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ABSTRACT

This report presents in detail a calculation method for one-
dimensional, time-dependent flow through a pressure-tube wind tunnel,
The computational procedure involves the method of characteristics for
the one-dimensional unsteady flow of a perfect gas and accounts for

area changes, shock formations, and intersection of discontinuities
in the flow field.

A computer program written in Fortran language was constructed for
the CDC 3200 digital computer and is presented along with a detailed
description of the preparation of input for the program.

Calculated results of the program are presented for a pressure-tube
wind tunnel now under construction at MSFC.
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DEFINITION OF SYMBOLS
Definition
nondimensional speed of sound a*/aﬁ
cross-sectional area
specific heat at constant pressure

f*L

nondimensional quantity 2 where £* is the sum of body

%
a o]

and dissipative forces per unit mass

total lgngth of facility (with dimensions)
Mach number of shock

Mach number in test section during steady state duration
nondimensional static pressure p*/pg
initial pressure ratio across diaphragm
right running characteristic variable

left running characteristic variable

gas constant

nondimensional specific entropy s/cp(y-l)
nondimensional time ast*/L,

nondimensional temperature T*/Tg
nondimensional flow velocity u*/ag
nondimensional shock velocity wg/az

ratio of specific heats

nondimensional density

L a¥
nondimensional quantity - where y" represents the
A D
YA P,

mass flow removed through the walls per unit length



DEFINITION OF SYMBOLS (Continued)

Subscripts Definition
o) reference conditions which for the case at hand were the

conditions on the right side of the diaphragm before rupture

S shock conditions

C.S. contact surface conditions
Superscripts

* dimensional quantities
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TECHNICAL MEMORANDUM X-53769

APPLICATION OF THE CHARACTERISTIC METHOD IN CALCULATING THE
TIME DEPENDENT, ONE-DIMENSIONAL, COMPRESSIBLE FLOW
IN A TUBE WIND TUNNEL

SUMMARY

This report presents in detail a calculation method for one-dimen-
sional, time-dependent flow through a pressure-tube wind tunnel, The
computational procedure involves the method of characteristics for the
one-dimensional unsteady flow of a perfect gas and accounts for area
changes, shock formations, and intersection of discontinuities in the
flow field. '

A computer program written in Fortran language was constructed for
the CDC 3200 digital computer and is presented along with a detailed
description of the preparation of input for the program.

Calculated results of the program are presented for a pressure-tube
wind tunnel now under construction at MSFC.

I. INTRODUCTION

Ludwieg [7] first proposed the principle of the pressure tube wind
tunnel and supervised the construction of the first facility of this type
at the Aerodynamische Versuchsanstalt in GOttingen. Some experiments
were reported in reference 8 of the stagnation pressure loss, and some
schlieren pictures were made of the supersonic jet at the outlet of the
nozzle. Calculations and measurements were given that show the extent
of stagnation pressure losses in the test section with increasing bound-
ary layer thickness. It was concluded that for large tube diameters
(and therefore large Reynolds numbers) the limit length (stagnation
pressure loss less than 1 percent due to the boundary layer) of tne tube
is approximately 100 tube diameters.

A supersonic pressure tube wind tunnel was constructed at the Royal
Armament Research and Development Establishment in England during 1957,
and some measurements from this wind tunnel are reported in reference 4.
Reference 3 reported further measurements of the pressure at the nozzle
end of the tube and static and pitot pressures in the working section of
the nozzle. The diaphragm was located at the nozzle exit. Pictures of




the flow around a model were made by a high speed camera. An approximate
calculation procedure for one-dimensional flow reported in reference 3
was used to obtain analytical results for running times and static pres-
sures in the test section., Their analytical procedure assumed that the
expansion fan emanated from the nozzle throat rather than from the
diaphragm location, and thus neglected the unsteady expansion from the
diaphragm through the nozzle throat. The effects of cross-sectional area
changes were accounted for by steady state assumptions. An approximate
method for calculating the boundary layer growth along the tube is also
presented.

Reference 6, which is a good discussion on the solution of hyperbolic
differential equations that describe one-dimensional, non-steady, com-
pressilile, multi-isentropic flow,presented three methods for solving the
differential equations, along with the advantages and disadvantages assoc-
iated with each method. Some hand calculations for an example of isen-
tropic flow were made, but no extensive application of the procedures was
performed.

Bull [1, 2] gives some measurements and calculations of the starting
processes on an intermittent supersonic wind tunnel that were made at the
Institute of Aerophysics at the University of Toronto. This tunnel con-
sisted of a vacuum reservoir at the end of a Laval nozzle with a cello-
phane diaphragm located either upstream or downstream of the throat.

Some calculations were made for one case assuming the flow to be time-
dependent and one-dimensional, and a wave diagram was presented for the
early phase of the flow from these calculations.

Rudinger [9] presents an excellent text on calculation procedures
for solving the partial differential equations of non-steady, one-dimen-
sional flow of compressible fluids through a duct. Because of the con-
sistent and straightforward presentation of the solution techniques
described in this book, many of the calculation procedures described in
the present report were borrowed from this source.

Dahm [5] discussed a proposed Ludwieg-tube type of facility at the
Marshall Space Flight Center for aerodynamic testing, at or near full
scale Reynolds number, of a Saturn V rocket. This proposal generated
an interest at the Center in developing an analytical capability for
calculating start times and other properties of the flow pertinent to
this facility, thus leading to the material presented here. Some experi-
mental results of the starting characteristics for a small-scale pilot
model of a blowdown wind tunnel that was tested at MSFC are presented
in reference 11.




This paper presents a numerical procedure for solving the partial
differential equations that describe the flow in a pressure-tube wind
tunnel by a method generally referred to as the '"method of character-
istics." The mathematical model of the flow is assumed to be time-
dependent, one-dimensional, multi-isentropic, and compressible. A
computer program in Fortran IV language was formulated, and wave dia-
grams and other results of the flow that were calculated from this
program are given,

The tunnel considered here (see Figure 1) consists of a long tube
that serves as the storage reservoir, a convergent-divergent nozzle and
test section, and an outlet into either the atmosphere or an emptying
reservoir., The tube, closed at one end, is divided downstream of the
test section by a diaphragm. When the diaphragm is ruptured, the high
pressure gas on the left side of the diaphragm expands and compresses
the gas on the low pressure side, thus creating a shock wave, contact
surface, and an expansion fan (see Section IV). The contact surface is
defined as the gas particles that were initially in contact with the
diaphragm surface. The expansion fan, bounded on the left by what is
termed here as the head wave and on the right by the tail wave, is
mathematically the family of left-running characteristics. The solu-
tion consists of tracing the left- and right-running characteristic
curves in the (x,t)-plane after the flow starts at time = O,

The starting time is defined as the time when the flow properties
in the test section become constant., The end test time is defined as
the time that it takes the headwave to travel along the tube, reflect from
the closed end of the tube, and reach the test section. Thus, the use-
ful run time is the difference between the end test time and the start
time. Tt is fairly evident that run times can be increased by increas-
ing the length of the tube. Ludwieg [8] pointed out that to keep
boundary layer effects negligible the tube length should not exceed
approximately 100 tube diameters. Boundary layer effects can be
approximately accounted for in the method presented in this report.

II, THE DIFFERENTIAL EQUATIONS

The main purpose of this report is to present the practical numeri-
cal procedures for solving the time-dependent equations for one-dimen-
sional flow through a wind tunnel. Therefore, the fundamental differential
equations which are derived in numerous references will be listed here
only in the final form (see reference 9):



Continuity Equation

* % %
Ao &) atﬁ +J-%(—H a:A + " = 0. (1)

Momentum Equation
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Equation of State
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Integrated Form of the First Law of Thermodynamics
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The subscript o indicates some state from which entropy changes are
measured. The star superscript refers to dimensional quantities., For
a definition of the symbols, the reader should refer to the Definition
of Symbols. The underlying assumptions in the derivation of the above
equations are:

(1) All quantities depend on the time t* and a single
coordinate x".

(2) There is only one velocity component u* and that is
in the x*-direction.

(3) The gas follows the ideal gas laws, and the values
of the specific heat are constant.

(4) All body and dissipative forces are lumped into a
resultant force per unit mass, which is denoted in
the momentum equation by f£¥*.

(5) Gas is permitted to leave the duct through the walls
and is denoted in the continuity equation by *, which
is defined as the mass flow through the walls per unit
length.




It is customary to solve the above set of equations by a numerical
integration procedure along a set of curves C in the independent variable
(x,t)-plane. These curves are usually defined as particle paths and
characteristic curves. Appendix A presents the derivation of the charac-
teristic equations which are presented here in their final forms.

5 P &, S
+ _ . olnA Q1o A + _ DS
g;— = - au S% a St + a 5t + (y 1) a Y + f
- qfa(’)"‘@/(}"']-) e?’(s'so). (5)
6_ Q '1 In A 6_ S
- @YD) r(8-S0) ©

The entropy condition which must be prescribed for any problem is given
in a general form as

= F(a,U,S,X,t) (7)

and this completes the system of equations for the three dependent
variables a, u, and S, The prescribed entropy condition for the cal-
culation procedures described in the subsequent sections of this report
is given by

DS =9 (7a)

which characterizes the flow as multi-isentropic. This satisfies the
condition that the entropy of each gas particle remains constant; how-
ever, different particles may have different entropies.

The special symbols for the differential operators are defined as

6+=—§E+(u+a)§; (8)




& = St + (u - a) > (9)
5])?=%+u'a—a£. (10)

All quantities are nondimensional in the above equations (see Definition
of Symbols). Equations (5) through (7) form a system of three linear
first-order equations for three dependent variables, a, u, and S, that
will be solved by means of a step-by-step procedure. The parameters P,
Q, and S vary along curves in the (x,t)-plane that satisfy

dx
T -uta for P, (11)

dx _
qc-u-a for Q, (12)

dx _
rrial for S. (13)

The characteristic variables are defined by the relations

P = > -1 a+tu (14)
and
Q= 5 % Ta - u (15)

The details of the calculation procedure for solving numerically
the system of equations (5) through (7) are given in later sections of
this report. The effects of boundary layer and mass flow through the
walls of the duct were not considered, and the terms that represent
those effects have been omitted from the equations,




IITI. THE NORMAL SHOCK RELATIONS

The characteristic equations which were derived from the basic dif-
ferential equations in Appendix A are solved by taking small step-By-step
increments in time, and the solution for each characteristic proceeds
along its respective characteristic. These three characteristic curves
were referred to as P in direction u + a, Q in direction u - a, and S
in direction u. Since the characteristic S follows a curve of direc-
tion u, which is the particle path, two curves of this family can never
cross. Whenever two curves of the same family (either P or Q) meet, a
discontinuity in the pressure exists at this point. A boundary in the
flow is thus established, and this boundary is defined as a normal shock
wave. Two types of shock waves can therefore occur, either a P shock
(converging of the P characteristics) or a Q shock (converging of the Q
characteristics). The shock wave path will divide the wave diagram into
two parts, and on each side certain conditions must be matched. Since
it is assumed that changes of the flow variables across a shock wave
take place instantaneously, the steady state relationships between flow
variables on each side of the shock can be employed. The equations which
relate the flow variables upstream and downstream of a stationary normal
shock are generally referred to as the Rankine-Hugoniot equations, The
derivation of these equations can be found in many references (e.g.,
[12, 13}), and therefore will not be repeated here. Since we are deal-
ing with shocks that move with respect to the coordinate system, some
modifications to the stationary shock relations are necessary. The
equations appearing in this section are presented in their final form
as they were used in the computational scheme. The shock Mach number M
is defined here as the Mach number of a supersonic flow in which the
shock would be stationary.

The relations across a Q shock point are as follows:

(1) Velocity
Q Shock Path u T vy 2(1) a6
. / a, (DN
L R

(2) Speed of Sound
a \[[2+(7-1)M2] “[*27M2_<7_1)]
R - 2 S (17)
4L

(7+1)MS




(3) Q Characteristic

Q, - Q u_ - u
RaL= 31<:—R-1>-—L:—L. (18)
L 7 L L
(4) P Characteristic
P -P u_, - u
R L. fIC—R-1>+————RaL. (19)
L 7 L L
(5) Entropy
-1 . 5
1 + M
S -8 = 1 aJ1Z2 M2 - il 2 s .
R™°L™7(G - 1) 7 s T T AL o
2 s
(20)
(6) Pressure
PR 27 o 7-11
B,y +IMs T ywlc (21)
(7) Shock Velocity Relative to the Duct
W, =u -a M, (22)

The subscripts L and R refer to the flow properties on the left-
and right-hand sides of the shock point, and the subscript S refers to
the shock. Analogous relations for a P shock point are:




(1) Velocity
P Shock Path ¢ - 201 - M2)
> k- > (23)
LR ap (r + Mg
(2) Speed of Sound
X
ap  JI2+O-IMET[29M3- (- 1)]
- = (24)
ap (7+1)MS
(3) Q Characteristic
Q, -Q u - u
La R _ %1<:_L_1>+RaL. 25)
R 7 R R
(4) P Characteristic
A /a_L_>_uR'uL (26)
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(5) Entropy
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(6) Pressure
L2 e 2] 28
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(7) Shock Velocity Relative to the Duct

WS = uR + aR MS. (29)



The calculation procedure at a shock point involves the matching
of the characteristic solution with the Rankine-Hugoniot solution at
the shock point. From equations (18) and (26), it can be seen that
the relations

%R "% L~ PR .
S - (= = 5 30)
L “Q shock R /P shock

where for the Rankine-Hugoniot solution, '

2 {/[2+<7-1)M§1[27M§ - O-D1 1} 2(1-M3)

= -1 R TETYE H]
ey 7 DM DM
(31)
and, from the characteristic solution, Ag is calculated from equa-

tion (30) for the appropriate shock. The subscripts R.H. and CH. refer
to the Rankine-Hugoniot and characteristic solutions, respectively,.
The condition thatzﬁSR - =‘ASCH at a shock point is satisfied by

expressing equation (31) as

o [12+G-DMEN[2ME - (5-1)] 2(1-M3)
fMg) = A - { - 1} =

+ ——=— =0,
Sey. | 71 (+1)Mg (DM 329

which, with ASCH and y given, is an algebraic equation for Mg. This

equation is solved in the computer program by the Newton-Raphson method
for finding the real roots of algebraic and transcendental equations.
The iteration procedure to satisfy matching the solution of the charac-
teristic equations with the Rankine-Hugoniot equations at a shock point
is described in Section VII.

Some remarks should be made here about how the presence of a shock
wave (P or Q) affects the flow and possibly the order of calculation as
pertaining to the wave diagram. Assuming the gas to be flowing from
left to right, the velocity of a P shock is supersonic relative to the
velocity of the gas flow to the right; therefore, the P shock overtakes
the flow of gas ahead of it. The flow conditions which lie to the
right of the P shock path in the wave diagram are not then influenced
by either the presence or strength of the P shock wave. The speed of a
gas which is flowing from left to right will then be increased after
passage of the P shock wave.
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For a Q shock, the velocity of the flow is greater than the veloc-
ity of the shock relative to the duct, and therefore the flow conditions
which lie to the left of the Q shock path in the wave diagram are inde-
pendent of the strength or presence of the shock wave. It is seen, then,
that,in case of a gas flowing from left to right, a Q shock will slow
down the flow as it passes through the shock.

1V, THE INITIAL CONDITIONS

Consider a duct which is closed on the left end and which opens into
the atmosphere or into an emptying reservoir on the right end divided by
a diaphragm into two chambers., Let the pressure of the gas on the left-
hand side of the diaphragm be higher than on the right, and furthermore,
it is not restricted that the gases on both sides of the diaphragm be the
same or have the same temperature, When the diaphragm is suddenly
removed, the gas which was initially on the left side of the diaphragm
expands and compresses the gas which was initially on the right-hand side,
forming a P shock. The P shock travels through the gas which was initially
on the right-hand side. Also created at diaphragm rupture is a contact
surface. This contact surface is defined as the interface between the
paths of the gas particles which were initially in contact with each side
of the diaphragm. The problem at the instant the diaphragm is ruptured
therefore consists of the simultaneous solution of the characteristic
equations, the Rankine-Hugoniot equations, and the boundary conditions
for the contact surface. It is assumed that the diaphragm is instantly
removed, so the discussion that follows applies for time equals zero at
the diaphragm location xp.

t Consider the duct shown
A in the illustration which is
divided into two chambers by
. Contact a diaphragm. Let the sub-
Expansion urface script 2 refer to the high
3
Fan
4 pressure gas on the left-
73 _~<P Shock hand side of the diaphragm
0 2 1 N and the subscript 1 refer to
0 WY #T (Diaphragm the gas on the right-hand
Location) side. The prescribed initial
- conditions for the gases in
High Low the two chambers are the
Pressure Pressure X
2 1 following:
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0y
(2)

(3)
(%)

the pressure of the gases on each side pg and pi,

the ratio of specific heat of the gases y; and y, and
their gas constants R, and R,,

the temperatures of the gases Tz and Tﬁ, and

the geometry of the duct in a form such that the term
(dA/dx)/A can be calculated at any station, x, the loca-
tion of the diaphragm, xﬁ, and the total length, Lo

It is convenient to choose the initial conditions of the gas on the
right-hand side of the diaphragm as the reference state. One has then
the following values for the initial properties of the flow on the right-

and left-hand sides, respectively.

a;

Uy

Q1

P1

S

a,

1al+ul

o
L I
|

o
o

lal-ul

ag

Uz

Q>

Pz

Sz

% %*
az _ [72 R T2
aF N71 R %

1

a2+ Us (33)

_l_]_n'____pi___
Ve La(272)472'1 )
2

All distances are nondimensionalized by the total length of the duct,

Ls»

12

and the time is nondimensionalized by

(34)




The wave phenomenon that develops at diaphragm rupture is shown in
the illustration. The details of calculating the initial solutions are
given in the following steps:

(1) Assume that the velocity ux (the velocity between the
contact surface and the P shock) has been given as a result of the pre-
vious iteration cycle or for the first iteration has been guessed.

Since the velocity, u,, and speed of sound, a;, are known, the P shock
Mach number can be calculated by the quadratic solution of equation (23)
from the Rankine-Hugoniot relations:

2
- u u, - u
- CJ—al 2 )y, + 1) +j K—*——al 3>(71 + 1)>] + 16
M, = .
S

T (35)
(2) Calculate the flow properties on the left side of the
P shock by the Rankine-Hugoniot relations:
a
as = ————tmeen[2 + (7, - 1)M§][271M§ - (71 - D] (36)

71 -1

1+ 22zl ey
S, = 1 1n 221 ye o 2= 1][ 2 MS:’ } (37)
7 7101 - 1) 72+ 178 i +1 Z;.;_le
S

P3 27’1 M2_7l']—
Pr 7p+1 S oy +1

(38)

(3) One of the boundary conditions across the contact surface
is satisfied by setting p, = ps, and since the expansion takes place
isentropically, the speed of sound on the left side of the contact sur-

face is given by

ag = a2(P4/P2)(72-1)/272- (39)
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(4) The velocity u, on the left side of the contact surface
is given by the requirement that the characteristic variable P remains
constant from the head-wave to the left side of the contact surface:

P, = Po. (40)

From the definition of P, the velocity u, can be calculated by

2
ug = Py - ;;;:—T a,. (41)

(5) Satisfy the second boundary condition across the contact
surface by setting ux = u, which yields a revised value for ux. Steps
(1) through (5) are repeated until the difference between the calculated
values in us for subsequent iteration cycles is less than a prescribed
tolerance.

At the initial time t = 0, a centered expansion fan originates at
the diaphragm location which is bounded on the left by the head-wave
(Qs characteristic) and on the right by the tail-wave (Q, characteristic).
Additional Q waves are introduced between the head- and tail-waves to
keep the net of characteristics sufficiently fine; e.g., a total of n
initial Q waves is employed in the computer program.

V. CHARACTERISTIC SOLUTION

In the numerical solution of the set of characteristic equations
given in Section II, several procedures could be employed. The under-
lying process for solving these equations is, however, the same regard-
less of the particular procedure and is the integration of the
characteristic equations along their respective paths in the x,t-plane.
This integration is carried out by a step-by-step procedure along short
straight line segments, the slopes of the respective characteristic
variables being approximated by the average of their values at the end
of the short line segments. The characteristic curves for the case at
hand are designated as P, whose path in the x,t plane is in direction
u + a, Q in direction u -~ a, and S in direction u. After exploring
several different procedures, it was decided to use a constant time
interval and to follow the path of one of the family of characteristics
(Q), and to use an interpolation technique to follow the path of the
other family (P) between subsequent time intervals. The order of cal-
culation as performed by the computer program is from left to right
along a line t = constant,

14




A. Calculation Procedure for a Regular Point

Assume that a distribution of n points has previously been computed

or given as initial conditions on the line t = t, and that all properties
of the flow are known at these points.
Let it also be assumed that the \
solution has been completed for [
J points on the line t, = to + At
(see illustration). Let the sub- j A Entropy Path
script A refer to properties at t At

the j + 1 point on the line t;
which is to be calculated, B ', Q Wave
refer to the point on the t, line t, L 4

)
through which the P character- K. B ¢ D
istic that intersects points A P Wave

and B passes, C refer to the
point on the to line through
which the entropy path that > X
intersects points A and C passes,

and D is the origin of the Q characteristic from the t_ line which
passes through point A. The calculation procedure consists of an
iteration process for the location and properties at point A.

The straight line segment for the P wave that intersects points A
and B in the time interval t; = t, = At must satisfy the relation

Xy, = X _ (u + a)A + (u + a)B

~ 5 , (42)
which can be rewritten as
At _ At
X, > (u + a)A =%y + > (u + a)B. (43)

The left side of the above equation relates the position and flow pro-
perties u, and ap at point A on line t,; to the corresponding properties
at point B on the line ty. Keeping in mind that the flow properties
are a known function of x on the line t_as a result of the previous
stage of calculation or as given initiaf conditions, then for given
quantities of xj, up, and ap, we can find the point xp and the flow
properties at xg by interpolation if a table of

z1(x) =x + é%-(u + a) (44)

has been prepared for the distribution of points on the t, line.
15



Following the same approach for the entropy path used for the P
wave, the straight line segment for the entropy path in the time interval
must satisfy the relation

= = = <, (45)

XA - 7; uA = xC + ?r uC. (46)
A table of values for
zo(x) = x + %:- u (467)

is also assumed to have been prepared and stored at the completion of
the calculations for the t, line. Since the procedure follows each Q
characteristic from one time interval to the next, an analogous table
for the Q wave is not necessary.

The step-by-step procedure for calculating the flow properties and
position of point A is as follows:

(1) Assuming that up and ap have been given from a previous
step, or for the first iteration have been guessed, the location of x
is given by intersection of the line segment for the Q-wave path that
passes through xp with the constant time line, t = t;.

X, =% + %% [(u - a)A + (u - a)D]. (48)

(2) calculate the left-hand sides of equations (43) and (46):

- _ At
cq = xA > (u + a)A
(49)
JANS
€2 = X) =77 Yy
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whereby the points xp and x¢ can be found by an inverse interpolation
of the prepared tables of z;(x) and z5(x). The flow properties u, a,
and S are then given for these two points by interpolation. Values for
the characteristic variables P and Q are calculated by equations (14)
and (15) for these two points.

(3) The characteristic variables P, and Qp are then calculated

by
1 da 1 dA
- = =) 4 (=gy = =22
P=P+(auAdx)B T At+aA+aB(S_S)
A B 2 2 A~ B
(50)
1da gy L dA
o —o + (rau = 3)p * (-au Radal . a, +ay s - s)
A~ D 2 2 A~ "D

where the geometrical term %-g% is assumed to be a known function of x,.

(4) From the definition of the characteristic variables, equa-
tions (14) and (15), new values of the velocity u, and speed of sound a
can be calculated.

Up T % (By = Q) 2)
aA=L—;—-1- (2, +Q,)- (53)

(5) Steps (1) through (4) are repeated until the differences
of upy and ap, for subsequent iteration cycles are less than a prescribed
tolerance.

After the convergence is met, the final values of the flow properties
from the last iteration cycle are stored for use in calculating the solu-
tions at the next time interval. All interpolations that were carried
out in the above steps are linear.

17



B. Calculation Procedure for Points Near Boundaries

The procedure for calculating a regular point given under Section V(A)
involved projecting a Q wave from time t, to time t, along its respective
characteristic, and by an interpolation process finding the point at the
previous time interval where the P characteristic passes that intersects
with the Q wave at the time t,. It is obvious that this standard procedure
cannot be applied for calculating points very near to the right side of a
boundary or discontinuity since the Q wave and entropy path can cross the
boundary in the time interval. For example, the illustration shows the
intersection of the P and Q characteristics along with the entropy path
at point A. Since the P characteristic intersects the Q shock at point
B, the standard procedure given in Section V(A) is not applicable,

t A

\ 4

An alternate procedure was used for calculating points on the right
side of a boundary where the P characteristic or entropy path crosses
the boundary in the time interval under consideration. Consider the
path of the boundary between times tgy and t, along with the flow pro-
perties on the right-hand side of the shock at times t, and t, to be
known. The equations that must be solved to determine the location and
flow properties at point A are:

X, ~ X (u + a)A + (u + a)B

= along the P wave, (54)
ty - tB 2

18




X, = X (u-a)A+(u-a)D

— = 3 along the Q wave, (55)
X, = X u, +u
tA - tC = A 5 c along the entropy path, ¢56)
1 "¢
(-au l_éé) + (-au Lda
P =P + A dx’A A dx’B (t, - t.)
A B 2 1 B
a, +a
A B
+ =5 (84 - Sp)s (58)
1 dA 1 dA
r(-au + ==), + (-au T+ == a, +a
_ - A dx’A A dx’D A D _
%Y l_ 2 ] st + = (5, = Sp)-
(59)

The equation for any point B on the path of the boundary between
times ty and t, is given by

- X
XR,l - X = <?ELL-ZE-EL2> (tq - tB)’ (60)

where the subscripts R,0 and R,1 refer to properties on the right-~hand
side of the boundary at times tg and t;. Combining equations (54) and
(60) results in

-t = , 61
t1 -ty (61)

2 Ja\s
which relates the intersection of the P wave with the boundary. Replac-

ing the subscript B in equation (60) by the subscript C and combining
this equation with equation (56) results in
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- X

A R,1

£y -t = T (62)
C uA + uC ) xR’1 xR,O ’

2 At

which relates the intersection of the entropy path with the boundary.

The step-by-step procedure for solving the above set of equations
for the position and flow properties at point A is as follows:

(1) Assume that up and ap are known from the previous itera-
tion step or for the first iteration have been guessed. Equation (55)
gives the relation for xp

X, = X + %% [(u - a)A + (u - a)D]. (63)

(2) The point of intersection of the P wave and the boundary
is found by solving equation (61) by the iteration process, i.e.,

(a) guess e

(b) obtain ug and ap by a linear interpolation of
these known properties on the right side of
the boundaries at times ty, and t,, and

(c¢) calculate an improved value of ty from equa-
tion (61).

Steps (b) and (c¢) are repeated until changes in tp satisfy a prescribed
tolerance. The axial location xpg is then calculated by equation (54),
and Sp is given by interpolation as was done for upg and ap in step (b).

(3) The point of intersection of the entropy path and the
boundary is given by solving equation (62) by the same method as
described above for equation (61). The entropy Sc is then given by
interpolation of the known values of S at x and xq g- The entropy
at point A is then given by (57). 1If t¢ = té, the entropy is handled
in the same way as described in Section V, paragraph A, for a regular
point.

(4) Values for the characteristic variables at point A are

given by equations (58) and (59) from which improved values of u, and ap
can be calculated.
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a, = %1 (B, +Q,) (64)
1
u, =5 (B - Q). (65)

Steps (1) through (4) are repeated until up and ap converge to a
final value within a prescribed tolerance.

VI. CALCULATION PROCEDURE FOR A CONTACT SURFACE

A contact surface is defined as the interface between the paths of
two different gases, or the same gas at different entropy levels, in
which no flux of matter passes. 1In the x,t-plane the contact surface
is a line of discontinuity in which the speed of sound and the entropy
are discontinuous. By nature of its definition, the flow velocity and
pressure through the contact surface at a point in the x,t-plane are
constant.

Before entering into a discussion of the iteration procedure for
calculating the flow properties on each side of the contact surface,
some relations which will be required are derived. Let the subscripts
L and R refer to flow conditions on the left and right sides of the
contact surface, respectively. The characteristics P on the left and
Q on the right are, by definition,

P =—=—a +u (66)

Qg = =2 ap - ug- (67)

By applying the boundary condition uj = ug, equations (66) and (67)
combine to give

(68)

n
)
+
B}

PL + QR
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The pressures on each side of the contact surface are expressed as

27,/ (ry,71) =718y,
P =a e (69)

275/ Og=1) =758y

P = 2 e (70)

which includes the condition that the reference entropy level is zero.
Applying the boundary condition Py, = PRr» equations (69) and (70) combine
to give

. (7,-1)/2y
_ 271/, 9 7RSp™715) R R
ap =13 e . (71)

When equations (68) and (71) are combined, the satisfaction of both
boundary conditions across the contact surface is included. We then
obtain

7g-1
(7 -ljﬂ} (-1 2y (7gSg7151)
2 2 L\7R R L R
P +Q =———a + —a e
L R 7T 1L TR " 1L

(72)

which, for Py, Qi, Sg, Sy, 71, and yi given, is a transcendental equation,

This equation must.be solved numerically for aj. For y; = yg = 7, it can
be solved directly to give

a_ = . (73)
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It is assumed that the solu-
tion is given for a distribution
of n points on the t, line and
that a contact surface passes
through this line. Also assumed 1 P
is that j regular points have fe——curface
been calculated on the t, line. Y
The procedure for calculating the ¢t
contact surface point on the t,
line is given in the following
steps.

Q Waves x,xl,L
A

° 7/

(1) The values for the entropy on each side of the contact
surface are given since the entropy level for each side remains con-
stant throughout the trajectory of the contact surface in the x,t-plane;
therefore, set

S1,0 ~ So,1

51, = So,xr’

where the first subscript O or 1 refers to the t, or t; line, respectively,

(2) Assuming that u L and a; ,L have been given from the pre-
vious iteration cycle, or for the first iteration cycle, have been
guessed, calculate the x location of the contact surface point on the
t, line:

—3 3 &
XL %R %L 7 MLt Y, (74)

(3) Satisfy the boundary condition of no velocity change across
the contact surface at a point by setting up R T Ul,L and satisfying the
analogous boundary condition for pressure by calculating the speed of
sound on the right-hand side from equation (71).

(4) Find the points on the t, line through which the P and Q
waves that intersect at X1, = ¥*1,R pass This is accomplished by an
interpolation process that’ 1ocates the x stations on the tj, line that
satisfy
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XL " %p (u + a)1LL + (u + a)P

At = 2 (75)

for the P wave, and

Xl,R - xQ (u - a)l R + (u - a)Q

. ) (76)

for the Q wave. The subscripts P and Q refer to properties at the points
xp and xq on the t, line which satisfy the above relations.

(5) Calculate values for Py y and Q1 g by way of the character-
istics equations

1 dA 1 dA

(rau = ==), + (-au + == + a
P =, { A dx’P i A dx lLLJ At 4 <%P . 1,L 5, 15,)
a7
and
1 dA 1 dA
(rau = ==) _ + (-au — =—
= A dx’Q A dx’1,R Q 1,R _
Qr™%" [ 2 } ok <% (81,r7Sg)-
(78)

(6) Calculate an improved value for aj ,L by solving equation
(72), or by solving (73) for y; - 7R, and an imptoved value for up L by

up L TP 7, - 1L 1,1 (79)

Steps (2) through (6) are repeated until both u L and a; ,1 converge to
constant values within a prescribed tolerance.
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VII. CALCUIATION PROCEDURE FOR A SHOCK POINT

As suggested by Hartree [6], it was found that the treatment of
boundaries and discontinuities was simpler when using a constant time
interval rather than following a grid of characteristics. This method,
explained in detail in Section V for a general point, follows one of
the family of characteristics (Q waves) from time ty to time t; = ty+ At
and interpolates the x station at time ty, through which the other
characteristics (P waves) pass. The order of the calculations proceeds
from left to right in the wave diagram for each line t = constant.
Because of the order and method by which the calculations are carried
out, the detailed procedure used to calculate a Q shock point is some=-
what different from that for a P shock point. The details of the pro-
cedure for each type of shock point will therefore be presented
separately,

A. Q Shock Point

It is assumed that the solution has been completed for a distribu-
tion of n points on the line t = t, and that a Q shock passes through
this line. Since changes of the flow variables across the shock are
assumed to take place instantaneously and since the shock thickness is
assumed to be zero, the properties of the flow at the shock point are
double-valued. To explain the procedure for calculating a Q shock
point, a double subscript of notation is used. Let the first sub-
scripts 0 and 1 refer to the shock at times ty and t, + At and the
second subscripts L and R refer to the left- and right-hand sides of
the shock, respectively. It is also assumed that j regular points
which follow Q characteristics have been calculated on the ty + At
line where the j-th point is the
point generated from the point on
the immediate left side of the
shock wave on the ty line. If
we keep in mind that Q charac-
teristics overtake a Q shock
from both sides, the illustra-
tion shows Q waves that have ty
crossed the shock path from the
left side. After the iteration
for the shock point has been com-
pleted, those points that lie on t
the right-hand side of the shock
at time t, are discarded. These
points were retained only for
interpolation of properties on
the left side of the shock dur-
ing the iteration procedure for
the shock point, > X
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The calculation procedure for the Q shock point on the t,; line is
now given in the order that the computer program actually solves the

problem:

(1)
Calculate the

(2)

(3)
the left side

(4)

(5)

ty + AL,

average shock velocity between times ty and t,:

Guess the shock velocity w; ¢ at time t, =
3

wo S + wl

== 0,s 1,5
W 2

Calculate the position of the shock point on the t; line:
(80)
Interpolate for the properties uj Ly 81,1, and S1 1, on

of the shock point, ’ ’ ’

Calculate the shock Mach number:

Y10~ Y1.s

—_— 2

(81)
1,s al,L

Calculate the properties on the right side of the Q shock

point which are given by the Rankine-Hugoniot equations presented in

Section ITI.

(6) The point x, on the t, line through which the Q character-
istic passes that also passes through the point x; R is found by satis-
fying ’

Xl,R -AfQ,_ (u - a)l,R + (u - a)Q, -
At B 2 ’ (82)
A
This equation is solved by the «
method of iteration for x.. “/ 1,R
Q (o
1
\\
\\\\;:¢~///’Q Wave
ts BN
AN, T
Q Shock Xor Q
> X
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(7) Calculate a new value for the Q characteristic on the
right side of the shock point by

1 dA
(-au + ) + (rau + =) a, _+a
Qr=%* { A dx 5 A dx 1’R] At + —155——9(51’R-SQ). (83)

(8) The following relationship across the shock is now
calculated:;

(84)

This relationship yields a new value for the shock Mach number M ,S
through the Rankine-Hugoniot equation (32).

(9) A new shock velocity w1, g is then given by

Yi,s T, T4, s (85)

A comparison of the guessed shock velocity with the calculated shock
velocity determines whether a prescribed tolerance in their difference
has been met. Steps (1) through (9) are repeated by replacing the
guessed value of w) g by the calculated value until the tolerance is met,

All points, previously calculated on the line t,, which lie on the
right-hand side of the shock point are now dropped. Calculation of points
on the right of a boundary is discussed in Section V, Paragraph B, of
this report.

B. P Shock Point

The calculation procedure for a P shock point is somewhat different
from that of a Q shock point, but the underlying process of matching the
Rankine-Hugoniot solution with the characteristic solution at the shock
point is the same. Again it is
assumed that the calculation pro- ¢t
ceeds from left to right and that
j points have been calculated on

the t; line as shown in the Q Waves .
illustration. The detailed pro- t; AN J /
cedure for calculating the P [

shock point is given in the

following steps. to

/<:;\P Shock
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|
(1) Guess the shock velocity v1,s and calculate the average }
shock velocity between times tg and ti: !

- Y95 YV g
w = 2 .

(2) Calculate the position of the shock point on the t, line:

=x,  + At - w. (86)

0,L

(3) Find the locations on the ty line through which the P and
Q characteristics pass that intersect at the point X] R- This is accom-
plished by approximately the
same process as that for cal-
culating a general point, and
therefore a step-by-step explana-
tion of the procedure will not be
repeated here. The difference is tq
that a particular Q characteristic
is not followed; therefore, inter-
polations at time t, are neces- t
sary to find both the P and Q
characteristics that pass through
the point X] R- This step yields
the flow variables on the right-
hand side of the P shock.

(4) By knowing the flow variables on the right side of the
shock point from the above step, the P shock Mach number is calculated

by

M = ——m——= (87)

(5) The Rankine-Hugoniot relations (Section ITI) give the flow
variables on the left-hand side of the P shock.

(6) The point xp on the ty line through which the P character-
istic passes (see illustration) and that also passes through the point
X1,L is found by satisfying <

Xl,L - Xp ) (u + a)P + (u + a)lJ_L 58)
: 2 . (

This equation is solved by the method of iteration for Xp-
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(7) Calculate a new value for the P characteristic on the left-
hand side of the P shock by

1 dA 1 dA
(-au = ==)_ + (-au = =) + a
A dx’P A dx“1l,L 1,1 P
= + 2 [ R -
Pl,L Pp [ 2 J Nt + <a 5 (Sl,L S ).
(89)
(8) Calculation of the relationship
Pt PR (90)
% 2
1,R

across the shock yields a new value for Mj g by way of the Rankine-
Hugoniot equation (32). ’

(9) A new shock velocity Wy g is calculated by

W =u

1,s " YL,r Tr s 2

Comparison of the guessed value with the calculated value of the shock
velocity determines whether a prescribed tolerance has been met for their
difference, Steps (1) through (9) are repeated by replacing the guessed
value with the calculated value until this tolerance is met.

VIII. INTERACTION OF DISCONTINUITIES

Thus far in this report, we have dealt only with cases where charac-
teristics cross or intersect; however, it can easily be seen that there
are many other possibilities of boundaries and discontinuities intersect-
ing with one another, such as shocks of like families intersecting, shocks
of unlike families intersecting, and shock contact surface intersections.
Although the general methods for handling these interactions are similar,
each case requires somewhat different calculation procedures. Because of
the large number of possibilities that can occur, only the intersection of
the discontinuities that were encountered in the problem at hand will be
discussed. The reader should be able to easily modify the discussed pro-
cedure for a particular interaction not treated herein.
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A. Merging of Two Q Shocks

When one Q shock overtakes another, the wave diagram in the vicinity
of the point of intersection of the two Q shocks appears as shown in the
illustration. A Q shock stronger
than either of the merging shocks

results. Also produced is a con~ Resultant Q Shock

tact surface which is the par-

ticle path that passes through ‘ <E°ntaCt Surface
1

the intersection point and \{5\54
separates the gases that have c-2s
been compressed by the two 1 Z
shocks. For y = 5/3 (see ref-

erence 10), a reflected wave . //A
which was created by the inter- o
actions was found to be quite

weak for all of the shock-

shock interactions encountered

in this problem,

Reflected
Wave

70

The interaction of two Q shocks was solved by an approximate trial-
and-error procedure. Assume that two Q shocks have been detected to
cross between times t, and t,. Of course, there must be some logical
check to detect this crossing in the computer program, but, as there
are numerous ways this could be handled, this will not be discussed
here. Let x1, ty refer to the point of intersection of the two Q
shocks, the subscripts 1 through 5 refer to flow properties of the
regions in the vicinity of the interaction as shown in the illustra-
tion, and A, B, and C refer to the three Q shocks. The iteration pro-
cedure is as follows:

(1) Consider that the velocity ug has been given from the
previous iteration step or for the first iteration cycle has been
guessed. It is assumed that the flow properties of Region 1 are given
by the values of the flow which had been calculated on the left side of
shock A at time tg, and that the property values of region 3 are those
which were calculated for the right-hand side of shock B at time tg,.
These assumptions are justified because of the smallness of the time
step At.

(2) ©Properties in region 5 can then be calculated from the

Rankine~Hugoniot relations across a Q shock:

M, =, (92)
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1 ﬂ}ii >
R B I A N oY A
L »

MC s (93)
JI2 + (7 - DME]I[29ME - (y - 1)
a. = a ¢ ¢ (94)
5 1 G + D ’
-1
-1 +LM2 -~
= -1 2y e 2=l 2 ¢
Sg =Sy + G =) ln e} M 7+1J l. pEaig J JL . (95)
2 C

(3) Since the reflected wave was a centered expansion fan for
the range of y possible for this problem, the entropy across the expan-
sion is constant; i.e., S, = Ss. The speed of sound for region 4 is
then given by satisfying the boundary condition of equal pressure across
the contact surface:

g = age . (96)

(4) The reflected wave, which is always an expansion wave for
v £ 5/3, separates region 3 from region 4, and the value of the charac-
teristic variable Q across the reflected wave is constant. Therefore,
by setting Q4 = Q=, the velocity in region & is given by

2
y -1

ug = as - Qq. (97)

(5) An improved value for ug is given by satisfying the second
boundary condition across the contact surface:

Ug = Ug. (98)

Steps (2) through (5) are repeated until the difference in calculated
values of ag for subsequent iteration cycles is less than a prescribed
tolerance.
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The shock velocity of shock C is then given by

we = uy + alMC, (99)
the location of the Q shock point on the line t; is

xC(tl) = Xq + wc(tl - tI), (100)

and the location of the contact surface point on the line t, is

XC.S.(tl) =% + ug(ty - t). (101)

I

The reflected wave was found to be very weak for all the interactions
of two Q shocks that occurred in the problem. Points on the right-hand
side of the contact surface on line t, were calculated in the same manner
as the points near boundaries (see Section V, Paragraph B). This, in
effect, spreads the centered expansion, which was weak over the time
interval At rather than at a point. This approximate way of handling
the reflected wave should be quite good since the time step is small,

B. Crossing of a Q Shock by a Contact Surface

The following illustrations show the two types of interactions that
can occur when a contact surface intersects with a Q shock.

Transmitted Q Shock t
Contact Surface
tq ts
\_.‘ 7 e /
B§>4 Reflected BS/Q Reflected Wave
) 4 Wave (P Waves) s N3 (P Shock)
V4 V4
" A ‘A
/ Incident Shock /1
t /1|‘/ < t Z J
o) o
X X
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If the pressure ratio across the transmitted Q shock ps/ps is less
than the pressure ratio across the incident Q shock p=/p;, then the
reflected wave is a rarefaction fan, However, if ps/ps > p=/p;, the
reflected wave is a P shock. 1In the cases calculated for the problem
at hand in which a contact surface crossing a Q shock occurred, the
reflected wave was always a weak rarefaction fan. The computer program
was coded for the case of only the reflected wave being a rarefaction
fan, but maintaining the capability of detecting if the reflected wave
is a P shock and printing out a message describing this condition and
the strength of the P shock. The rarefaction fan is handled in the same
manner as that described in the previous section when two Q shocks
interact.

The interaction of the contact surface and a Q shock was solved by
an approximate trial-and-error procedure. Let xy, ty refer to the inter-
section point, the subscripts 1 through 5 refer to the regions indicated
in the illustrations, and A and B refer to the incident and transmitted
Q shocks, respectively. Flow properties in regions 1, 2, and 3 are
assumed known. Calculation steps for solving the interaction process
are as follows:

(1) Consider that the velocity in region 5 (ug) has been given

from the previous iteration cycle or for the first cycle has been guessed,.

(2) The remaining properties in region 5 can then be calculated
from the Rankine-Hugoniot relations across a Q shock:

A = (102)

M. = B B (103)

VIZ+ (7 - DI - (7 - D]

dg = ap (7 n 1)M.B (104)
- 21=1 2
Se = Sa 1 2 e - 2-L] TN (105)
° = y(y - D Lo+l B g+l | ;%;_Mz B
B
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(3) Since it has been assumed that the reflected wave is a
rarefaction fan, there is no change in entropy across the reflected wave;
i.e., S4 = Ss. The speed of sound is then given by satisfying the bound-
ary condition of equal pressure through the contact surface.

Z%l (84-S53)
a, = ace , (106)

(4) An additional condition that must be satisfied is the con-
stancy of the characteristic variable Q across the expansion fan

Qs = Q3

which by definition yields the relationship for the velocity in region 4.

2
7-

ug T as - Qa. (107)

(5) The second boundary condition across the contact surface is
now satisfied by setting

Ug = Ug

which then provides the improved value for ugs in the next iteration cycle.

Steps (2) through (5) are repeated until the prescribed tolerance
for the difference in successive values of ug is met.

The location of the shock and contact surface points, and the cal-
culation of points on the right side of the contact surface by the charac-
teristic solution at time t,, follow the same procedure described in the
previous section when two Q shocks interact.

IX. EXIT CONDITIONS

After diaphragm rupture, the volume of gas that has been compressed
on the left-hand side of the diaphragm flows through the facility and
empties into a reservoir which is connected to the end of the duct.
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Since the mathematical solution is intended to calculate only the early
development of the flow, it is not necessary to include the conditions
for inflow at the end of the duct. The possibility of inflow at the
exit could exist only at a very late time because of a buildup of pres-
sure in the emptying reservoir, or at a very late stage of the blowdown
if emptying into the atmosphere.

For the problem at hand, gas is always assumed to be leaving the
duct at the exit station L, and is therefore treated as an outflow
problem. The gas in the external region is assumed to be at rest. The
calculation procedure for satisfying the appropriate boundary conditions
for subsonic, sonic, or supersonic flow at the exit is now given.

A. Subsonic Flow at Exit

For subsonic flow it is assumed that the pressures on each side
of the exit plane follow the steady state boundary condition of equal
pressure. Since we have chosen the conditions which were on the right
side of the diaphragm before rupture as the reference state, the pres-
sure at the exit is given by PEr, = PEgp = 1 where the subscripts Ej, and
ER refer to the left- and right-hand sides of the exit plane, respec-
tively. The iteration procedure to calculate the flow properties at
the exit is as follows:

(1) The velocity up is given by the previous iteration cycle,
or for the first cycle is gueSsed.

(2) The entropy Sy at the exit is given by the conventional
procedure as for a regular point (Section V, Paragraph A).

(3) Applying the boundary condition p = 1 at the exit results
in the following equation for the speed of sound, we obtain

z-t
a - 2 (SEL)
EL ’

which includes the conditions that the properties on the right side of
the exit plane are the reference state and the reference entropy is zero,.

(4) The value for the P characteristic Pg, at the exit is
found in the same manner as for a regular point. Tkis value then fur-
nishes a relation for the velocity:
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Steps (2) through (4) are repeated until the change in Ugp for sub-
sequent iteration cycles is less than a prescribed tolerance.

B. Sonic Flow at Exit

The boundary condition to be satisfied for sonic flow at the exit
is ug; = ag;. The trial-and-error procedure to calculate the sonic flow
condi%ions at the exit is as follows:

(1) Assume that the velocity ug; has been given from the
previous iteration cycle or for the first cycle has been guessed.

(2) Satisfy the boundary condition by setting agp, = Ygg -

(3) Values for the entropy Sgp, and characteristic Pg; are found
by the standard procedure (Section V, Paragraph A).

(4) A new value for UEL is given by

Steps (2) through (4) are repeated until the change in ugy, for sub-
sequent iteration cycles is less than a prescribed tolerance,.

C. Supersonic Flow at Exit

For supersonic outflow, the exit conditions can be calculated by
the standard procedure since both P and Q characteristics reach the exit.

X. SOME PERTINENT DETAILS ABOUT THE CALCULATION PROCEDURE

A. Geometrical Aspects

Effects on the flow properties due to the change in cross section
are felt through the term

which appears in both characteristic equations. Information concerning
the geometry of the duct must be furnished to the computer program in a
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form such that the term

can be evaluated at any point x. The actual duct shape is approximated
by a series of straight line segments for the inside diameter in the
axial direction. To avoid discontinuities in the first derivatives of
the area at the junction of the line segments, a parabola which con-
nected the straight lines at a distance of ¢ on each side of the
junction was used as shown in the illustration,

The computer program requires M input STRAIGHT LINE
cards regarding the geometry for which AV AR
each card contains an axial station xg (1) 7\\
along with the corresponding diameter N
éﬁfi), and curve fit parameter ej(i), where PARABOLA—///
i = 1,M. The left end of the supply tube
x* = 0 is referred to by i = 1, and the e (i) le (1)
right end of the facility where x* = Lg E E
is referred to by i = M. The remaining T x_(1)

indices i = 2,M-1 refer to the junction E

of the straight line segments. The program
automatically nondimensionalizes all dis-
tances by Lg.

B. Grid Control

To keep the characteristic grid at a sufficient density, it was
necessary to establish some criteria to either introduce or take out
points at each time step. It is seen, for instance, that in regions
where there is sonic flow, additional points must be introduced, since
in subsonic flow, the Q characteristics travel to the left, and in
supersonic flow, they travel to the right in the wave diagram (see
Figure 2).

Whether or not points should be introduced was determined by pre-
scribing an upper limit in the change of Q between two consecutive
points and an upper limit in the allowable distance between them. Let
these limits be referred to as /Mp,x and MXpax and consider that the
solution has been completed up to a point j on a line t = t;. The
following quantities are then calculated:

M =Q() - Q@G-

x(§) - x(3-1).

FA3
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If either /) or /x is larger than the prescribed upper limits for these
quantities, any number from one to three additional points or Q waves are
introduced between x(j) and x(j-1). These additional points are calcu-~
lated by the method of characteristics in a special subroutine called
POINTADD of the computer program. The maximum allowable difference in

Q between two adjacent points Mpax is a required input (TOLQ) of the
computer program. Values of TOLQ =.05 for the subsonic cases and

TOLQ = .2 for the supersonic cases were found to give good results,

The upper limit for the distance between any- two points AXp,yx is auto-
matically determined by the computer program. The value of Axpzx is not
constant throughout the duct since, in sections where there are area
changes, a much denser distribution of points is necessary than in
straight sections where there are no area changes. The program also
takes out points automatically when the grid becomes too dense.

By running repeated cases for several time increments, it was found
that At = .001 for subsonic and At = .002 for supersonic cases gave
satisfactory results. What is meant by subsonic and supersonic cases
as referred to above pertains to the state of the flow in the test sec-
tion after the flow is established. The distance between the points in
the axial direction was found to be much more critical than the time
interval in the sections where there were large area changes.

C. Restart Procedure

Since each case took a fairly large amount of time on the CDC 3200
computer, a restart procedure was incorporated in the program. Each
time on the computer, a prescribed number of time intervals are computed
and the distribution of points and their pertinent properties for the
last calculated time are punched on computer cards, which are then used
as input for the next run. The preparation of input for the program
is explained in detail in Appendix B.

XI., DISCUSSION OF THE RESULTS

The calculation procedures described in this report for the one-
dimens ional flow through the pressure-tube tunnel were programmed for
the CDC 3200 computer. Calculations were performed for the anticipated
range of Mach numbers for the facility. Figure 1A presents the aero-
dynamic boundaries for the full-scaled facility with the Mach 2 nozzle
installed. The interchangeable nozzle sections for the supersonic cases
were designed from the results of a two-dimensional method of character-
istics satisfying the condition of uniform flow at the nozzle exit plane.
The spool length satisfies the condition that the length of the nozzle
and spool equaled 138 inches for each case. The distance from the

38




diaphragm to the nozzle throat was approximately 29 percent longer for
MrggT = 3.5 and 5.0 than the corresponding length for Mrggr = 1.4, 1.7,
and 2.04, Figure 1B presents the aerodynamic boundaries of the tunnel
with the sonic nozzle installed. This configuration was used for the
sonic and subsonic cases that were calculated. The subsonic Mach
numbers in the test section were attained by choking the flow downstream
of the test section by the use of choking flaps as shown in Figure 1B,
Also shown in Figures 1A and 1B are imaginary or effective boundaries
which were assumed to approximately account for blockage by the model
support and diaphragm cutter mechanisms.

The following initial and reference conditions were assumed for all
of the cases calculated:

(1) The gas on each side of the diaphragm is air whose ratio
of specific heats is y = 1.4,

(2) The temperature of the air on each side of the diaphragm
is Ti = TZ = 295,57 °K.

(3) The properties of the air on the right side of the
diaphragm before rupture are:

1130 ft/sec

2]
[}

p’;‘: 14,7 1b/in® = 2116.8 1b/ft?

S, = 0.

(4) The reference conditions are the state of the air on the
right side of the diaphragm before rupture.

(5) The reference length is the total length of the facility:
L, = 325 ft.

Figure 2 presents the wave diagram for the case in which the Mach
number in the test section during the period of steady flow (referred
to as Mrggr) was two. Briefly recapping what occurs during the early
development of the flow, we can see the centered expansion fan, which
is bounded on the left by the head-wave and on the right by the tail-
wave,that originates at the diaphragm location at the instant the
diaphragm ruptures. The expansion waves that make up this centered
expansion fan accelerates the air which was initially on the left side
of the diaphragm so that it starts to flow out through the facility.
Also shown is the P shock that was formed when the diaphragm was
ruptured. The P shock accelerates the still air through which it passes

39



as it travels out of the duct. The path of the contact surface, i.e.,
the interface that divides the two volumes of air of different entropy
that were initially in contact with each side of the diaphragm before
rupture, is shown as it travels out of the duct. Between the tail-wave
of the initial centered expansion fan and the contact surface, two Q
shocks are formed which eventually interact with each other, Created

at this interaction are a shock stronger than either of the original two,
a contact surface, and a weak expansion wave. As soon as the sonic Mach
number is reached at the nozzle throat, no more expansion waves can pass
through, and therefore only an expansion fan of finite width can travel
to the left through the supply tube. A short time after the flow in the
throat chokes, a Q shock is formed just downstream of the nozzle throat
and slowly travels through the remainder of the nozzle and the test sec-
tion, A steady flow is established behind this Q shock, and the start
time is therefore defined as the time when the Q shock passes out of the
test section. Some of the Q and P characteristic curves are traced in the
wave diagram presented in Figure 2. It is seen that the paths of the P
characteristic curves are fairly uniform throughout the wave diagram,

but the paths of the Q characteristics do not follow any systematic
patterns in the early stages of the flow. After establishment of steady
flow, both characteristics follow a uniform pattern; i.e., at each x sta-
tion the slopes of both characteristics are constant in time after estab-
lishment of steady flow. At any time, we can recognize the flow regime
at any position in the facility by observing the directions of the Q
characteristics. Subsonic Mach numbers are characterized by the Q
characteristic curves traveling to the left, sonic when traveling in

the vertical direction, and supersonic when traveling to the right.

Figures 3 through 6 present the wave diagrams for test Mach numbers
1.4, 1.7, 3.5, and 5.0. The wave diagrams for all supersonic cases are
similar to Figure 2, and therefore the Q and P characteristic net is not
shown in Figures 3 through 6, because to enable one to draw the charac-
teristic curves requires a print-out at each time step by the computer
program., This print-out takes much more computer time and results in
volumes of paper.

Figure 7 plots the static pressure as a function of time at a sta-
tion in the test section for the supersonic range of test section Mach
numbers calculated. The drop in pressure to a constant value after the
shock passes this station thereby establishes the starting time defined
as the beginning of the period of steady flow.

For the subsonic cases, the flow is choked downstream of the test
section by choking flaps which are approximated by assumed boundaries
that account for the flaps and blockage due to the model support and
diaphragm cutter mechanism. Cases were calculated in which subsonic
and sonic Mach numbers of .515, .7, and 1,0 resulted in the test section
during the period of steady flow conditions. For the subsonic, as in
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the supersonic cases, only an expansion fan of finite width can pass
through the throat since no more expansion waves can pass through the
throat after choking occurs. Steady flow is established in the test
section only after the highly nonlinear effects of area changes on the
slopes of the P and Q characteristic variables at each x station
upstream of the throat have died out with time. This effect is illus-
trated in Figure 8, which shows the pressure as a function of time at
an axial station in the test section, The starting times for the sub-
sonic and sonic cases are defined as the times when steady state con-
ditions are established throughout the test section.

Starting times for all of the cases that were calculated are plotted
in figure 9 as a function of the test Mach number. It is seen that the
subsonic and sonic Mach numbers require a longer start time, since the
steadying of the flow properties in the test section is a gradual pro-
cess whereby, for the supersonic cases, a strong shock passes through
the test section that instantly establishes a steady flow behind it.

The starting times for the supersonic cases depend, however, on the
speed at which the shock travels through the nozzle and test section.
This speed is governed by the local flow conditions upstream of the
shock and the strength of the shock.

Figure 10 presents the calculated Reynolds number per foot in the
test section during the period of steady flow for the range of test
Mach numbers and for the maximum charge pressure of 48.64 atm assumed
for the facility. It is seen that the highest test Reynolds number of
approximately 2 x 108 per foot for the facility will occur in the vicinity
of a test Mach number of 1.4, Figure 10 shows one case which was cal-
culated for a test Mach number of 2.04 in which the charge pressure was
assumed to be 18.03 atm. This reduction in charge pressure resulted in
approximately a linear reduction in test Reynolds number for this
particular Mach number. The effect on starting time by this reduction
in charge pressure was found to be negligible, however.

The static pressure in the test section during the period of steady
flow is presented as a function of Mach number in Figure 11. The expected
trend of decreasing pressure with increasing Mach number is shown.

To check the effects of the settling chamber on the start time, one
case for Myggr = 2.04 was calculated in which the settling chamber was
removed. A comparison of these results with the corresponding case with
a settling chamber showed a negligible difference in the start time.

The preliminary analytical results that have been calculated by

thic nrace duivre will he compared with evnerimental resultre when the facil-
Lillio pPLUCCQULT wiliidi UCT LULPAlTU Witll CAPCTE JHITHILGL L ToUL Lo WiItHL Liic tavid

ity is completed and measured data made available, Future analytical
investigations to include the effects of boundary layer and mass removal
of gas through the walls in the test section for transonic Mach numbers
are planned.
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APPENDIX A

Derivation of the Characteristic Equations

The basic differential equations (1) through (4) can be written in
nondimensional form (see Definition of Symbols) as:

Continuity
100a) 1 o(pua) = -
Aot TaT o tv=o. (a-1)
Momentum
2, du_ _ a%30np)
St 4+ u = " = + f. (A-2)

Equation of State

a2 = ‘% = T. (A-3)

First Law of Thermodynamics

1n p. CA;4)

X[+~

Some useful relations that result from the combining of equations (A-3)
and (A-4) are

p/o? = &7 (r"1)(5-30) (A-5a)
_ a27/(7-1) e-y(S-So) (A-5b)

= 2Dy (8S0), (A-5c)
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Due to the relations (A-5a) through (A-5c), the continuity equation
(A-1) can be expressed as

2 _ga, 2 da u _ o(ln A) _ @jln A)
5t t y - 1" X% tax T oA ox ot

S oS -3)/ (y-1 S-S
t 7 %H@_ @77 N7 (8-50) (4-6)
and the momentum equation as

2
g:+ug: ;_—la%=a2§+f. (A-7)

Adding equation (A-7) to equation (A-6) results in the following equation:

oP oP _ o(ln A) _ _ o(ln4) . a ds
3¢ T (et a) 5T man Ty TR E*?a‘)

- @Dy (8-S0) | ¢ (A-8)
where

2

P = -1 a + u. (A-9)
The substantial derivative in the x,t-plane is defined as

D _ 0 5]

¥ St + u S (A-10)
Let the differential operator

S}

+ _ 0 R

5t - S¢ + (u + a) = A-11)
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represent the change of a parameter in the direction

dx
dt

in the x,t-plane.

u + a

Equation (A~8) can then be written as

5. P 8,8
Sy o(ln &) _ . 9(ln A DS o
Bt 3T a7y ta(- D gptagg

-

(7-3)1 (7-1) 7(8-80) +f

Subtracting equation (A-7) from (A-6) yields

ot ox

where

ox ot

- @G r(8-80) | ¢

b

Let the differential operator

5 ) d

+ (u - a) =

5t ot ox

represent the change of a parameter in a direction

in the x,t-plane.

Equation (A-14) can then be written as

ég + (u - a) X = -au o(ln 4) - a o(ln A) + ya <%% - % %§>

(A-12)

(A-13)

(A-14)

(A-15)

(A-16)

(A-17)
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©_Q 8_S
- Cau éﬁ%EJ&l - a éﬁl%zél +a(y - 1) DS +a ——

=33/ (-1) 7(8-S0) _ ¢ (A-18)

- la
A third relation is required to complete the system for the three
dependent variables a, u, and S. Given by the entropy condition which
must be prescribed for any problem,this relation is given here in a
general form as

DS _
ot - F(a,u,S,x,t). (A-19)

Equations (A-13), (A-18), and (A-19) form the system of equations that
must be solved for the three dependent variables u, a, and S. These
equations are solved by a step-by-step procedure along the characteristic
curves P, Q, and S in the x,t-plane. The details of solving these equa-
tions are presented in other sections of this report.
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APPENDIX B

The Fortran Program and Its Input Data

1. Preparation of the Input Data for the Computer Program

The computer program and the subroutines employed by the pro-
gram are written in Fortran IV language for the CDC 3200 computer in

Part 2 of this Appendix.

must be prepared:

Card No. Columns Fortran Symbol Format
1 1-14‘ TOL E14.8
15-28 TOLQ El4.8

29-42 P2P1 E14.8

43-56 A2 E1l4.8

2 1-14 G E14.8
15-28 XREF E14.8

To run the program, the following input cards

Description

Tolerance for which all
solutions calculated by
an iteration procedure is
satisfied.

Maximum difference Qupy
between the values of the
characteristic Q for neigh-
boring Q waves (see Sec-
tion X, Paragraph B).

Ratio of the pressure on the
left-hand side of the dia-
phragm to that on the right
before rupture (pé/pi).

Nondimensional speed of
sound on left side of dia-
phragm before rupture; see
equation (33).

Ratio of specific heat (y).
The program assumes that the
gases on both sides of the
diaphragm have the same
value for 7.

Total facility length (Lg)

by which all distances are
nondimensionalized.
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Card No. Columns Fortran Symbol Format
29-42 XD E14,.8
43-56 XTEST E14.8
57-59 M I3
3 to MH+2 1-13 XE El4.8
15-28 DE El4.8
29-42 EPS El4.8
M+3 1-14 DT E14.8
15-17 NUMT 13
18-20 NPRNT 13
M+4 1-15 T E15.8

Description
Diaphragm location (xg).

Axial location (X¥EST) in
test section for which
pressure and Mach number
are determined and printed
out,

Number of cards used in
describing tunnel geometry
(see Section X, Paragraph A).
Axial station (XE for which
diameter and curve parameter

are given,

Diameter (dg) of the axially
symmetric duct at XE.

Curve fit parameter (e*) at
Xi (see Section X, Paragraph
A).

Nondimensional time interval.

Number time steps to be
located.

Printout frequency.

Nondimensional time.

For T > 0, the program incorporates a restart procedure that
requires information from the last calculated time in order to resume
calculations. This information is contained in a number of cards that
have been automatically prepared at the termination of the previous run,
Therefore, for T > 0, the input data, beginning with card #M+4 plus the
remaining required input, is automatically prepared at the termination

of the previous run.

For T = 0, card #M+4 is the last input data card.
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FROGKAM DECK 3

CUMSTANT TIME INTERVAL METHOD

TIMENSION ZT(10),C1(1),XQ01).,QQ(1)

COMMON G,DT,fOoL.TOLG

COMMON XE(2D),NE(25) . EPS(25),YC(25,3), M, XTL.XTR, XD

COMHAON XXG(350),PPG(3%0),006(350).AAG(350),0UG(350),88G6(350)

COMMON XGE3ISN),RPG(350),QG(3%0),AG(S50),UG(3%50),.SG(350)

COMMON Z21(350),72(350),XGR(350),XGO(3%0)

COMMON PM1,PW1,PPML,FPW1

CNMMON P2P1,A1,01,P1.01,81,A2,U2,P2,32,52,A5,U3,P3,Q03,584

COMMON INGCLU) ,Q0W(10),Q0M(10),NQ(LI0), UW(10,),QM(30) ,ANQT,NQT

CORMON MMCS(1n),MMCST,MCS(10),MCST

COMMON XSHOCK (10) .

COMMON XCOUNTACT(10),t CONTACT(10)

PEAD(60,88)TCL,TOLU,F2RPL,A2

FOrRMAT (4F14.,8)

READ(60,90)G. XREF, XD, XTEST,M

FORMAT(4F14.8,1%)

XTHST=XTEST/XRFF

fz7.+xG/(6-1.)

CPRNT=1 ‘

G IS THE KATIQ OF SPECIFIC HEATS

YREF IS ThHE REFERENCE LENGTH WITH DIMENSIONS (TOTAL LENGTH)

XD IS THE DIAPHRAGM LUCATION WITH DIMENSIONS

M IS THz TOTAL NUMSEFR OF GEOMETRIC POINTS READ IN

WRITE(61,89) :

FORMAT(//73X,29HCONSTANT TIME INTERVAL METHOD/)

WRITE(61,95) XAREF

FORMAT(SX,2HL=,E15.8,1X,18H(REFERENCE LENGTH))

yD=x{/ xRFE

WRITE(A1,94)%D

FORMAT¢/3X,5kxN/1L=,E15,8,1X,19H(DIAPHRAGM S:ATIONY////)

HRITRE(AL,30M)

FORMAT (34X, 15HTUNNFL GEOMETRY/)

WRITE (AL, 301

FORMAT (4XY,1HI,6X,5HXECD) , 7X, 10HXE (L) /XREF,B8X,5HDE (1;,10%, 6HEFS (1)

AX, TIHERPS(T) /XREF/)

N0 80 [=1,M

FEADCO6C,I0M¥ecI),DECL)Y,EPSCI)

FORMAT (3E14.,&)

YER=zYE( )

FPSPzERPSC(])

YE([)y=Ye (1) /X3 EF

FPS{IT)=EFS(])/XREF

WRT = (61.3C2V,XFP,XE(I),DECI),EPSP,ERPS(])

FurMAL (3X,13,5F15,8)

YECT) IS VALLE OF x (wITH DIMENSIONS) AT STATION |

TECL) IS DIAMETER (WITH DIMENSIONS) AT XE(I:

FPSUI) 1S SMALL INCREMENT ON EACH SIUE OF Xe(l) FUR WHIUH THE
CUBIC CURVE FIT FOR THE DIAMETER IS uSED

¥Ti =xE(2)-ER3(2)

Tty 31% I=2,M

TF(X1eST-XF(1i))316,316,315

COMTINGE

[ ThEsTR=1

TTusfl=1-1

TR1=ITESTR+1

Fo 398 [R=IKi,M
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108
399

IF(DECIR)-DE(IR~1))356.398,399
CONT [NUE
YTR=(XF([K)+XE(IR=-1)1/2.

CRxIMAX=(XBE(ITESIR)-XECITESTL)) /2D,

TxOMAX=,U1%
NXIMIN=DXIMAX/SE,
FxOMIN=DYUMAX /2.
COIMaAXsTOLQ
FRIMIN=TOLGQ/ Y,

~ PRAMAX= .15

TQUMIN=DLOMAX /2,
GALL GFROM(M,XE,DE,EPS, YD)
LRITE(AL, 303

303 FORMAT«///5X,53HCOFFFICIENTS FOR PARABOLIC CURVE FIT BEIWEEN SECTI

1rNS)

~ RRTTE(6L,. 304 :

304

305

306

81
307

FORMAT(3X,19HD=C1+C2+S1+C3*S1w#x2)
WRITE(AL,30%)
FORMAT(3X,66FST=(X-(XEC[)-EPS(I)))/XREF AND XE(1)-EE(D)
1. OXE(DYEECIY )

LRITE(61,306) ,

FORMAT (3xy 1HE,BX . 2HCT,138X,2HC2,13X,2RCS)
M1=M-1

T B84 =, M1
bR!T&(hl,3U7)[,YC(I.i),YC(I,?),YC(I,S)
Fn\hh!AT(3)'.léy4Fl‘5.8)

Al=1.

O . -

[ I

62

1.2=0.
F1=22 ,%A1/(0G-1,)+11
c1=0,
P2=2.%A2/(G-1,)+U2
ne=2.%xA2/(G-1,)-02

-~ REABCO6D, 98 T, NUMT , NFRNT

FOKMAT (214,8,213)

LT IS THE TIME INTERVAL

ANUMT IS THF NUMBER OF T WAVES T0 COMPUTE

ANPENT 15 THe NUMRER CF T WAVES BRTWEEN PRINI QUT
LRITE(AL, 20006

FORMAT(//3X+7RGS,EB15.8,2X, 7TH(GAMMA))
wRITE(HRL,2RL)T0LA

FORMAT(3Xx,.5nT10LWE=,F15.,4)

WRITE(ARL,202)p2°21

FNRMAT(3x,6HP2/P12,F15.8)

WRITE(61,208)DT

SFORMAT (3, 34E7=,F15.8)

WRITE(A1.110)

FORMAT (1H1)

KEAD(OU,H6YT

FORMAT (15,4

TF(T-Tue1,1.3

CUMTINUE

MNz=hi

AsMBER FOINTS DESISED IN INITIAL EXPANSION FAN
1P50=0
Nyl =0
pCST=1
NOR=N
CAl.l, T wAVFE 1T (MQE)
B - -

T=T+07T

CAlLIL T WAVE 2 (N3F,NCS,N,Jd)
MCS (1) =NCS




e —JE U NPRMNT 1342 ,42,43
42 _PRNT=0

43 CONTINIE

60 70 32
_ —-3 CONTINUE .. ..

READ(6N, /UH)IPPO NQT VbST N
e P05 FOKMAT (11,313 -

READ(6D,206) (M"s(l).l 1 MCST)

— e RRAYLE0. 206t Nl NGy e

206 FORMAT(L1413)
e PO D=1 ,NOT
7 FEAL(67,207)Cw(])
e 207 FQRMAT(EIS 8L e e
rQo 4 KQzi,N

————————— READL S, 1 06 L XEKE ) ARG KRG GG KRS+ S 6 K

106 FORMAT(13,4E15,8)

e BRI SR RE (K -RBKAIY -

AGIKII= (-1 D w(2G(QY+0G(KR)Y ) /4,

_—-_‘NA#AV—QONTINué
=8B (1)
DD'\J;_.' e [, e —
IF('PGW)H 8 Yy
e e B READ(OHLLIDTIFML P
107 FORMAT(ZF15.2)
9 CONTINUE O
VPRNT =
32 rONTINUE - S
Fro 29 Mi=z1,NLMT
el Is=XsDY
JPRNT2JUPENT+1
,,,,, e XXG(1)=XC (14D T (UG (I )=AG(1))
TF(xXG(1))®%0u,500,51¢0
Sl ro. o0l i=31,14
501 72T(1)=2.«X6(1)/DT+UG(])-AG(])

e —AAGCLY=AGCY) _

502 AGUESS=AAG(1)

e CAC1)EAAGCR) e -

CALL INTER(2.,10,1,2T, XJ»C1 xX3)
CALY INTER(2.N,1,XG,06.X0,00)

AAG(L)=(6G-1.)»0Q001)/2,

o _IF(ABS(AAG(1)-AGUESS)=T0L)503.503,502

503 wv6(1)=0.
e _PPL(1)=2.%AAG(1) /(G- .
COG(1)=PPG(1)
L (3=
°SG11)=52
YGE(1)=0. -

XGR(1)=X0 (1)

e —Fu-3y4- 121,10

504 7T(1)=XS(D+LT+(UG(1I=4G(1)) /2.

ARG AR
FG(2)=U6(1)

iy ()0 AGHESS = AA )

I —fAatHe oAt

LGUESS=JuG (2

e XX 2)2X6 (1) )T (UG (1) +AGIL ) FUUGL2) +AAGL2) ) /2,

CL(1)=XXG(2)-DT*(UUG(Z) -AAG(2)) /2,
e EALL INTER(2.10.4, 7T X5, CL XA o

CALL INTER(2.10.1,XG,G5,XQ,0Q0)
— LUB2) =L RGL IO LI > 42

AAG(2)=(G-1 I PG(LY+GI(L))Y /4,

———— L IFLABS(JUGL2)I~UBUESS) = T0L)I506,506,208 .
S06 [F(ARS(AAG(2)-AGUESS)=TQOL)507,507.,505

e B0 PRE(D) 22 HAAGD) /G- )L YUGL2) -
CRGB(2Y=2. *AA((?>/(J 1,)-0UGL(2)

AT AL L{I__l‘\,)__ B
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508

YGr(2)=X6(1)

NQRAL2)=x041) R . -

rg 508 1=1,N

IR %G 1= X0 (1) 15085,508,509

CONTINUE

SRS -V7Y - WP 1= S, DRSS

lu=2

B A e e

510

CUNTINUE

L EPGCL) =P

fRG(1)=0¢

b A EY I EAD e e

LGy =J?

886G (1)=52-

¥G52¢1)=0.
¥EI(1)r=xG6(1)
=1

[N 2 4 F- s E— e e e - -

511

rFONTINUE

rg 2 I=1,N

710 =XG(IY+LT*(UGCT)+AG(]) ) /2.
72(1)=¥Y5( 1)+, G(])#=DT/ 2.

T{u=z1

KK i4=-3 R O O )
LARA et o

4G0

Q=1
odfz1 Lo
JCe=1

GdGs=1

CONTINYZ

—_— Sl — e e e s

a0

AN=TQ

KG=KQ+1

CALL POINTGCITO.KKA,T,10,XQ,N,0,DTP)
TIx=aBSrXGia)-XxXG(lw-1))
FTIG=ABSLOGCIN)Y-0QG(10~-1))
THOXXGOLIM) =Xx3€10-1))427,427,401
TF(XXG(IN)=XTL)Y4N2,406,406

e 402 FE (D] X~DXOMAX 403,402,417 .. ..

43
«04
405
406
407

TF(DIQ-DC0MAY) 404,404,417
TF(DTX-0xOMIN) 405,405,422
IF(DIQ-DCOMINY418,41E,422
TRAXXGOEE) LG XTL  ANL XXG(IR) . LE,XTR)407,411
TF(DIX-D¥IMAX)a08,40€,417

408 o I ABEIDLOMAI4DG, 405,417

409
414
411
412
414

TH(DIX-DXIMINYI4L10,410,422
TF(DIR-DNIMINY418,41€,427
TEF(XXG(I)«1.)412,412,412
TF(OIX-0¥OMA%) 416,416,413
KKR=1Q-1

e e E AL PO INT A R N e

FO 414 XKJ=KKK, 10
TF(XXG(LKJY=-1,)414,415,415

414 CONTINtig
S 4195 10=KKJ
[ EYER NE
w16 AL SHRFNDL T KA, N AN IPEO Y o e
O TO 51
417  Catl POINTAQL(IW.N)
Niv=1w
- . GO T 422
418 TF(KND-MI(JN) V419,423,419
619  JF(KU=-MCOS(J(=3)3420,429,420 - _ ..
420 TF/RO-N)Y421,23,421
421 . 1Qz1G-1 e S
€0 T0 44D
422 IF(KY-NQ(JL) 404,423,404
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423 CALL QUCK(T,I1Q,40,J0,JJ4Q,JCS,JJCS,N,NN,IPGO"
624 JF(KD-MUS(JCS1)426,425,426 . . .
ez% CALL CONT(T,IQ,x0,JQ.,d10, JCS JJCS N IIO hKO NN IFGO)
.. 426 __1FEtKG-N)Y4UD,23,400 -
427 CALL CRISS(IC,KU.JU,<JA,NEWQ)
e LR ENEWQ) 422,422,428 e Ce e
428 _PRNT=NPRNT
R SN W & N 90 o U e
23 1F(IPGUY«26,24,206
24 CALL  PHOCKCIG, NG NN o oo i e
IF(XXG(NN)«1.)51,51,¢€3
——— B8 TF LI »AAG(IN)2B4,84,25 . . . L
84 AN=NN-1
CALL_ SUSENDCAN,N) O
TPhn=1
G0 TO DY . R
25 TU=NN
_ CALL SUPENDCIQ, K0, NLANLIPEBOY.. .. oo ..
26 COMTINUE
1IF(IPGRNY5ST,391,49 S - e e e L
4y TF(XXG(NN)e1.)50.51,¢%1
.50 CALYL SUSEND(NNLNY
51 CONTINUHE
ANOT=UJQ=1___ .. o O
MMCST=JJ(S-1
e L JPRNT-NRPRATIRE, 27,28 -
27 CALL PRIMNTOUT(T,NN.IFGO, XTEST)
B CPINT=U
28 CON{INUE
e CALL MOVE (NN, Ny 1RGO
CA TO (479,29),SSWTCHF(4)
20 CONFINGa- —_— e e e e s e
429 wRITE(61,308)T
. —.308B FORMAT(3X,5HIIME=,E15,8//) - - . ...
wR1TE(61,101)
193 FORMAT (e X, 1bhX ,15%,1FP 14X, 1HE, 14X, 1HA 14X, 1HU,14%,1FS,13X,4=MACH,
110x,5HPRESS)
RN USRS o o WS o W X N O U S
AMACH=1G(1)/AG (D>
C— — FRESSSAGLI ) a2 QeEXR(~CxSG (1))
S0 WRITE(61,105)1,XG(1), P”(I),GG(I).AG(I);UG(I»,SG(I),ANACH PRESS
——— 105 FOAMAT(SX I3 8EL5 . 8) - T s - -
WRITEF(K2,86)T

R TR 62, 2 A5 PG O N T MG S T N R ——————
WRITE(A2,206) (MCS(I),1=1,MCST)
e MRITEL62,266) ANGLII-T=1,NGTY

[0 34 1=1,NMQT
C 34 WRITE(62,207 1GW1)
ro 35 1=1,N
35 AR TEAA 25106 1 1, K PE L B 4 S — e e
IF(IPGO) 37, 3€,37

~36 LRITE(E2,1072)pM1 ., PAL — . el
37 CONTINUE
Y i ¢ Y S O
FNG
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T QURROUTINE PUINTADD(IQ,N)

CIMENSION YB(4),AB(1),UB(1),SB(13,XCC1),UC 13,8C(3).x8¢1),88¢1,.C1

1¢1),C2(1),C34141,23(300),AC(1)
COMMON G.DT.l0L.TQLO _ .

FOMMON XE(25).DE(25),EPS(25),YC(25,3),M,XT .XTR,XD

COMMON XXG(350),.PPG(250),00G(3503,AAG(350) QUGB(350),88G(350)

FOMMON XG(350),PG(350),Q0G(350),AG(350),U6( 50),S6(350)

COMMON 21¢3503,72(350),.XGR(350).XGA(350)

r0 10 1=1,N

A0 23011 =xG01Y+.BxUGCIYBAGCL))XDT .

TXX=XXGIRY=-XxGUIQ-1)

e o DADXECAAGCIG)=AAGLIQ=0) LLDXX o e

PUDX=(HUGCTIE) -UUGCIQ-1))/DXX
TE(XXGCI0) . GE XTi JANC  XXG(IQY LE XTR)1,2

1 TOLYC=.15

B0 TQ B e

2 T0LQC=TOLG@
__ 3 _ PR=QO0G(IW«GRG(I0=1) . .

ro 11 i=z,4
Al=1l

rTDO=DQ/Al
o 1F(ABS(UDGY.BT.TOLACMLY1,32 .
11 cONTINUGE

O TO 13
12 1d=1-1

13 F=XX/A]

e XARIOQEIA L - . I
YXGUIA)Y=XXG(1IQ)

o BPPG(IA)IPPGCIQY .. ..
CAG(TA)Y=QRG(+Q)
AAG(TAYSAAGLLIQ)

LUGCTA)Y =UUG (- Q)

e SSGL LAY ESSG R e e e

¥yGR(IA)Y=XGR( Q)
e XGRCTIAYRXGR AR o e
I0=13-1
[ENURSRDRRES ol b U 15 NP 13 W0 0 VO U

10=10+1

e A XATXXGCIO~LY N
CALL ARECA(XA'DAA)

N 1§ U
AA=AAG(IN-1)FTDADX*(XAaXXG(1Q-1))

. LAZUUG(1Q-1)YDUDX A (XAsXXG6(1Q-1))

14 AGUESS=AA
LGUESS=UA

GC=dC+1
CL(1)s¥A-, 5= (| A+AA)I*TT
C3(1)=XA-. 5« JA~AA) [T
CO(1)=XA~,5«UA*NT

TF(XB(1)-X6(1)120,20,21 i

20 AR(1)=AG(1)
LBCLY=UGL)

QR (1)=SG(1)
g0 10 22

21 CONTINUE
. cAal INTER(2 N.1,.XG,AG,XB,AB) . _

CALL INTER(Z'N,1,XG,LG,XB,UB)
cAaLt INTER(2 .N.1,XG,SG.XB,SB)
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2?2 CONTINUE

<o fALL INTERCZ:N.1,22,%G.C2,XS)

IF(XS(1)=-XG(+3y)23,23.24

——23_SS(1)386(1). .

cO0 10 25
— 2R CONTLNME - e

FALL INTER(2,N,1,X8,%G,XS5,S55)

25 COMNI.LNUE

CALL INTER(Z-N,1,23,%G,C3,XC)
e CALL INTER(2:N,1,XG6,A4G.XC, AC)
CALL INTER(Z’N.1,XG,LG,XC,UC)

e CALL INTER(ZN+1.X5+S64XC,SC) . oo

SA=SS(1)
call AkEA(X3(4)

DARY

rALL AREA(XCL4),DAC)

—ER=2 xA3(13 /(-1 Y+ UELL1)

cC=2.#aC(1y/(G-1.)-UC(1)
e PA=PBEr(~UASARALDAA=UB(L)IwAB(1)«DABI*DT/2 +( A+AB(1))%«(SA-SBC1Y)I 2 ..

PA=QC+(~UA=AALDAA-UCCL)*AC(2)+DACI*DT/2,+(

ALz (G=1. . *(PALOAYLZAE

A+AC(1))+«(SA-SC(1))/2,

LA=.5%(PA=-QA)

1F(JC=-25316,185,15

15 wRITE(61,202!

~-102 FORMAT(/3X,32HTOLERANCE CANNOT BE MET [N P INTADDY . .

WRITE(61,103/1)GUESS,LA,AGUESS, AA

103 FORMAT(3X.7HUGUESS=,F15 B, 2X, 3HUA= F15,8,2 . JHAGUFSS=,E15. R, 2X 3HA

14=,£E15.8/)
— £0 I0_ 18

16 CONTINUE

1F(ABS(UA-UGUESS)~T01 317,117,114

17 TF(ABS(AA-AG“ESS)-T0L)18,18,14

——18 xxXG(IQr=xA

PPG(IQY=2.%AR/(G-1.)+UA

e £RGIQ) =2 . *AAy (G- 3-UA

AAG(IQY=AA

o uUG(IQ)=tA

SSG([Q)I=SA
YGEIIAY=XKe1)

¥GA(IQY=XxC(1?
19 FPONTINYE ..

IN=1A

RETURN
END
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19

2n

21

22

23

24

58
59
6n

61

62

6%

68

3200 FORTRAN (2.,1,0)/(RTS)

SURROUTINE POINTO(IIGC.KKQG,T,I1Q,KA,N,ID,DTP)

DIMENST

ON C1(L),XB(2),AB(1),UB(1Y,5B(1),C2(1),X%X8(2),88(1),DTT(2)

DIMENSION 11SS{1),PBB(1)

COMMON
COMMON
GCOMMON
COMMON
COMMUN
COMMON
COMMON
COMMON
COMMON
JC=n

G,DT,TUL, TOLO
XE(25)2DE(25),EPS(25),YC(25,3),M,XTL.XTR,XD

XXG(35U) .PPG(350),006(350),AAG(350),UUG(350),55G(350)
XG(3507,PG(350),06(350),AG(350),UG(350),56(350)
71(350),72(350),X6B(850),XGA(350)

PM1,PWL, PPM1,FPH1
PYPL,AL,UL,P1,01,51,A2,U2,P2,02,52,A3,U3,P$,03,5
NNOC10 ), Q0W(10),GOM(10),NG(10),QWE10),QM(1L),ANQT,NQT
MMCS (14), MMCST,MCS(10) ,MCST

CALL AREA(XG(KQ),DAQ)
AA=AG(KQ)
HA=UG(K®)

AGUESS=
1JGiIESS=
JC=JC+1

AA
UA

XAzXGIKQI+NTo# CUA-AA+LG(KQ)-AG(KQ)Y) /2.

Cie1)=X

A- .5« (UA+AA)*LT

CALL INTER(2,MN,1,21,XG,C1,XR)
IFCiD)23,20,29

IF(XR(1

1-XG(12)21,21,22

A3(1)=a2

uB(1)=h

2

SH(1)=82
GO 10 28

NTeP=0T

CALL INTER(Z,N,1,XG,AG,XB,AB)
cAati. INTER(2,N,1,XG,FG,X3,PHR)
UB(1)=P3R(1)-<.»AB(1)/(G~1.)
CALL INTER(E"V'l’XG)SG)XR‘SQ)
GO TU 285

NXX=XXG(II9)-AG(KKQ)

IF(XxB(1
NTT(1)=

)-XG(KNY))24,24,22
(xAaxXa(IIQ))/(UA+AA-DXX/DT)

IF(XA-XXG(IIQ))Y1,1,28

SA=SG(KQ)

XRO1)=0.

G0 10O 41
DB(1)=HUGRCITNI-DTT (1)« (UUG(11Q)-UG(KKQ)) /DT
ARCL)I=AAG(TIIQ)-DTT(1)*(AAG(IIQ)-AG(KKQ)) /DT

DTT(2)=

(XAaxX(IIQ))/((UA®AA+UB(1)+AB(1))/2,-DXX/DT)

IF(DTT(2))5%,05,58
IF(LTT(2)-DT)05,65,56
XB(1)=XA-DT= (UA+AA)

CALL INTER(Z,N,1,XG,AG,XB,AR)
CalLl INTER(Z,™,1,XG,LG,XR,UR)
YB(2)=XA-DT+ (UADPAA+UE(1)+AB(1))/2.
IF(XR(2)-XG(KAN))I61,€1,62
XH(1)=XG(KKE)

AB(1)=AB(KKG)

UB(1)=UB(KKS)

SB(1)=SG(KKG)

DTP=D1

GO TN 28

CONTINUE
IF(ABS(XB(2)-XB(1))~-TOL)64,64,63
YB(1)=x3(2)




64

24

27

28

34
190

33
4n

41

GO TO AD

DYP=DT

CALL INTFR(Z2,N,1,XxG,%¢d,XB,S8)

GD TN 2%

COMT [Nite
[F(ASS(DTT(Z2)=DTT(1))o.1Fa07)27.27.26
DTT(1)=DTT¢e)

GO TO 23
SB(1)=S3G(1I0)-DTT(L1)»(SSG(I1Q)~SG(KKQ))/DT
XBOL)=XXG(TiQ)-UTT(1)«DXX/DT

NTP=DTT(1)

PB=Z2.*#A3(1)/(9-1,)+UE(1)

C2(1)=ya-.5aD1x{A

CALL INTER(Zz,N.1,22,%X53,C2,XS)
IF(ID)29,29,3¢

TF(XS(1)~-xG(1)1380,30,31

8S(13=82

GO TH 37

CALL INTRR(Z,N.1,%XG,5G,X8,SS)

rN 10 27

TF(XS(1)-XGR(KNAYI33,23,29

DT (1) = (XA=XX(I1Q))/(UA-DXX/DT)
HUS=UuG(1TRY=DIT(1)»LG(11Q)-UG(KKN))Y/DT
DTT(2)=(XA-XXGCI[Q))/((UALUSY/2.«DXX/DT)
1F(UyTT(2))51,21.50

IF(UTT(2)~DT127,57,51

¥St1)=XAa-UADI

CALL INTFR(Z,M:1,XG,AG,XS5,USS)
XS(2)=XxA-DT*(VA+USS(1)) /2,
TF(XS(?2)-XB(KNR3))H3,53,54

8S(1)=SG(KKE)

60 TN 37

IF(ABS(XS(2)-XS(1))-T0L)56,56,55
XS(1)=¥5(2)

GO Th 52

CALL INTER(Z,%N,1,%XG,$G,XS,SS)

Go TN 37

CONTINUE
IF¢(ABS(DTT(2)-DTT(1))=.1E=07)36,36,35
PTT(1)=DTT(Z)

GO TD 34

QG (1)=SKG(TIQ!-DTT(1)*(SSG(I1Q)~SG(KKQ))/DT
SA=SS(1)

CALL ARZA(XA,UAA)

CALL AREA(XE(L1),DAB)
PA=PH+(-({A«AA*DAA-UB(1)*AB(1)*DAB)*DTP/2,+(AA+AB(1))«(SA-SB(1))/2.
NA=QGIKQY+ (=G (KQ) *AC(KQ)wDAN-UA*AA*DAA)*DT /2, +(AA+AG(KQ) ) *(SA-SG(
1Kar Y2,

AA=(G-1,)%(FPA+QNA)Y /4,

A= .5« (PA-QA)

TF(JC-25139,30,38

WRITE(AL,L0WM)

FORMAT /3%, 330TOLERANCE CANNOT BE MET IN POINTO)
UDTFF=GUESS-VA

ADIFF=AGUESS-AA

WRITE(61,101)AA,UDIFF,ADIFF

FORMAT (X, 2HX=,E15.8,2X,6HUDIFF=,E15.8,2X,6HADIFF=,E15.8/)
GO TN 41

JF (ASS(UA-UGUESS)-TOLY40,40,19
IF(AHS(AA-AGUESS)-TOL)Y41,41.19

XXG(1Q)=xA

DUGCTE)Y =1A

AAG(IQ)Y=AA

PPG(IUY=2 #AA/(G=-1.)4UA
ERG(TIQY=7, +AA/ (G-1.)-UA
SSG(IQ)=SA
XGR(IQY=XE (1)

XGOCI) =xG(xQ)

RETURN

END
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32006 FORTRAN (2.1,0)/(RTS)

SURROUTINE T AAVE 1(NQE)
COMMON G,UT,TYL,.TOLO :
COMMON XE(25),DE(25),EPS5(25),YC(25,3),M,XTL.XTR, XD
COMMON XXG(35U).PPG(350),Q00G(350),AAG(350),UUG(350),S8SG(350)
COMMON XG(350),PG(350),0G¢350),AG(%50),UG(350),8G6(350)
COMMON Z21(350),72(350),XGB(350),XG0(350)
COMMON PM1,PWLl,PPM1,FPW1
COMMON p;Pi:AlyulypltgllsliA2IU21P?’02’82’A31U3Ip3!03155
P1P1=1,
C=2.»G/(G=-1.)
Q2=S1-ALOG(R2F1/A2+%(C) /G
P1=2.%xA1/(6G-1.)+Ut
N1=2.%A1/(G~1.)-t}1
P2=2 . *A2/{G~-1.)+U2
02=2.*A2/(G=-1.)-U2
S4=52
Paz=pP2
ITERATION PROUEDURE EEGINS
u3=1.2
U3G=2uU3d
=-(G+1 . )*(L1~U3) /AL
7=(A+SQRT(A#xd+16.))/4.
ASAL=SORT((Z2.*(G-1.)%2%#2 )% (2 *xGwwx2~(Gwl.)))/((G+1.)*7)
AG1I=2,.#GwZ##22/(G+1.)-(G~-1,)7(G+1,)
AG?2=((1.4(G=2)*7%%2/2,)/((G+1.)eZ%22/2 ))*=(
DS=ALOG(AGL#AW2) /(G*(G-1.))
PIP1=AZA1xw(2.»G/(G-1,))*EXP(~G=DS)
P4P1=P3P1
A4=(P4P1I*EXP(VU»{S4-S1)))*w((G-1.)/({2.%*G))Yw"A
114=P4~2 , *A4/(0-1,)
U3=U4 ‘ f
IF(ABS(U3-U3G/-TOL)2,251
CONTINiIE
ITERATION COMYLETED
PM1=7
N4=2.,*pA4/(G=-1.)-U4
Pa=2 .*A4/(G~1.)+U4
A3=A3A1w*A]L
NI=2 . *xA8/((-1+1-UF
P3z2.%A3/(G-1.)+U3

§3=31+DS
PWwl=Ul+A1%pM1
T=0.

WRITE(AL1,119)

FORMAT(//3%,59TIME=,E15.8//)

WRITE(61,117)

FORMAT (DX, 1HT+7X,1HX,14X,1HP,14X,1HQ,14X,1HA,14X,1HU,14X,1HS/)
AQ=NAE-1

DO=(02-24) /74AQ

DO S KO=1,NGE

ni=Kp-1

XG(KQ)=xD

PG(KQ)=R?

NGIKN)Y=R2-NG*u]

UG(KO):.S*(FG(KO)-QG(KQ))
AGIKO)=(G-1,)*(PG(KQ)Y*QG(KQ)Y) /4,

SG(KQ)Y=S2
WRITE(61,101)R0,XG(KE),PG(KQ),QAG(KQ),AG(KQ),UG(KQ),»SC(KQ)
FORMAT(3x,13,0E15.8)

CONTINHE




WRITF(A1,131)

131 FORMAT(/3X,42HPROPERTIES ON LEFT SIDE OF CONTACT SURFACE)
WRITE(61,132)F4,04,U4,44,54
132 FOPMAT(3Xx,2hP=,E15.8,2HQ=,E15.8,2HU=,E15,8,2HA=,E15.8,2HS=,E15.8/)
WRITE(61,133)
133 FORMAT(/3X,43NPROPERTIES ON RIGHT SIDE OF CONTACT SURFACE)
WRITE(A1,132)F3,03,U2,A3,S53
WRITE(61,134) '
134 FORMAT(/3X,37MPROPERTIES ON LEFT SIDE OF SHOCK WAVE)
WRITE(AL1,232)P3,03,U3,A3,83
WRITE(AL,135)FM1,PW1
135 FORMAT(/3X,20HP SHOCK MACH NUMBER=,E15.8,/3X,17HP SHCCK VELOCITY=,
1F15,.8)
WRIT=(A1,136)
134 FORMAT(/3X,3BAFPROPERTIES ON RIGHY SIDE OF SHOCK WAVE)
WRITE(A1,132)F1,01,U1,A1,81
WRITE(AL,114)
3110 FORMAT(1H1)
RETURN
END
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3200 FORTRAN  (2,1.0)/(RTS)

SURROUTINE T WAVE 2(MNQE,NCS,N,JJ)
COMMON G: DT;TULD TOLQ
COMMIN XE(25)2DE(23),ERPS(25),YC(25,3), M, XTL,XTR, XD
COMMON XXG(35U),PPG(I50),QQG(350),AAG(350),UUG(350),SSG(350)
COMMON XG(350),PG(350),Q0G(350),AG(350),UG(350),SG(350)
COMMAN 21(3%0),72(350),XGB(350),xGR(350)
COMMIN PM1,PWL,PPML1,FPW]
COMMON P2P1,AL1,U1,P1,01,S1,4A2,U2,P2,02,52,A3,U3,P3,Q02,S
TC=JJ-1
T=TCxDT
XXG(1)=XD+DTr\I2-A2)
PRPG(1)=PR?
NRGC1L)=02
BAG(1)=A2
VUGE(1Yy=u?
88G(1)=5?
DO 30 I=2,NM(EF
YXG(I)=xD+DT=\UGCL)-AG(]))
PPG(1)=RPG(])
REGCT)=0G(T)
AAG(])=aG(])
HUGCI)Y=UG(T)
In SSG(1)=S8SG(I)
XCS=xD+U3*DT
NQ2=?
AQ?2=NQ2
NX2=(XCS-XXG(NQGE))/AG2
Kl=NQdE+1
NCS=NQF+NQ2
Ng 31 K=K1,N0D
XYG(AR)=XXG(K~-L)+DX2
PPH(X)=PPG(NQE)
NG (K)=3GG(ARE)
AAG(K)=AAG(NAR)
UG (K )Y = UGN QE)
S8 (X)=58GH(NQE)
31 COMTINIE
YSP=XU+0TePWw1
NQ3I=20
AQ3=nM3-1
Dx €= (XSP-XXG(NCS))/AGCS3
K2=N(CS+1
N=NCS+NGS3
DO 32 K=K2,A\
AK=K-K?
XU {KY SAXNGINCOY+DX3w AR
PPG(K)=”S
NOG(K)Y=QR3I
AAT (K )=AQ
LK) =J3
3> SSH(K)=S83
pPPM1=PM1
PPW1=Pwl
WRITE(EL,115) 1
115 FORMAT(//3X,5"TIME=.515.8,1X:3H(-)//)
WRITE(61,117)
117 FORMAT(5X,1r1+7X,1HX,14X,1HP,14X,1HQ,14X,1HA,14X,1HU,14X,1HS/)
no 33 1=1,NCS
33 WRITE(AL,1N1) 4, XXG(1),PPG(I),QQGC(LI),AAG(Y),UyuG(I),SSG(])
101 FORMAT(3x,13,0E15.,8)
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WRITE(AL,137)
137 FORMAT(3X,15HVONTACT SURFACE)
NCSKk=N[S+1
NGO 34 T1=HNCSk, N
34 WRITF(AL:101)4,XXG(I),PPG(I),Q0G¢I),AAG(T),UUG(],,SSG(])
WRITE(AL,135)FPM1,PPW1

135 FORMAT(/3X,20HP SHOCK MACH NUMBER=,E15.8,/3x,17HP SHCCK VELOCITY=,

1F15.8)
WRITE(61,110)
11n FORMAT(1k1)
no 3% I=1,N
XG1)Yy=xXe(I1)
PG(1)Y=PPG(])
QGCIY=RRG(T)
AGGCIY=AAG(T)
DGl =yc )
35 SGIY=SSG(D)
PM1z=PPFM1
PWi=PPW1
RETURN
FiND
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3200 FORTRAN (2,1,0)/(RTS)

SURROUTINE CONT(T,I1Q,.K0Q,JQ,JJQ,JCS,JJCS,NL,IIQ,KKQ,NN, IPGO)
COMMON G, DT, TUL,TOLG

covMun XF(25)2DE(25),EPS(25),YC(25,3),M,XTL,XTR,XD
COMMUN XXG(I5U),PPG(250),QQ0G(350),AAG(350),UUG(350),88G(350)
COMMON XG(3507,RPG(350),06(350),AR(350),UG(350),SG(350)
COMMON 71(3%03,722(350),XGB(3%0),%XGR(350)

COMMON PM1,FWwl,PPM1,FPW1

CuUMMON P?Pl-Aldll,PlpOl,51,A?.UZ.P2,02;32:A3:U30P3,03.AS3
COMMON V@100, 30W (10, 08M(10),NNC10),8WEL0),AMC10),ANQT,NQT
COMMON MMECS(1V) ,MMCST,MCS(10),MCST

COMMON XSHOCKVIG)

COMMON XCONTAVT(10),LCONTACT(10)

CALL CONTACT(LQ,KQ,JC6,Jd0,JCS,JJCS,N.IIQ,KKQ,NN,IPGO,T)
K=]0-1

TF(RA-MI1B,13,13

IF(KG-MCS(ULs)re, 1,2

Td=Tu+3

FO=Kf+1

NNz 1)

CALL PUINTO(IIQ.KKQ,T,I1Q0,K0,N,2,DTP)
IF(KN-M08(JCS))Y19,1,19

IF(xXG(i)e1,i4,3,3

CAI L SUPEND(IW,KN,N,NN, IPGO)

GO 70 13

TF(KN=-NI(JQII®, 5,8

TF(XYXG(IN)eXX2(]QR=-1))20,20,21

rg=10-1

CALL QSHOCK([w.KQ,J0,JJd0,JCS,JJCS,N,TIQ,KKQ)
IF(XSHACK(J.0=1)-XCONTACT(JJCS=-1))16,6,7

CALL CSCROSSOCT,IQ.KG,JQ,Jd3,JCS,JJCS,110,KKG,N)

60 10 2

TF(KG-N)9,13,13

TF(DTP)Y13,11,40

TF(XXxuri)exXa(]0=1)231,11,12

T2=17+-1

GO 106 2

TF(ARS{UTPaT2-TOL)12,13,2

CONTINYE

RETURN

EnD




3200 FORTRAN (2.1,0)/(RTS)

SURROUTINE CONTACT(1G,KQ,JQ,JJQ,I4CS, JJCS,N, [IQ.KKQ,NN,IPGOD,T)
DIMENSTON XP(€),AP(1),UP(1),SP(1),C1(1),%B(2),UB(1),AB(1),88(1),XC

1(2),00¢
DIMENSI]
COMMON
COMMON
COMMAON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
NCS=MCS
NCS2=MC
CALL QD
SL=SG(N
SR=SG(N
N1=eXP(
F=z1.+EYX
pTR=NT
HL=UG(N
AlL=AG(N
AC=0
U=uL
A=AL
JC=JC+1
1Z=0
IP=0
UR=UL
AR=AL/D
XR=XG (N
XL=XR
XP(1)=X
IF(XR-1
CONT Nt
IF(XP(1
CONTINY
CALL IN
CALL IN
XP(2)=X
IF(JCS~
IF(XP(?2

6 CONTINU

IF(ABS(
XP(1)=X
GO TO 2
CONTINU
XEND(L)Y
CALL 1IN
CALL In
CALL IM
NN=[Q+1
KQ@=N
[PGN=1
XXG(NN)
AAG (NN)
UUG (NN)

1),AC(L),C2(1),XS(1),8S(1)Y,SC(1)

ON YENW(1),AEND(1),VUEND(1),SEND(1)

G,DT,TJYL,TOLG
XE(25)+DE(25),EPS(25),YC(25,3), M, XTL,XTR, XD
XXG(3I5V).PPG(250),00G¢350),AAG(350),UUG(350),S5G(350)
XG(I50),PG(350),06(350),AG(350),UG(350),5G(350)
71(3%0),22(350),XGB(350),XG0(350)

PM1,PWl,PPM1,FPW1
p2P1,AL,U1,P1,01,51,A2,U2,P2,02,52,A3,U3,P3,03,53
NNQ(10),00W(10),00M(1N),NRC10),0W(10),0M(1U),ANOT,NQT
MMCS(1V),MMCST,MCS(10),MCST

XSHGCK(10)

XCONTALT(10),LCONTACT(10)

(JCS)

S(JCS+1)

IS(JQ,XDISL,XCISR)

CS)

CS+1)

(G=-1.)*(SL~SR)/2.)

P((G=1+)*(8SR-SL)/2,)

sy
csH

1
CS)+CT*(UR+UG(NCS+1))/2.

R-DT*(UR-AR)

. ‘2:32’32

=

)-1,)31,32,32

=4

TER(Z,N,1,XG,AG, XP,AP)
TER(2,N,1,XG,LG,XP,UP)
R-DT*=(UR-AR+UF(1)-AP(1))/2.
MCST)32,36,36

c
XP(2)-XP{1))-T1LY4,4,3
PL2)

£
=1.

TER(Z,40,1,XXC,AAG,XEND, AEND)
TER(2,10Q,1,XXC,UUG,XEND,UEND)
TER(2,40,1,XXC,SSG,XEND,SEND)

=1.000V01
SAEND (1)
SUEND (L)
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8>

83

J

6n

61

6>

63

64

84

856

76

SSG(NN)YSSENL (L)

PPG(NN)=2 , «AAG(NN)/(CGsl,.)+UUGINN)
NGB (NNIS2 . *xAAQ(NN)/(CGz1.)uUUG(NN)
XGRINN) =0,

XGO(NNY=D,

GO TO 75

IF(JCS-4C5T)81,83,83
MCS2=MCS(JCS+L)
IF(XP(1)-XG(NVS2))83,82.82
UP(1)=UGINCS2)

AP(1)=AGI(NCS2)

SP(1)=8G(NCS2)

SM1=UG(NES?)
SM2=(UR-AR+LP(1)=-AP(1))/2,
TR=T+(XR-XG(NvS2)-DT+SM1)/(SM1-SM2)
YQ=XR+SY2%(TO=T)

NTN=7-TQ

XP(1)=x2

1P=1

GG TU 6

CALI. IMTER(Z,N,1,XG,S6,XP,SP)
TF(XP(1)-XDIS")6,5,5

K1=NQ(JQ)

17=1

XP(1)=X5(K1)

AP(1)=AB(KY1)

NP (1) =UB(KL)

SP(1)=83(K1)
QP=2.*aP(1Yy/(u-1.)-UF(1)

CAl L ARZA(XA,UAR)

CALIL. AREA(XP (L) .DAP)

OR=OP+(-UP(1)*AP(1)*LAP-UR*AR*DAR) *DTQ/2,+(AP(1)+AR)*(SR-SP(1))/2.

C1L)=X.-DT=(UL+AL)/Z,

CALL INTFR€Z,M¥,1,21,XxG,C1,XB)
TF(XB(1)-XD1ISL)60,60,64
JL=NNQ(JJQe1)r1

JI=N0(JR-1)+1

NDUR= (UHGIJLY-VUG(J] ) /DT
NAR=(AAG(JL)=-AG(JINI/DT
DXO=(AQA(JIG=-2)+QW(JG=1)) /2,
XBOL)=YL+(UL+ALI« (XXC(JL)=XL) /7 C(UL+AL-DXQ}
TBT=(XB(1)exXa(JL))/LXQ
HB(1)=1JUG(JL)*DUB»TBT
AB(1)=AAGCJL)Y*DAB=TBT
NXPW=(UL+AL+UB(1)Y+AB(1)) /2.
XR21=XL+DXPUR(XXG(JL)=XL)/(DXPW=DXxQ)
IF(ABS(XxB(2)-XB(1))~TOL)63,63,62
X8(1)=xX3(2)

GO 19 61
SB(L)Y=SSG(ILI*(SSG(JILI-SG(JII))*TBT/DT
NTP==TRT

GO TO 65

COMTINUE

TF(JJCS=-2)RG,084,84

NCS1=MCS(JCS-2)+1

TF (XH(1)-XG(NUS1))85,65,89
MCCS1=MMCS(yJUS-1)+1
PXX=XCONTACT(VJICS=1)-XG(NCS1)
PTT1=(XL-XCONITACT(JJCS-1)) /7 (UL+AL-DXX/DT)

UB(1)=1CONTACH (JJCS~1)-DTT1+(UCONTACT(JJES-1)~UG(NCS1))/DT




AB(1)=AAG(NCCS1)-DTT1+(AAG(NCCS1)~-AG(NCS1))/DT
DTT2=z(XL=XCCNIACT(JJCS-1))/((UL+AL+UB(L)«AB(1))/2,=DXxX/DT)
IF(ARS(DTT2-DIT1)-.2EN7)88,88,87

pTTi=UTT2

50 TO A5

SB(1)=S3(NCST?

X8 (1)=XCONTACI (QJCS~1)-DTTLDXX/DT

NTP=i)TT1

GO TO 63

CONTINQE

CalLL IMTFR(Z,9,1,XG,LG,X8B,U8)

CALL INTER(Z,N,1,XG,406,%XB,AB)

CALL INTER(Z,™,1,XG,%G,XR,S8)

NTRP=DT

PB=2.+A8(1)/(L-1.)+UE(1)

CALL AREA(XB(L),DAB)
PL=PB+(-UB(1)*AB(1)*LAB-UL*AL*DAR)I*DTRP/2,+(AL+AB(1))»(SL~SR(1))/2.

20

9n
91

21

in
11

51
53

54

66

67
52

75

AL=(G=1 . Y% (FL*RR)/(2.%F)

UL=PL~-2.%AL/(u-1,)
1F(JC-30321,2V,20
UDTFF=U-UL
ADIFF=A-~AL
WRITR(61,90)

FORMAT(/3X,28RTOLERANCE NOT MET IN CONTACT)
WRITE(AL,91)X\,ADIFF,UDIFF .
FORPMAT(3X,3hXL=,E15.€6,2X,6HADIFFe,E15.8,2X,6HUDIFF=,E15.8)

GN 70 11
CONTINUE

TFOABS(UL=-1-10L)9,9,10
IFCABS(Al -A)-10LY11,12,10

GO TO 1

CONTINUE
NCSL=10+1
NCSR=NCSL.+1

MMCS (JJUS) =ACDL
XCONTACT(JICSI=XR
UCONTACT(JJCSI=UR
XXG(NCSLY=XL
PPG(NCSL)=PL
AAGINCSL)=AL
DUGINCSLY=UL

QRG(NCSL)=2.#AL/(G-1

SSGINCSL)=SL
XGR(NCSL)=XB (1)
XGO(NCSLYI=0,
XXG(NCSR)=XR
QUG (NCSR)=0R
AAG(NCSR)I=AR
UUR(NCSR) =UR

PPG(NCSR)=2,#AR/(G~1

S83(NCSR)=SK
XGR(NCSR)Y=0,
XGUL(NCSRY=XP (1)
TQ=NCSR

NN= ]G

110=1Q
1F€17)51,51,5V
KQ=Kt-1
KKD=K@

GO TO 52
1F(IP)154,54,59
KN=NCS?

GO TO 52

nn 66 1=1,N

L) =UL

) +UR

IF(XG(I)-XP(1))66,66,67

CONTINUE
KQ=N
KEN=KQ
GO TO 52
KQ=1-1
KKOsNCS+1
JCR=zJYCS+?
JJCS=0JCS+1
CONTINIZ
RETURN
END
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17

1R
19
2n
21

22

2%

24
25
10
11

2A
27

14

28

78

3200 FORTRAN (2.1,0)/(RTS)

SUMRIUTINE GOVWK(T,IQ,K0,J0,JJ0, JCS, JJCS,N,NN, IPGU

COoMMON
COMMON
CaMimON
CaOmMON
CU~aMON
COtMON
COMEqON
COMMAN
COMMON
COMMON
COMMON

3.DT,TUL,TOLO

Xk (25) 2 DE(25),EPS(25),YC(25.3),M,XTL, XTR, XD
XXG(35U),PPG(23%0),GAG(350),AAG(350),UG(350),55G(350)
XG(350).°6(3503,06(350),AG(350),U6(350),SG(350)
71(3500,72(350),XGR(350),XG0(350)

5M1,PWL,PPHML,FPW1
2yPY,AL.J1,P1,01,51,42,U2,P?,02,52,A3,U3,P3,03,538
NMOC100,30K(10),Q0M(10),NO(10),0W(L10),UM(10),ANGT,NQT
MMCS(1U), MMCST,MCS(19),MCST

XSHOCK10)

XCONTAUT (16),LGONTACT(10)

Cat L GSHCGCK(IY,KQ,JQ,JJ0,JCS,JJCS,N,TI1G,KKQ)

NINER QN

TF(JJdg-212n0,29,18
TF(XSROCK(JG@"1)=-XSHCCK(JJ0-23)19,19,20

CALL. UOROUSSG(H,IQ,K0,d0Q,Jd0,.Jcs, JJcs. 11Q,KKQ, N)
CONT [NpE

IQ=]10G+1
KQ=KQ(+1

Naj= 1 0

Calvi, POOUNTQCIIN,KKQ, T,10,KQ,N,1,DTP)
IF(XXG(IN)-:‘..)25'22122
CAlL L SUPEND(IW,KQ,N,NN.[PGO)

GO TG

8

TF(KQ-M3(JNYYEH, 24,28

G0 TN 17
IFIKQ-MTS(JLS))I26,10,66
TFOXYXG(ig)exXa([R=-1))21,11,28

TQ=10-1
?8

GO ThH

IF(KN)-N)P7,28:28

COMNT INi=

IF(DTP)1»,15,14
TFOXYGE[i)exXu([Q=1))15,15,16

Td=1Ty-1
71

RO TO

COMT TNUIE
TF{ABS(DTP«CTI-TNL)2E, 28,21
CONTINNE

PETURN
Fivh
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3200 FORTRAN (2.1,0)7/(RTS)

SIHROUTINE GSHOCK(IQ,KQ,JQ, JJO,JES, JJICS,N,11Q,KKQE)
DIMENSION XL (&), AL(1),UL(01),8L(1),XC(2),AC(1),UC(1),8C(1)
COMMON XE(25)+DE(25),EPS(25),YC(25:3),M,XTL,XTR, XD
COMMON XXG(35v),PPG(250),0QG(350),AAG(350),UUG(3I50),SSG(350)
COMMON XG(350?,PG(350),QG(350),A6(350),UGB(350),8G(350)
COMMUN 71€350),22(350),XGB(350),x%G0O(350)

COMMON °M1,FPWl,PPM1,FPW1

COM4ON 92P10Al’ulpp1161151)A23U2,P2}Q2P825A30U30P3D0315‘5
COMMON NMQC107,Q0RW(10),Q0MC10),NQCL10),QW(L0),QM(10),NNGT,NQT
COMMON 4MCS(1U),MMCST,MCS(10),MCST

COMMGON XSHOCK(10)

COMMON XCONTALT(10),LCONTACT(10)

NL=NQCJQA)

Catt XDISCOMN(JQ,JCS,XDISR,NQOCS)

JC=0

NQSH=QW(JQY

GUFSS=NUSW

17=0

JC=JC+1

WA= (QQSW+QW(JW)Y) /2,

XLO1)=XG(NL)Y+UT»WA

¥R=XL (1)

[F(JJCS-112,221

JF (XCONTACT(UYCS-1)-xL(1))2,4,4

TF(JJuE-115,3,9

IF(XSHOUK(JuQ~1)-XL(1))5,4,4

ALCL)=AGINL)

L) =G (NL)

SL(13=8G(NL)

GO TO &

CONTINUE

CALL INTER(Z,10,1,XXC,AAG,XL,AL)

CALL INTER(Z,10,1,XXC,UUG,XL,UL)

CAIL INTER(?-‘O:l,’(XGoSSG)XLrSL)

COMTINUE

PL=2.#AL(1)/(¥-1_)+UL (1)

QL=2.%xAL(1)/(w=-1,)-UL(1)

0NSM=-(RASW-UL (1)) /7AL (1)
DUS2.%(2.-0CSM*»2)/((G+1.)*QASM)

UR=UL(1)+Du*AL (1)

AR=(SQRT( (2, +{G=-1,)#CQSM**2 ) (2 , #G~QNSM*w2-(G=-1,)))/((G+1.)*CASM))

1*Ai_(1)

XC(1)=XR-UT* (UR=-AR)

CONTINUE

CALL INTER(2,N,1,XG,AG,XC,AC)
CalL INTER(Z,WN.1,XG,LG,XC,UC)
XC(2)=XR-DT«(UR-AR+UCt1)-AC(1)) /2,
IF(ABS(xXxC(2)=-AC(1))-TOL113,13,12
XC(1)y=xC(2)

GO T0 11

CALL INTER(Z,N,1,XG,SG,XC,SC)
JF(XC(1)-XDISR)17,17,14
IFINNDCS=~-1)17415,16

Ki=nND{Jg3+1)

17=1

XC(1)=XG(K1)

AC(1)=AG(K1)

UC1)=uG(K1)

SC(11)=SG(K1)
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80

14

17

18

9n

91

2n

21
22>

27

23

24

foo1n 17

K1=MCSJUS)Y

J7=1

XC(1)=xs(hy)
ACCL)=AG(KL)
UCeLYI=nhihg)y
QC(1)=SHR1)

CalLL ARES(XC(L).DAC)
CALL AREFA(XR,UAR)
QC=2.*AC(1)7(w-1,)-UC(1
NR=2,%*AR/(G=1)-1R
NEL = (WR=-PLY/Z7AGIL)

CALL SHOLK(LEL,JOSM,LRAT, ARAT,PRAT.DS)

SR=SL(1)+0US

NR=QC+t~AC(1)*UC(1)*CAC-AR*JR*DAR)*DT/2. .« (AR+AC(1))*(SR-S5C(1))/2.

NEL = (QR-CLY /AL (D)

CAl L. SHUUK(CEL.QQSM,LRAT,ARAT,PRAT.DS)

DOIW=UIL (1) wAL L1 2QASH
1F(JC-40)19,19,18
DIFF=ARS(QOSW-GUESS)
WrITEC(L1,90)

FORMAT(/8X,33NTOLERANCE CANNOT BE MET

WRIT=(AL,91)YDLFF

FORMAT(3X,14HI0LERANCE MET=,F15.8/)

GG TN 20
CONTINDE

)

THCASS (QUSW-GUESS)-TCL)I20,20,10

NOw(JJINI=NOSW

QR (JJN)=00SM

no 21 1=1,1¢
JE(xxG([)-XR)E1,22,2¢2
CONT INUE

10=1

NNGCJIR) = IR

XSHOUK (JJQY=Xk (1)
yx=R(1Q@)y=xL()
PRE(TIWY=PL

NEECIP)Y=GL
AACCIGY=AL 1)

HUG IRy =L (1)
SSfHcIgy=<L(1)
YGRIUWY =t .

XGreiny=n,

Tu=[0+1

Iie=1iu

¥XG(IOY=XxR

NRGCIR)=CR
AAGCIU)YZAAG(TU=-1)*ARAT
NUR{IQ)Y=7.«AAc  [Q)/(Cx1
PRiz(TIWY=2. . «aALCIN)/(Ca1
SSHETEPY=SSh(lw-1)+08
YGRIG)Y =G,
YGeIysxCey
IF(I173Y28,2&,2/

KQJ=K1-1

KKO=wI()

GU TO ?>

COrTINGE

Du 23 I=3.n8
THOXGB(I)=-XC(12323,23,24
CONTINCE

Ki=N-1
KKOZKQ

G TG P>
KQ=1-1
KK=NMQ(J0) +1
JansJddn+1
JO= g+
RETURN

FND
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3200 FORTRAN (2.1.0)/(RTS)

SURROUTINE SUFEND(IQ,KQ,N,NN,IPGNO)

DIMENSTON XENV(1),PEND(L1),QEND(1Y,SEND(1)

COMMIN &,DT, TulL,TOLQ

COMMON XE(25),DE(25),EPS(25),YC(25,3),M,XTL,XTR, XD
COMMON XXG(35U),PPG(250),00G(350),AAG(350),UUG(3%0),SSG(350)
COMMION XG(3507,PG(350),QG(350),A6G(350),UG(350),8SG(350)
COMMON 721(3507,72(350),XGB(3506),XGQR(350)
XExpD(l)y=1, .

CALL INTER(Z,4G,1,XXC,PPG,XEND,PEND)

Cat.L INTER(Z,40,1,%XXC,0Q0G,XEND,QEND)

NN=19

¥YXG(NNY=XEML (1)

PPGO(NNY=PENLC (1)

NG (NN)Y=QENL (1)
AAG(NN)I=(Gel . ) x(PPG(NN)+0QG(NN)) /4.
UUGINNYIZ. D% (PPGINN)Y-CUG(NN))

SSG(NN)Y=SENLD (1)

XGR(NN)=0.

XGR(NN)=O0.

KQ=N

1PGO=1

RETURN

END
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3200 FORTRAN (2.1.0)/(RTS)

SURROUTIME SUGEND (NN, N)

COMMON G,DT,TYL,TOLG

COMMON XE(29)2DEL2%),EPS(25),YC(25,3), M, XTL,.XTR, XD
COMMON XXG(35V),PPG(3%0),G0G(350),AAG(350),UG(350),886(35n)
COMMON XxG(350?,PG(350),0G¢(350),AG6(350),UG(350),SG(350)
CUMMON 71(350),72(350),XGB(350),XGA(350)

DIMENSTON XB(L),2B(1),UB(1),SB(1),S18B(2)

JCH=10

NN=NN+1

AM2= (XXGI(NN=-1)-XG(N)) /DT

XXG(NNY=T,

CAtL. ARPEA(XXGINN),DAE)

UG ONNY 2UUG (N =1)

10 UGUESS=UUGEANY

20 AM1=UUG(NNY
SIB(1)=(1.wAML*DT-XG(N) )/ (AM2-AM1)

11 URBCL)=UGIN)I+SIB(1)*(LUGI(NN=-1)-UG(N)) /DT
AMA=(UUGI(NN)+UB(1)) /2,
SIB(2)=(1.aAML*DT-XG(N) )/ (AM2~-AMT)

CIFCABS(SIB(Z2)=SIB(1))=T0OL)Y30,30,12

12 SIB(1)=SiB(2)

GO 7O 11

In SSGINN)=SGINI*SIB(2)* (SSG(NN=-1)-SG(N))/DT
IF(JCH-21132,34,31

31 AAG(NN)=UUG (NN)

Gn 10 34

32 AAG(NNI=EXP((u-1.)*SSGINNY/2.)

34 AML=UUGINNY+AAG(NN)
SIB(1)=(1, 0 AML*UT-XG(N))/(AM2-AM1)

13 UB(L)=UGINI+SIBL)Y* (LUG(NN=-1)-UG(N)) /DT
AB(1)=AGINY+SIB(1)*(ARG(NN~1)-AG(N))/DT
AMI=(UUG(NN)+AAG(NN)+UB(L)+AB(1))Y /2,
SIH(2)=(1.,eAMiI*OT«XG(N))/(AM2-AMY)
IF(ABS(SIB(Z)"SIB(1))=TOL)15,15,14

14 SIR(1)=SIB(Z)

GO TN 13
15 SB(1)=SSGINYI+SIB(2)»(SSG(NN=-1)~-SG(N))/DT
¥BOLI=XG(N)+AM22S]3(2)
DTP=DT-S1B¢1)
PB=2.*A3(1)/(v-1.)+UE(1)
CALL AREA(XB(4),DAB)
NDE=-UUG(NN)*AAG(NN)*DAE
DDE=-UR(1)xAB(1)*DAB
PPG(NN)=PB¢(DUE*DD8)*DTP/2.+(AAG(NN)*ABli))v(SSG(NN>-SB(1))/Zf
IF(JCh-1135,309,36
33 UUGINN)SPPGINN) =2 , *AAGINN)/(G-1.,)
GO T0 37

36 LIGINN)I=(Gel ., ) *(PPG(NN)/(G+1.))

37 CONTINUE
TF(ABS(UUG(NN)-UGUESS)~-TOL)14,16,10

14 JF(JCH-1)23,17,19

27 XGR(NNY=YB(1)

XGRONNY=O,
IF(UIGINN)aAALBINN)Y24,17,17

1.7 JCH=1
UG (NN = UG(NIN=1)

HGUESS=uUG (AN
GO TN 26

19 XGH(NN)Y=XH(1)
¥GO(NNY=1,

24 QOGINN)=ZZ.2AAG(NN)/(Cxl.)cUUG(NN)

RETURN
END
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3200 FORTRAN (2,1.,0)/7(RTS)

SURROUTINE GEUM(ME,XE,DE,EE,C)
NIMENSION XE(Z5),DE(2%),EE(25),C(25,3)

1=ME-1
Ng 31 I=2,M1
J=1-1
Ci1,2)=(DECI)-DECII)IZIXE(])=-XE(JY)
CCl,1)=0E(CT)-BE(])*C(],2)
Ce1,3)=((DE(I+*1)-DE(CI))/Z(XE(I+1)eXEC(I))=C(].2)) /(4. *xEE(]))
RETURN
END

31

"QUKROUTINE AREA(X,DA)

——COoMMON 5.07,Tgl .T0LG
COMMON XE(25), DE(25),EPS(25) YC(25t3) M,XT

~

» XTR,, XD

rbD=0.
e 10 47
27 CONTINUE :
. IF(x-1.)29,28.28. .. _..____
28 nA=0,
—  L=DE(M) — . e e
nh=g0.
60 _T0 47
29 M1l=M+1
e 0O 3G Iz, ML
IF(X-XF(]1))33,33,30
30 CONTINUE .
32 D=(DE(I-1)- DE(I))/(XE(I 1)-xE(I))
P=DE(]-1)+DD=x ¢ X~-XE(]=~1))
CO TO 46
33 yA=xE(I-1)eEPS(l=-1) . _
YB=XE(IY-EPS(])
— I1F(XA-X)41,32,42 __
49 1F(XB-%)44,38,32
42 k=1-1 -
60 TO 45

Kz T o o - e e

—44.

45

46

Ql=X-(XE(K)- EPS(K))

P=YC(K,1)+YC K, 2)«S1+YC(K,3)2S x22

PD=YC(K,2)+Z2.«YC(K,3)*S]
PA=2 *Di/0)

47

——RETURN

CONTINUE

FND
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1n

11

1>

3200 FORTRAN (2.1,0)/(RTS)

SHRXOUT TNE CRYSSCIQ,K0G, J0, JJO,NEWQ)

COMMON
COMMON
CUMMON
COMMON

XE(22)2DE(25),EPS(25),YC(25,.3),M,XTL . XTR, XD
X¥G(E5U),PPG(E50),Q0G(350),AAG(350),UuG(350),856(350)
XG(350),PG(350),Q6G(350),AG(350),UG(350),8G(350)

COMMON Z71(3%01,722(350),XGB(350),XGA(350)
COMMON Pm1,PWL,PPML,FPW1

COMMON PzkF1,AL4,U1,P1,061,S1,A2,U2,P2,02,52,A8,U3,P35,Q33,S3
COMMON NNQ€10),90W(10),Q0M(10),NQC210),0WC10),QM(10) ,ANQT,NQT

COMMAN MMUES(19),MMCST,MCS(10),MCST

COMMUN xSHOCKV1Q)
NEW@=U
IF(JJ0-2¢312,149,10
K1I=NNW(JJGB=1)

TF(ASGS(XXG(KL1/-XXG(IGY»)~-.004)11,11.,12

1Q=102-1

G TO 4
CONTINULE

No 1 I=1i,NQj
Ko=nNO(T)
TFCARSIXGIKG)=XG(K2) )«
CoNTINNE

Gn tu 3

LA=16-1

XX L)Y =X XG(IW)
PRPG(LA)Y=PPG(TE)
NOLLAY=00G(IW)
AAGOLYY=AAG(TW)
HUG LG =UUG W)
SSGLEY=SSG(Tw)
XGROLGY=XGR (W)
XGULAY=XEQ (W)
Q=02

GO 7O 4

-.004)2,2,1

DO=(RRGCTIRY-QUWG(IQ-1))/AAG(CIQ-1)

QM (Jun)=1,1

CALL SHOCK(LN»OGM(JJC),URAT.ARAT,PRAT.DS)
CN= (JdM)=UUELI0-1)-AAG(I0<1)*QOMCUUR

YXGOIQY=XXGB(TuWw-1)
NN (JIDY=1N=-1
NEw@=1
XSHOCK(UJBY=XAGLTQ)
Jan=JJdn+1

ComT INtg

PETURN

FND




3200 FORTRAN (2.1.0)/(R7TS)

SUKROUTINE GCROSSQ(T, IQ,KQ,J0,JIN,JCS,JJCS, 110, KKO,N)

coMmMON G,DT,TYL,TGCGLQ

COMMON XF(285),DE(25),EPS(25),YC(25,3),M,¥TL,XTR, XD

COMMON XXGE(25U),PPG(250),Q0G(350),AAG(350),UUG(350),SSG(350)
COMMON XG(3I507,PG(350),QG(350),AG(350),UG(3%0),SG7350)
COMMON 71(35070,22¢C350),X6B1350),XG0(350)

COMMON ©PM1,FWl,PPM1,FPW1

COMMON P2P1,AL,U1,P1,01,51,A2,U2,P2,02,52,A3,U3,P3,03,S3

COMMON NNGQ(10/7,00W(10),Q0M(10),NQ(10),0W(10),QM(10),NNQT,NOT

FOMMON MMCS(1V),MMCST,MCS(10),MCST
COMMUON xSHOCKY10)

COMMON XCONTAVLT(10),LCONTACT(10)
Ki1=Ju-2

K2=J44-1

KE=NQG(K1)

K4=K3+1

K5=NQ(K2)

Kb=K5+1
AMI=(QDA(JIE-2)+NWIJCe1)) /2.
AMP2=(DNA(JIE~-E)+OW(JC=2)) /2.,
TIN=(XSAGUK(UYGE=-1)-XSHOCK(JJN=-2))/(AM2-AM1)+T
XIN=XSHOCK(GJW=-1)+AMI*(TIN-T)
S84=5G(K6)

PNA=NG(L6)

1Htjs =)@ (K6)

BGEUESS=uLb

D= (JiS-UGIK3 ) /AG(KZ)
OMEH=(=DUx(G+1+) /2. +SCRT((DUw(G+1,)/2.)%+2+4,))/2.
CAtL SHOCKO(QHS,DUS, AKAT,PRAT,DS, DM
AADzARAT*AGG(KY)

Q8h=SG(X3)+LS
AAGzAAB=FEXP((8-1,)*(584-S851/2.)
Hila=2 . *Ap4/((371.)«Q04

Uus=nu4s

IF(ABS (D eGUVESS)-TCL)7,7,56

NMWH =G (43)eAG{KI) »QME
XS=XIN+UWS*(T=TIN)
YOS=XIN+UUBK (I =-TIN)

DO 8 I=1,10 :
IFOXXGCIY=-XSHUCK(JJQ~1))8,9,9
CUONTINilE

10=10+1

GO M 4p

10=7

¥Xt(IQy=x$§

PPE(IQY=PGIKT I

COG(IN)Y=0G(nI)

AAG(TUW)=zALE(K3)

S CTQY=UG(K3)

SSG(IG)=SG (K3

¥YGR(I1Q)Y=0,

XGLeIgY=0,

NI EN NI

XSHOCK(JJBY=XS

NNGCJUNYI=10

ORUIJJIN)I=QWwS

NAMJIN) =M

JJN=JJn+i

TR=1G+1

XX {Q)Y=xS
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BAGCTWY=AAD

UufRctQr=ngys
PPG(IUY=Z,.«»4A0 ([N} /(Ca1.)+UUGCIRY
NRGCINY=Y , *AAS (I /(Ca1.)=aUJG(]Q)Y
SSL[Q3)=885

YGr[Q)Y=0.

XGN{IQy=n.

10=]0+1

MMOS(JJCsY =10

YXG(IaYy=YCs

PPG(IQ)Y=FPE(Tw-1)

NHOCIMY =REG(Tw-1)
AACCTOYZAAG(TW=-1)

PG (I =0UG (T E=-1)
SSGHETY=SSG(1¥-1)

XGrIG)y=n,

XGOolgy=ao,

YCONTACT (UJCS)I=XCS

HOOGNTACT (JJCSI=ylUa

JJINS=JICS+1

TA=10+1

¥XG(1Q)=XCS

AaG(IHYZAAL

G cldy=tiys

PPLITM) =z, wapu( [N/ (Gl )y+0YGCINRY
NEGCIQY=sz. . »aAG(IN)/(C21.)=2UUGCIQ)
SSG(IQ)Y=S8S4

XGrIQ)y=u,

XG(IQy=0n,

TIn=1G

KKO =<0

RETURN

FND
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18

19

3200 FORTRAN (2.1.U)/(RTS)

QURROUTINE MOVE(NN,N, IPGODY

COMMON
COMMEGN
CoMMan
COMMON
COMMION
COMMIN
COMMON
CO~MON
COMMON
NG 14

G,DT.TUL,TOLQ
XE(?j)‘UE(ZS)n&pS(ZS))YC(?5'3)’M’XTLpXTRIXD
XXG(35V),PPG(250),00G(350),AAG(350),UUG(S50G).SSG(350)
XG(330),PG(350),0G(350),AG(350),UG(350),8G(350)
Z1(3507,72(350),XGB(35%0),XG(350)

OM1,FWL ,PPM1,FPW1
PPF1,AL,101,P1,01,S1,A2,U2,P2,n2,52,A3,U3,FP3,Q3,S4
NMOQCLD 2, QOWCL10), 00M(10) L, NQCI0),GWE10),AM(2IL) . ANQT,NOT
MMCS (1Y), MMCST,MCS(10),MCST

T=1,NN

XGL)=xXG(I)

SPGCLy=PRG(D)

NGET)Y=NRG(T)
AGCLY=AAG(T)
HECLy=JG (1)
G 1)Y=S8SG(T)
Nz

NIV aNANNT

N 195 [ =1,N6T
NG YSNNDC])
fw(Iy=03ull)
CMOf)y=aumer)
MOT1=NOT+1

RO 1A IT=puT1, L0
MiYCp)=N

MOSTamMmMIgT

ney 17

T=1,MCS!

MCS(I)=MMCS( T

MAIzMOST+1

np 21

[=r3,110

MCS(I)=U
[FefIrGnI19,18.19
PMizPPM]
PwizpPPW1
CONTINGE

RETURN
END
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3200 FORTRAN (2.3.,0)/(RTS)

SURROUTINE CSVROSSQ(T,I0,K0,J40,JJ8,JCS,JJCS,116G,KKQ,N)
CoMMON G,DT,TYL,TOLQ
COMMON XE(25)2DE(25).EPS(25),YC(?25,3) .M, XTL,XTR, XD
COMMON XXG(35V),PPG(I50),00G(350),AAG(350),UUG(350),5SG(350)
COMMUN XG(3507.PG(350),0G(350),AG(350),UG(350),S6(350)
COMMON Z1(350),722(350),X6GB(350),XGN(350)
COMMON PM1,PWL,PPML,FPW]
COMMON P2P1,AL1,U1,P1,01,51,42,02,P?,02,52,A3,U3,P3,Q3,53
COMMON NNQ€10),00wW(10),Q0MCL0),NQ(L0) . QW {10),QM(10)ANQT,NQT
COMMON MMCS(1Y),MMCST,MCS(10),MCST
COMMON XSHOCKI1D)
COMMON YXCUNTAUWLT(10)Y,LCONTACT(10)
K1=NQ(JQ-1)
K2=MCS(JCSe1)*1
K3=M(CS(JCSel)
K4=«3+1
KS=NG(JO-1)
K6=2KH+1
DXDTCS=(UCONTACT(JJCS 1) +UG(K2)) /2.
NDXDTS=NW(JB=1"
TINZT-DT+(XG(N1)=-XG(K2))/(DXDTCSeDXDTS)
XTN=XG (A1) +CXWTS=(TINGT+DT)
IF(TIN-T)9,8,0
g8 TIN=T
9 SS4zSG(KE)
NR4=0G(X6)
s zUGK6)
11 UGUESS=UUDS
DU=(UUS-DGIK3 ) ) /AG(K2)
OMS=(-DU*(G+1+)/2,+SCRT((DUx(G+1,)/72.)**2+4 ,))/2.
CALL SHICKQ(QrS,DU%, ARAT,PRAT,DS,DQ)
AAS=ZARAT»AG(KO)
S85=SG(K3)+CS
AA4zAASFXP( (-1 ,)«(S54-555)/2.)
Ué=2.«AA4/(G~1.)-0QR4
HyS=yu4
IF(ABS (U5« ,GUESS)-TCL)Y11,11,10
11 OWS=UG(K3)eAGLKS)»OME
PRPLOLDZ?2 . «G+WM(JQ-1)#*2/(G+1,)-{G~1.)/(G+1.)
IF(PRAT-PRPLOWD)2,2,1
1 WRITE(61,100)
10n FORMAT(3X,33HCONTACT SURFACE CROSSES A @ SHOCK/)
OMNEW=SQRT((G* L. )« ((AAL/AGIKE) ) ** (2 *G/(G=1.))+(G~1.)/(G+1,))/(2,%
1G))
WRITE(61,101)WMNEY
101 FORMAT(3X,31HIHE REFLECTED WAVE IS A P SHOCK,2X,5HMACH=,E15.8)
WRTITE(A1,102)FRAT
102 FORMAT (3X,33HPRESS RATIO OF TRANSMITTED SHOCK=,E15.8)
WRITE(61,103)FRPLOLD
107 FORMAT (3X,30HYRESS RATIO OF INCIDENT SHOEK=,E15,8)
WRITE(6K1,104)
104 FORMAT(3X,56HIHE PROGCRAM TREATS THE P SHOCK AS VERY WEAK AND DROPS
11T
WRITF(61,105) 1IN
105 FORMAT (3X,69HIF THE F SHOCK IS NOT WEAK, ALL RESULTS ARE NOT CORRE
1CT LATFR THAN T=,E15.8) :
WRITE(61,110)
110 FORMAT(1H1)
2 CONTINUYE
XS=XIN+QWSa (T-TIN)




XCS=XIN+UUSR (I =-TTIN)
Do 12 1=1,16
IF(XXGC])=XSHUCK(JJB~1)112,13,13
CONTINUE

IQ=10+1

GO T3 14

10=1

XXG(IQyY=XS
PPGR(1Q)Y=PG(K3/
NOGCINY=0G(KI)
AAG(IQY=AG(K3)
HUG(IE)Y=SLUG(K3)
SSG(IQ)=8G(KI)
XGR(IQY=0,
XGUeIR)Y=n,
JJdt=Jdn-1
¥SHOCK(JJQY=X>
NND(JJ) =]Q
QOW(JJN) =AWS
0OM(JJn)=QMS
Jdn=JJyn+1

10=19+1

XXG(IQ)=XS
AAG(IN)=AAS
UUG(IQR)Y=YUS
PPG(LIQ)Y=2.#0AG(I0)/(Cal.)+UUGCIQY
ORGCIQ)Y=2.»aAG([Q)/(Cal.)uUUG(IQ)
SSG(IQ)Y=8Ss
XGR(IQyY=n,
XGO(IQ)Y=0,

10=10+1

JJCS=JJCs-1
MMCS(J.JCS)=10
Xx®(IQ)=xCSs
PPR(IQ)=PPG(IU-1)
NRG(TEY=RQEG(TW-1)
AAG(IQ)Y=AAG(Iw-1)
UUG(IQ)Y=UUG(Tuw-1)
SSG(1QY=8S86(Iv-1)
YGr(IQy=0n.
XGo(Iwy=0,
XCONTACY(JJCS!=XCS
LDCNNTACT (JJCSI=UUS
JJCS=UJCS+1

10=1Q+1

XXG(IWw)y=xCSs
AAG(IQY=AAS
Hysc[@y=uu4d
PPE(TIQ)=Z.«8A(I0)/(Cal ,)«UUG(CIQY
GHGIIRY=2.«AAG(]0)/(Ca1.)aUJG(IRY
SSG(1QY=8S4
YGR(IQY=0.
XGaoiay=o,

Tin=1Q

KKO=K(Q

RETURN

END
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3200 FORTRAN (2.1,0)/(RTS)

SUHROUTINE SHUCKN(OM, DU, ARAT,PRAT,DS,DQ)

COMMON G

NUz2.%*(1.-OM**2) /7 ((G+1.)*QM)

ARAT=SORT( (e, *(G=1.)#0Mw*#2 ) w (2. *G*OMwa2=-(G=-1.)))/((G+1,)*QM)
PRAT=2  *GwQM*®2/(G+1.)~(G=z1.,)/(G+1.)
AG1=22.*a+QM**&/(G+1.0=2(G-1.1/7(G+1.)
AG2=((1.+(G=1+)%QM**Z/2,)/((G+1.)*QOM**2/2,))%**(
DS=ALOG(AGL*AG2) /(G*((G~-1.,))
DN=2.*ARAT-1.)/(G-1,)+DU

RETURN

END

3200 FORTRAN (2.1.0)/(RTS)

SURROUTINE GDUIS(JG,XDISL,XDISR)

COMMON G,DT,TUL,TOLQ

COMMON XE(25),DE(25),EPS(25),YC(25.3),M,XTL,XTR,XD

COMMON XXG(35U),PPG(250),00G(350),AAG(350),UUG(358),SSG(350)
COMMON XG(350),PG(350),0G(350),AG(350),UG(350),8G¢350)
COMMON Z1(350),¢£2(350),XGE(350),XGR(350)

CNMMON PM1,FWLl,PPM1,FPUW1

COMMON P2P1,Ad,U1,P1,01,S1,A2,U2,P2,02,52,4A8,U3,FP3,02,S3
COMMON NNQ(10),00W(10),QAM(10),NQ(20),0W(10),8M(10),ANGT,NQT
IF(NQT)Y1,1,2

xDISL=0,

XDISR=1.1

GO 70 9

IF(NQT-J0)5,3:6

IF(J0=-1)4,4,8

K1=NQ(JB)

XxNDisL=0.

XDISR=xG(K1)

GO 10 9

K2=NQ(JB-1)

T XDISL=XG(K2)

XDISR=1.1

Go 70 9
IF(J0-137,7.,8
K1=NQ(JQ?
XDisL=0.
XDISR=XG (K1)
GO T0O 9
K1=NO(JQ)
K2=NQ(JQ-1)
XD1SL=XG(K?)
XDISR=XG (K1)
CONTINUE
RETURN

END
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3200 FORTRAN (2.1.0)/(RTS)

SUBROUTINE XDISCON(JG, JCS,XDISR,NQOCS)

COMMON G,DT,TUL.TOLG

COMMON XE(25)sDE(25),EPS(25),YC(25,3),M,XTL,.XTR,XD
COMMON XXG¢35V),PPG(235%0),00G(350),AAG(350),UUG(350),SS5G(350)
COMMON xG(350),PG(350), 0G(350).AG(350).UG(350).SG(SSU)
COMMON Z1(3502,22(350),XGB(350),%XGR(350)

COMMON PM1,PW1,PPM1,FPW1

COMMON P2P1,A1,U1,P1,01,S1,4A2,U2,P2,02,52,A3,U3,P3,03,S3
COMMON NNQ(¢10),00W(10),Q0M(10),NQ(10),QW¢10),QM(10),NNQT,NQT
COMMON MMCS(1U),MMCST,MCS(10),MCST

IF(MCST)3,3,1

1F(MCST-JCS»3,2,2

K1=MCS(JCS)

XRCS=XG (K1)

GO 7O 4

XRCS=1.1

IF(NQT-JQ)6,6:5

K1=NQ(JQ+1)

XRQS=XG (K1)

GO 10 7

XRQS=1.1

XDISR=XRQS

NGOCS=1

GO TO0 11

XDISR=¥RCS

NQOCS=0

GO 70 11

¥DISR=XRCS

NQOCS=2

CONTINUE

RETURN

END .

3200 FORTRAN (2.1.0)/(RTS)

SUBROUTINE SHUCK(DEL,SM,UR,AR,PR,DS)
COMMON G,DT,TUL

Si=-2.

S2=(G+1.)*(DEL+2,/(G~1.))

S3=2.

S4=8.*G/(Ge1.)

§5=16.+G/(G-1.)»*2-4,

S6=-8./(6G-1,)

T1i=S1%#2-54

T2=2.%+S1»82

T322.%S1+S3+5¢%%2-55

T4=2.+52+S3

T5=83*+2-56

SMG=SM
F=T1#SMrxdeT2*SMea3+TI*SMwx2+T44SM+T5
FP=4 ®#T1#SMawO+3 #T2+5Man242 »xTIeSM+T4
SM=SMG-F /FP

IF(ABS(SM-SMG)-TOLY2:251

CONTINUE
UR=ABS(2.,%(1,.~SM*22)/((G+1,)*SM))
AR=SQRT((2,+(6-1,)#SFu*2)« (2, wGaSM*%2-(Gol.)))/{(G+1,.)*SM)
PR=Z2.%GxSMe*2/(G+1.)~-(6-1,)/(G+1,)
AG1=2.»5#SMexd/{G+1.)5(G-1.)/(G+1.)
AG2=((1,4(G~1+)*SM**Z2/2,)/((G+1.)*SM*%x2/2,))**G
DS=ALOG(AGL*AE2) /(Ga(G-1.))

RETURN

END
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3200 FQRTRAN (2.1.0)/(RTS)

SURROUTINE PHUCK(IG,N,NN)

COMMON G,DT,TuL,T0LG

COMMON XF(25),DE(Z25),EPS(25),YC(25,3), M, XTL.XTR, XD
COMMON XXG(35V),PPG(I5N),Q00G(350),AAG(350),UUG(350),58G(350)
COMMON XxG(350/.PG(350),Q6(350),AR(350),UG(350),5G(350)
COMMON Z1(3501),722¢350),%X6B(350),xGA(¢350)

COMMON °PM1,PWL,PPML,FPW]

COMMON P2P1,Al,U1,P1,01,51,42,U2,P?2,02,52,43,U3,P3,02,S83
DIMENSION C1(1),XB(1),UB(1),AB(1)Y,S8(1)

PW1=PM1

SP=PM1

SGG=SP

UAzUL1+2, *Ala(DPwe2-1,)/((G+1.)*SP)
AA=SOQRT((2,4(9-1 . )1«SFs#2) e (2 #G2SP*#2~(Gel.)))/((G+1,)+SP)
PPW1=U1+A1«SP

AG1=2.%GaSPa*c/(G+1,)s(6-1.)/(G+1.) -
AG2=((1.+(6=-1+)*SPwwz/2.)/((G+1.)SPe*2/2,))%*G
SA=S1+ALOG(AGL*AG2)/(G*(Gal.))

XA=XG(N)+DTa(PW1+PPW1) /2.,

CAILL AREA(XA,¥aA)

C1(1)=XA-DTx(VA+AA)/Z,

CALL INTER(E,N,1,Z21,%xG,C1,XR)

CalLL AREA(XB(1),DAB)

CALL INTER(2.N,1,XxG,L6,XB,UB)

CALL INTER(Z,N,1,XG,AG,XB,AR)

CALL INTERtZ,WN,1,X%G,5G,x8,S88)

PB=2.*AB(1)/(b-1,)+UE(1)
PASPR+(-UA=AA®DAA-UB(1)*AB(1)+DAB)*DT/2.«(AA+AB(1))*(SA-SB(1))/2,
DEL=(PA-P1)/AL

CALL SHOCK(LEL,SP,URAT,ARPAT,PR,DS)
IFCABS(SP-SGG?-TOLY11,11,10

CONTINUE

NN=1Q+1

XXG(NN)=XA

PPG(NN)=PA

UUG(NN)Y=UA

AAG(NN)IZAA

QOG(NNY=2 . #»AA/ (G-1.)-UA

SSG(NN)=SA

XGR(NNY=XB(1)

XGO(NNY=O,

PPM1 =58P

RETURN

END

3200 FORTRAN (2.1,0)/(RTS)

SURROUTINE [NTER(N2,N,N1,X,Y,XS,YS)
DIMENSTON X(3UD),vY(300)Y,XS(1),YS(1)
TF(XS(1)=-X(1))1.1,2

J=2

GO T0 7

PO 3 I=1,N

IF(xS(1)-X(1))4,4,3

CONTINYUE

J=N

GO TO 7

J=1

TR (ABS(X(JY=XvJ=1))-.000001)6,6,7
YSO1)=(YS(D+YS(J=1))/2,

GO TO 8

YS(L) =Y (J=1)+XS(1) =Xt J=1))* (Y (U)-Y(J=1))/(X(J)eX(J-1))
CONTINIE

RETURN

FND

3200 FORTRAW DIAGNCSTIC RESULTS - FOR INTER




3200 FORTRAN (2.1,0)/(RTS)

SURROUTINE PRINTOUT(T,NN, IPGO,XTEST)
NIMENSION XT¢1),UT(L1)Y,AT(1),ST(1Y
COMMON G,DT,TUL,TOLO
COMMON XEF(2%)sDE(25),EPS(25),YC(25,3),M,XTL,XTR,XD
COMMON xXXG(3I5U),PPG(250),00G(350),AAG(350),uUG(350),SSG(350)
COMMON XG(350),PG(350),QG(350),AG(350),UG(350),SG(350)
COMMON 71(350),72¢350),XGs(350),XGR(350)
COMMON PM1,FWl.PPM1,FFWL
COMMON P2PY,AL,U1,P1,01,51,A2,U2,P2,02,52,A3,U3,P3,032,S$
COMMON NNGC10/,00W(10),00M(10),NAOCL0),0W(10),0M(10),NNOT,NQT
COMMON MMCS(1V),MMCST,MCS(10),MCST
COMMON XSHOCK{1y)
COMMON XCOMTALT(10),LCONTACT(10)
0P=G/(G-1.)
XY (1)=XTEST
WRITE(61,115)!
115 FORMAT(//3X,5NTIME=,E15.8,1X,3H(e)//)
WRITE(A1,117)
117 FORMAT(5X,1K1,7X,1HX,14X,1HP,14X,1H0,14%X,1HA,14X,1HU,14X,1HS,10X,8
1HP OQRINBIN,8X,8H0 QRICIN/)
JJn=1
JJdrs=1
DO 8 I=1,NN
WRITE(EL.103)4,XXG(]),PPG(]),00GC1),AAG(Y),UUG(]I),SSG(1),XGB(I]),
1XG601)
103 FORMAT (8%x,13,0E15,8)
IF(NNQT)%®,5,2
2 JF(JJQ=-\NMETIZ 3,5
2 IFCI-NND(JUG)?5,4,5
4 WRITE(61,102)d0M(JJQ),0QW(JJR)
102 FQORMAT(3X,17Hd SHOCK MACH ND.=,E15.8,4X,17HQ SHOCK VELOCITY=,E15.8
1)
JJu=JdJda+1
IF (MMCST)6,8E,0
IF (JUCS-MMCSTI15,15,¢€
IFcl-mmMOUS(JUCD))8,7,E
WRITE(K1,87)
87 FOKMAT(3X,13HVONTACT SURFACE)
JJCs=JdJie+1
8 CONTINUE
IFCIPGNYL0,9,4N
WRITF(61,133)PPML,PPW]
FOHMAT (/3% ,20hP SHOCK MACH WNUMBER=,E15.8,/3X,17HP SHCCK VELOCITY=,
1F15 . 8)
10 CONTINDE
IF(xxG(1)=-¥T(4))11,12,12
11 CONTINVE
catn IMTER(Z,9N,1,XXC,UUG,XT,UT)
Cat L INTER(Z,NN,1,XXC,AAG,XT,AT)
CAlLL [MYER(Z,wN,1,XXC,SSG,XxT,ST)
AMACH=UT (1) /A1 (1)
PRES=AT(1)*x (<L, *G/(G=1.))*EXP(-G*ST (1))
WRITE(AL,100)AT(1),AMECH,PRES
10n FORMAT(//3%,6NXTEST=,E15,6,2X,5HMACH=,E15,8,2X,6HPRESS=,E15.8)
12 WRITE(6K1,110) .
110 FORMAT (1K1}
RETURN
END
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