this had-to be determined-by the experiment in which 

the radiometer was to be used. In-the derivation-of the sensitivity 
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expression for the radiometer, the incoming signal was assumed,to be. 

unifonm ever the bandwidth of-the receiver, which was .equivalent-t 

the i.f. bandwidth. If the signal received at the input of the 

radiometer had a bandwidth smaller than the radiometer bandwidth, 

the original assumptions made in Chapter II concerning the signal,
 

in a computation of-sensitivity, would be violated. Therefore, 

partly for this reason-, and partly for high gain purposes--a 1.5 MC
 

i.f. bandwidth was selected.
 

The-radiometer was -calibrated using argon and fluorescent noise 

sources. However, because of the non-unifdrm balanced mixer 

frequency response, the calibration curves.shown in Figures 15, 16, 

and 17 -were accordingly normalized. Again due to the imperfect 

mixer response, there were no calibratioe points,in the frequency 

interval 4.5 to 5.0 IMC. This was a lack for the operation of the 

radiometer in this 0.5 INC frequency interval, but in comparison to 

the receiver total bandwidth, it was rather negligible part of,the
 

operational range.
 

All of the noise sources used-for the calibration of the
 

equipment were at about the same temperature (1l,0000K), and the
 

normalized outputs revealed reasonable agreement even though there
 

were discrepancies at some of the frequencies (Figures 15, 16, 17).
 

Part of the discrepancies could-be due to the differences between
 

the radiated power intensities of the noise sources in-the 2.6 to
 

MC frequency range. Also, part of the problem was encountered
 9 
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because of incapable equipment available to keep the local 

oscillator output power at a constant level. The trouble associated 

with the local oscillator power output variation with frequency 

could have been overcome if the double ridge directional coupler had 

operated satisfactorily. 

The masurements made with the radiometer on cyclotron radiation 

intensities were indicative of just one of the uses of this wide band 

radiometer. As it can be observed from Figure 19 that the three 

peaks measured were most likely the radiated harmonics. The 

fundamental cyclotron frequency was about 2.95 IMC, and this was 

clearly stressed by a very high radiometer output reading since 

cyclotron radiation intensity was expected to have a maximum value 

at the first harmonic. 

Radiometers built up to now, as far as it is known from the 

literature, have been constant frequency or very limited in their 

bandwidths. Undoubtedly, there are numerous difficulties- involved 

in the construction of a very wide-band radiometer such as the one 

described in this report. The microwave frequency section of a 

wide-band radiometer constitutes the bulk of-the problems encountered. 

For example, a uniform frequency response for the balanced mixer 

and the directional coupler is extremely hard -to.achieve over the 

frequency range 2.6 to 14 EMC. A double-ridged magic "T" junction 

has to be designed in such a way as to accept power equally well 

from both "E" and "H" planes. Mixer crystals in the balanced 
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arms have to be matched to the waveguide. characteristic impedance 

in order to assure minimum power reflection. Due to the small ridge 

gap, which determines the wide-band capability of a double-ridged 

waveguide, it is also very difficult to obtain satisfactory power 

coupling in a ridged directional coupler. Proper operation of a 

ridged directional coupler can be of great importance in the 

calibration of the radiometer since it enables one to monitor the 

local oscillator power output continuously throughout the cali­

bration.
 

The sensitivity of this radiometer can be improved appreciably 

if, instead of a resistive card, a standard noise source is used in 

the microwave switching circuit. The resistive card used can only 

be assumed to be at room temperature (300 0 K)., and any temperature 

drift of the card can cause variations in the output reading. 

Through the use af standard comparison noise source, the temperature 

of the source can always be monitored, to keep it at a constant level. 

When the temperature of the comparison noise source used in the 

switching circuit is comparable to the temperature of the object to 

be studied, the sensitivity of the radiometer again improves. 21 

Therefore the use of a standard source in the microwave switching 

section has advantages, but it requires construction of a different 

type of switching waveguide. In the use of a standard source, a 

two-diode switching circuit might be an ideal configuration to use. 

The diodes would switch the incoming signal on and the comparison 



source off. simultaneously and vice versa. However, in this case 

very low forward impedance microwave crystals have to be employed 

since the characteristic impedance of the double ridge waveguide is 

considerably low. Of course, operation of a diode switching circuit 

will also mean an improvement in the sensitivity by about a factor 

of four since square wave modulation would be possible. (Eq. 5). 

Undoubtedly with local oscillators covering the- range above 

9 KMC, higher cyclotron harmonics can also be measured with this 

radiometer. Therefore, given a fundamental cyclotron frequency of 

2.95 IMC established by the magnetic field, one can measure as high 

as the fifth harmonic of radiation. In this report only as an 

application of the radiometer, cyclotron resonance intensity 

measurements are made and there remains a great deal to be studied 

on this matter. 



APPENDIX I
 

Referring back to the block diagram of Fig. 4, and the assump­

tions made in Chapter II, the output of the amplifier is,
 

y(t) =1 + Sin 2wqt] s(t) + n(t) (13)2 

since the noise voltage n(t) is not affected by the modulation. 

The square law detector output is related to its input as,
 

x(t) = K[y(t)]2 (14)
 

where K is a constant, and therefore 

+x(t) = K[(1 Sin,2 2wqt)2 s2 (t) 

+ (1 + Sin 2 qt) s(t)n(t) + ne(t)2 (15)
 

At this point, it will be helpful to make use of correlation 

technique by computing the autocorrelation function of x(t). If 

we express this correlation function as l(-), then the spectral 

density at the output of the detector is,
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G)=J Rl()e iWt dt 	 (16)
 

where f is the frequency, and T is the correlation parameter.
 

The autocorrelation function of x(t) is given as,
 

Rj(i) = 	lir L2T T x(t)x(t + T) dt (17) 
T+_ 

The product of x(t) with x(t + T) can be expressed in the following 

way, 

2
x(t)x(t + z) = 2s 2(t)s [ + Sin2qt2l + Sin2q(t + T)] 2 

16[1+initj1 

+ s(t)s(t + T)n(t)n(t + T)[1 + Sin27rgt][1 + Sin2wq(t + T)] 

+n2 (t)n2 (t + T) + 1 s2 (t)n2 (t+ T)(1 + Sin2lqt)
2
 

+ (t + T)n2 (t)[l + Sin2q(t + T)121 	 (18) 

by neglecting rest of the terms that involve only cross-correlation
 

of noise with the signal, which is zero.
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As mentioned in Chapter II (p.10) the ergodic theorem is as­

sumed to be valid, and the statistical averages are the same as the 

time averages. It is also known that the statistical average of two 

independent signals g(t) and f(t) can be separated as multiple of 

the averages, 

E[g(t)f(t)] = E[g(t)]E[f(t)] (19)
 

where E indicates the statistical averaging. 

Applying expression of eq. (19) to eq. (18), with the following
 

identities,
 

E[s 2(t)s2 (t + T)] 4 S2(t)s2 (t+ T)
 

E[s(t)s(t + T)] E sts(t + t) 

E[n(t)n(t + T)] B n(t)n(t + T) (20) 

E[s2(t)] s2(t)
 

E[n 2(t)] n2 W. 

Rl(T) can be written as,
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-K2{s(tsJs2(t .+
+ t) 2 Cos2qt + w Cos 4;qTJ 
(1+lCo 2rqt +316
 

12
 
+ s(ts(t + t) n(t)nn(t + T (1 + 1 Cos 2nqT) + Vn---t s2(t) 

+ n2 (t)n2 (t + T)} (21) 

From the assumption of the signal and the noise it is true that,
 

s2 (t) = c 2 = s 2 (t + t)S 

n2(t)= n2= n2(t + T) (22) 

Using the identities associated with the statistical averages,
 

2 2 4 -t) 
(t)s (t + T) = 0 s + 2[s(t)s(t + )]2 (23) 

n2 (t)n2 (t + t) = a 4 + 2[n(t)n(t + T)]2 (24) 

where,
 

s(tjs(t + t) = iraT (25) 
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a COs2r TSin2 car 
n(t)n(t + ,) 1 (26) 

Substituting equations 22-26 into eq. 21,
 

2 as4 9_ 4 3. 2 2 4
 
l(T) -- Cos 2nqT + (7 
 qf+ asS 

2 2
 

+ (9 s4 + an as 4) sin2 T& 
2 +0a )2
 

4 2 2
+ s +n s Sin27TaT Cs2rT.(7
+
+ - a %) SI COr 2i(q-4. (27) 

In order to find the spectral density, eq. 16 can be used. 

When the integrations are ,carried ,out the following terms are ob­

tained, 

42 

G11(f)= K2 - _J Cos 2q~e-2ifdi = - aS (f - q) (28) 

G12 (f).= K 2 f a 4 + 3 2 2 + ) e -J 2WfTdt
 
12 ( 2 + as+ n
"" a an 

=K (TCS2 + IFan2as2 + n)6(f ) (29) 
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G13 = K f S + n(f) 0a4) 2 ifdT2 2 Sin 2waT e-J
2 n (aT)r2 

2 2
 

2-9 a s44 an 4)f>c ,s (30) 
K2 + - -2 + n 2 - f), f (3a 

a
 

G1= K2 + 22a Si aT Cs 


)(" -+ - --"Si2 Cos 27rqze-2fd
GI4 


41 2 2
 

2 (a - ; , q < f < a - q (31) 

a- ­

2 if a-q<f<ca+q 

G1 1 (f) is the signal peaked at the band-pass filter center fre­

quency q. However G 2(f) is DC that will not be transmitted through
 

the band-pass filter. 

G13 and G14(f) are mainly the noise spectra densities, and at 

the output of the band-pass filter the noise power is given as, 

q + a/2P = q-02(G13 + G14) df (32)
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or after carrying out the integration,
 

=2E17 a4 + 32 as +a (3=32 s n2 2+ 2 n (33) 

The autocorrelation function of V(t), (output of band-pass
 

filter) is given as,
 

R(r) R,I(T) + R1 "(t r) (34) 

where RI' (r) is the contribution from the signal, and Rl"(r) is 

the contribution from the noise power P of eq. 33 

q + 8/2
Rlt (t) = J G11(f) Cos 2nfr dr (35) 

q - 8/2 

or
 

Rll(r) = 2 Cos-2 qT (36)
 

On the other hand R1 "(r) is given as,
 

Rl"t(T) =/ q + a/2 ! Cos 2RfT dT (37)
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or 

t T ) =2K 17 a + I as2an2 t 2an4 Cos 27qTSin.T 

~ a 32 s 2 sn n ~ ic'r\ 

Therefore eq. (34) can be expressed as,
 

R2() = V(t)V(t + T) 

24 
= 
 4 Cos 2iq 

K2 2
++23 4 Gas iT (39)+--[ 17 4 2 nr22 + 2an C 7qqTSinS(9 
a s +32 ITT 

The output of the multiplier circuit (w(t)) is given interms of 

v(t)3 

w(t) = V(t) Sin 2iqt (40)
 

and the autocorrelation function of w(t) is, 

R3 (T) = w(t)w(t + T) 

2T1
= . .1T -- w(t)w(t + T) dt (41) 
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Using eqs. (39) and (40), 

2K2 44COs22 q T + 17 44 + 3222 4 - as n
R3 () -as 3-2 2 s n + 2an4 


Cos 22wqSinrOT
 
7TT
 

lim T V(t)V(t + T)Cos 27rq(2t + t)dt (42) 
T 2 -T 

The low-pass filter located behind- the multiplier will eliminate 

all of .the terms which involve frequencies of the order of q since 

y <<q. Therefore the terms-.which will appear at the output of the 

low-pass filter are, 

4 K2R(T) K2 17 4 3 2 2+ 24 (43) 

3 3 +4 [ 6s + an 2n]Sin T 

The .first term in eq. -(43) is the signal, ,and..the second term is the 

noise.signal combination, but it is noise dominated.
 

The .spectral-density of the signal at the .output of the low­

pass filter is,
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K24 -Jwf1 2 2 

G -o n e 2 d = K s2 S(f) (44)s32 n 32 

The spectral density corresponding to the second term of eq. 43 is
 

2
G 0'K 17 s 3n a2 sG2a. 4 . sinS e-J2wf~dT 

s-n 4 [ 2+a + 2s ] (45) 

or
 

e 271 43+.G a2 2a4 f 
~2a 32 s6 +2 n s n 2 

Gs-n (46) 

O f> 2
 

Therefore the signal, and the noise powers corresponding to the
 

spectral densities of eqs. (44) and (46) ares
 

P K2 4
 
s 2 s
 

(47)
 
p 2 17 G4 + a2 2 + 2o4 

n 2 32 s 2 s n n a 

Then, the ratio of the signal power to the noise power at the
 

output of the low-pass filter is,
 

4 s
G

a 2 a=NL7a32 2a4 ) (48) 
32 -s 2 -n n
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APPENDIX II
 

CALCULATION OF OPTIMUM INPUT IMPEDANCE FOR MINIMUM NOISE FIGURE
 

All sources of noise within first stage of an amplifier can be
 

represented by a single source of noise in the input impedance. The
 

noise figure of the first stage is defined as the ratio of total
 

mean square noise voltage produced across the output terminals of
 

the tube, to the mean square noise voltage produced by a thermal
 

noise generator associated with the input source conductance Gs
 

Derivation of the first stage noise figure is confined to
 

"single-frequency" approach, where the available noise powers are
 

expressed in an infinitesimal frequency df
 

There are mainly four sources of first stage noise. The first 
one is due to the input conductance Gs with available current is 

The second source is maintained by the network losses and the ohmic
 

losses with effective current i1 The third source is due to
 

noise across the grid-cathode terminals presented by current i
 
g 

And the last one come from the noise across the plate-cathode
 

terminals determined by current ip . All of these sources are
 

assumed to be statistically independent, and the total mean square
 

voltage across the output terminals of the first tube is,
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e2df = (i2+ il)Iz112 2 2T21 12
edf ( )Iz+ i dfti iI z3 df (49) 

where Z1, Z2, Z3 are the corresponding impedancesi- However-the 

man square noise voltage produced by an ideal anplifier is, 

es-df = i2Il 2df (50) 

Therefore the single frequency noise figure of the first stage is, 2 4 

2 .i 212 Iz22 
F, =i+ + 2 + -P 3 (51)

112 i2fZ 1I2 i2l 

For effective source temperature of T , 

i2df= 4KT Gdf 

i2df = 4KTaGldf (52) 

i2df= 4KTOG df 

1df: 4KT Re' i df 

where G's are equivalent conductances, R is the equivalent
eq. 

noise resistor of the tube, a and 0 are constants, and is.-m 

the transconductances of the tube. Then Eq. (51) can be written as, 
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aG 12+ e 12 

2- Ibf 2+F1 1 + ta e. (53) 

where 

a ZZr2 ' ZZ3I
 

When the tube transconductance satisfies the inequalities, 

M St (54) 

gm>>% 

and 

2 = + .jg~+(ImjT1P.(51 1 YS 5)
 

a =l 

where Ys = Gs+ GI+ JYI , is the total input admittance, Eq. (53) 

becomes 

aS1 8G5 R 12 (F= 1+al+LT Req.II+ G 12(56)
 

S S S 

The value of Gs that will minimize the noise figure ,F1 

can be determined by differentiating F1 with respect to G ands 

equating it to zero. 

BF aSl+85+I q.E(G+ 2 2T+ )+ yI]G2 + Req. = 0 (57) 

S 
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and
 

G2 
 _ aGj+ SGt+ Req.[(G+ G )2+ 2
 

%,p.e q. , _)+Y1(58)s,opt. ~q 

However, the last term in the numerator is much smaller than the 

first two. Therefore, 

aG~+ -G 

s,opt. =- R (59) 

For the vacuum tube used the typical values of a, 8, Gl , GT 

24
 
and R are given as,eq. 

a5 

G = 10 micromhos, (60) 

G 12 micronbos 
t 

Req. 385 ohms. 
eq.
 

Then the optimum input conductance is, 

GS'opt" = 4.2 x 1 0 mhos (61) 

or the equivalent input impedance is, 

R opt. = 2400 ohms . (62) 
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