Explosive Bonding of Metal-Matrix Composites

<table>
<thead>
<tr>
<th></th>
<th>Titanium</th>
<th>Vanadium</th>
<th>Zirconium</th>
<th>Niobium</th>
<th>Tantalum</th>
<th>Molybdenum</th>
<th>Copper</th>
<th>Iron</th>
<th>Stainless Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gold</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Combinations of Dissimilar Metals Already Successfully Bonded

The problem:
To make sheets of metallic composites, reinforced by unidirectional filaments of high-strength steel or by modular-filament sheets.

The solution:
A novel process, using explosive bonding, produces sheet composites of 1100-0 aluminum alloy (tensile strength, 13,000 lb/in²) reinforced with wires of AM-335 stainless steel (tensile strength, between 400,000 and 500,000 lb/in²) having a tensile strength of 67,000 lb/in². The tensile strength of an explosive-bonded 2014-T6 aluminum composite, reinforced with a modular-filament sheet of custom 455 stainless steel, is 94,200 lb/in²; yield strength is 90,400 lb/in², elongation is 3.5%, and density is 0.120 lb/in³. The bonds are excellent metallurgically, no external heat is required, various metals can be bonded, and the process is inexpensive.

How it's done:
Typically an absorber sheet (0.125-in. aluminum of any temper), both surfaces covered with 0.008-in. adhesive paper, is positioned on a steel anvil. Over bonded 2014-T6 aluminum composite, reinforced with a modular-filament sheet of custom 455 stainless steel, is 94,200 lb/in²; yield strength is 90,400 lb/in², elongation is 3.5%, and density is 0.120 lb/in³. The bonds are excellent metallurgically, no external heat is required, various metals can be bonded, and the process is inexpensive.

How it's done:
Typically an absorber sheet (0.125-in. aluminum of any temper), both surfaces covered with 0.008-in. adhesive paper, is positioned on a steel anvil. Over
it are placed the two matrix sheets having the reinforcing filaments rolled into them; between them are placed standoff spacers. A buffer sheet of 0.125-in. aluminum, its lower side coated with similar adhesive paper, is placed immediately over the matrices. Explosive nitroguanidine, in a cardboard container, covers the buffer sheet; centrally in one end of it is placed an E-90 blasting cap with a tetryl booster. Detonation is electrical.

To prevent longitudinal splits, the buffer sheet should be 3 in. greater in width than the matrices. Similar endwise overlap provides a velocity-stabilization ramp for the explosive and reduces transverse shears. Various problems and their corrective procedures are described, as well as many possible variations.

Notes:
1. The aircraft and shipbuilding industries and all fabricators of high-strength metallic composites may be interested.
2. Requests for further information may be directed to:
 Technical Utilization Officer
 Marshall Space Flight Center
 Huntsville, Alabama 35812
 Reference: B69-10804

Patent status:
No patent action is contemplated by NASA.

Source: O. Y. Reece
Marshall Space Flight Center
(MFS-20657)